留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SBAS-InSAR和光学遥感影像的大型倾倒变形体变形演化

杨沛璋 崔圣华 裴向军 何双 王慧 梁玉飞

杨沛璋, 崔圣华, 裴向军, 何双, 王慧, 梁玉飞. 基于SBAS-InSAR和光学遥感影像的大型倾倒变形体变形演化[J]. 地质科技通报, 2023, 42(6): 63-75. doi: 10.19509/j.cnki.dzkq.tb20220145
引用本文: 杨沛璋, 崔圣华, 裴向军, 何双, 王慧, 梁玉飞. 基于SBAS-InSAR和光学遥感影像的大型倾倒变形体变形演化[J]. 地质科技通报, 2023, 42(6): 63-75. doi: 10.19509/j.cnki.dzkq.tb20220145
Yang Peizhang, Cui Shenghua, Pei Xiangjun, He Shuang, Wang Hui, Liang Yufei. Deformation and evolution of large dumping bodies based on SBAS-InSAR and optical remote sensing images[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 63-75. doi: 10.19509/j.cnki.dzkq.tb20220145
Citation: Yang Peizhang, Cui Shenghua, Pei Xiangjun, He Shuang, Wang Hui, Liang Yufei. Deformation and evolution of large dumping bodies based on SBAS-InSAR and optical remote sensing images[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 63-75. doi: 10.19509/j.cnki.dzkq.tb20220145

基于SBAS-InSAR和光学遥感影像的大型倾倒变形体变形演化

doi: 10.19509/j.cnki.dzkq.tb20220145
基金项目: 

国家自然科学基金项目 41931296

国家自然科学基金项目 41907254

地质灾害与地质环境保护国家重点实验室基金项目 SKLGP2021Z014

详细信息
    作者简介:

    杨沛璋(1998—), 男, 现正攻读地质资源与地质工程专业硕士学位, 主要从事地质灾害遥感监测识别方面的研究工作。E-mail: 1461438771@qq.com

    通讯作者:

    崔圣华(1989—), 男, 副教授, 主要从事地震大型滑坡形成机制方面的研究工作。E-mail: shenghuacui.geo@qq.com

  • 中图分类号: P237;P642.22

Deformation and evolution of large dumping bodies based on SBAS-InSAR and optical remote sensing images

  • 摘要:

    岷江流域深层不稳定斜坡发育, 揭示它们的变形演化特征对于稳定性评价和灾害防治有重要意义。以茂县梯子槽大型倾倒变形体为例, 采用SBAS-InSAR监测和光学遥感解译结合的方法, 获得变形体地表历史时序形变场。研究表明, 梯子槽倾倒变形体前缘表现为垮塌破坏和鼓胀裂解复合破坏模式, 垮塌区经历了形变由递增到减弱的破坏过程; 在递增阶段倾倒变形体北侧形变量远大于南侧, 而形变减弱后在南侧后缘形成了拉应力沉降区(-70.17 mm/a)、前缘因挤压应力集中而鼓胀裂解(-45.94 mm/a); 形变减弱后变形体处于蠕变状态(年最大沉降量小于80 mm), 但南侧后缘拉陷区与北侧前缘垮塌区形变对降雨和地震响应明显, 表现为5~15 mm形变突增和回弹现象。本研究地表位移监测方法可以为形变量级跨度较大的不稳定斜坡演化分析提供参考。

     

  • 图 1  研究区域概况

    Figure 1.  Overview of the study area

    图 2  南北侧复合变形过程剖面示意图

    Figure 2.  Cross-sectional schematic diagram of the composite deformation process on the north and south sides

    图 3  地层岩性分布图

    Figure 3.  Stratigraphic lithology distribution map

    图 4  梯子槽倾倒变形体地质剖面图

    Figure 4.  Geological profile of the Tizicao dumping deformation body

    图 5  划定区域历史地震信息

    Figure 5.  Delineated area historical earthquake information

    图 6  石大关乡2014-2020年逐月降雨量

    Figure 6.  Monthly rainfall in Shidaguan Township from 2014 to 2020

    图 7  卫星监测与GNSS监测几何示意图

    Figure 7.  Geometric diagram of satellite monitoring and GNSS monitoring

    图 8  研究技术路线图

    Figure 8.  Research technology roadmaps

    图 9  影像数据时间与位置连接图

    Figure 9.  Connected diagram of image data time and location

    图 10  历史多期次光学影像(图中箭头指向拉裂缝位置,虚线圆圈指示崩塌区域)

    a.2010年1月9日WorldView-2影像;b.2011年3月17日Geoeye-1影像;c.2016年1月9日WorldView-2影像;d.2019年10月23日Pleiades-A影像

    Figure 10.  Historical multi phase optical images

    图 11  2010/01/09-2019/10/23变形体地表道路形变图

    Figure 11.  Map of road surface deformation from January 9, 2010 to October 23, 2019

    图 12  2018-2019年年平均形变速率及形变监测点布置概况图

    Figure 12.  Annual average velocity and deformation monitoring points layout overview from 2018 to 2019

    图 13  剖面I-I′II-II′选点累计形变图

    Figure 13.  Cumulative deformation diagram of selected points at I-I′ and II-II′ sections

    图 14  形变减弱阶段变形体区域累计形变时序图

    Figure 14.  Time sequence diagram of the cumulative deformation of the deformed body region in the deformation weakens stage

    图 15  GNSS监测点布置图

    Figure 15.  Distribution of GNSS monitoring point

    图 16  GNSS监测点累计形变图

    Figure 16.  Curve of GNSS monitoring cumulative deformation

    图 17  SBAS-InSAR与GNSS监测ALOS向累计形变序列图

    Figure 17.  Sequence diagram of SBAS-InSAR and GNSS monitoring ALOS direction cumulative deformation

    图 18  2018/01/02-2019/12/11 I-I′II-II′剖面SBAS-InSAR监测选点时序形变和对应降雨量

    Figure 18.  SBAS-InSAR point selection time series deformation and the corresponding rainfall at I-I′ and II-II′ sections from January 2, 2018 to December 11, 2019

    图 19  2018/01/02-2019/12/11 I-I′II-II′剖面SBAS-InSAR监测选点时序形变与对应地震

    Figure 19.  Time series deformation and the corresponding earthquakes of SBAS-InSAR monitoring points at I-I′ and II-II′ sections from January 2, 2018 to December 11, 2019

    表  1  光学遥感影像参数

    Table  1.   Image parameters of optical remote sensing

    序号 影像拍摄时间 卫星名称 分辨率/m
    1 2010/01/09 WorldView-2 0.48
    2 2011/03/17 Geoeye-1 0.44
    3 2016/01/09 WorldView-2 0.48
    4 2019/10/23 Pleiades-A 0.50
    下载: 导出CSV

    表  2  不同形变分区选点详细情况

    Table  2.   Details of selected points at different deformation zones

    编号 点号 经度/(°) 纬度/(°) 年平均形变速率/(mm·a-1)
    1 159239 103.677 37 31.889 311 -5.15
    2 165054 103.679 24 31.889 102 -29.35
    3 171514 103.681 33 31.889 102 -52.59
    4 175390 103.682 99 31.889 102 -76.43
    5 188956 103.686 95 31.889 102 -1.17
    6 159897 103.677 58 31.886 811 -22.00
    7 167649 103.680 08 31.886 811 -70.17
    8 172817 103.681 74 31.886 811 -58.68
    9 179923 103.684 03 31.886 811 -45.94
    10 187029 103.686 33 31.886 811 -1.53
    下载: 导出CSV

    表  3  GNSS与SBAS-InSAR监测结果相关性

    Table  3.   Correlation table between GNSS and SBAS-InSAR monitoring results

    监测站点 点1 点2 点3 点4 点5
    双侧显著性 1.358 9×10-17 5.561 7×10-16 7.031 9×10-16 1.062 8×10-16 3.852 6×10-14
    皮尔逊相关性 0.967 0.957 0.956 0.962 0.940
    下载: 导出CSV
  • [1] Cui S H, Pei X J, Jiang Y, et al. Liquefaction within a bedding fault: Understanding the initiation and movement of the Daguangbao landslide triggered by the 2008 Wenchuan Earthquake (Ms=8.0)[J]. Engineering Geology, 2021, 295: 106455. doi: 10.1016/j.enggeo.2021.106455
    [2] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm

    Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th Century[J]. Chinese Journal of rock Mechanics and Engineering, 2007, 26(3): 433-454(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
    [3] 崔圣华, 杨晴雯, 芮雪莲, 等. 裂隙岩体循环冻融变形特征及影响因素分析[J]. 地质科技通报, 2021, 40(6): 205-215. doi: 10.19509/j.cnki.dzkq.2021.0620

    Cui S H, Yang Q W, Rui X L, et al. Effect factors analysis and characteristic of freeze-thaw deformation of fracture rock[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 205-215(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0620
    [4] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm

    Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm
    [5] 何双, 崔圣华, 裴向军, 等. 基于多源数据的茂县石大关倾倒体形态结构探测与成因研究[J]. 工程地质学报, 2023, 31(3): 932-948.

    He S, Cui S H, Pei X J, et al. Morphological structure and failure mechanism of Shidaguang toppling body in Maoxian based on multi-source date[J]. Journal of Engineering Geology, 2023, 31(3): 932-948(in Chinese with English abstract).
    [6] 董佳慧, 牛瑞卿, 亓梦茹, 等. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报, 2022, 41(2): 187-196. doi: 10.19509/j.cnki.dzkq.2022.0024

    Dong J H, Niu R Q, Qi M R, et al. Identification of geological hazards based on the combination of InSAR technology and disaster background indicators[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 187-196(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0024
    [7] 郭晓丹, 查显杰, 黄金水. 利用遥感影像偏移追踪的地震滑坡监测[J]. 遥感信息, 2016, 31(3): 56-60.

    Guo X D, Zha X J, Huang J S. Monitoring earthquake-triggered landslide using optical inage offset-tracking algorithm[J]. Remote Sensing Information, 2016, 31(3): 56-60(in Chinese with English abstract).
    [8] 王朋伟, 安玉科. 基于倾斜摄影与InSAR技术的高位崩塌风险识别[J]. 水文地质工程地质, 2023, 50(5): 169-180. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202305017.htm

    Wang P W, An Y K. High-level collapse risk identification based on oblique photography and InSAR technology[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 169-180(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202305017.htm
    [9] 刘立, 李长安, 高俊华, 等. 基于北斗与InSAR的地质灾害监测关键问题探讨[J]. 地质科技情报, 2019, 38(6): 141-149.

    Liu L, Li C A, Gao J H, et al. Geological disaster monitoring combined with BDS and InSAR[J]. Geological Science and Technology Information, 2019, 38(6): 141-149(in Chinese with English abstract).
    [10] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710054.htm

    Zhu J J, Li Z W, Hu J. InSAR deformation monitoring methods and research progress[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710054.htm
    [11] Li M H, Zhang L, Dong J, et al. Characterization of pre- and post-failure displacements of the Huangnibazi landslide in Li County with multi-source satellite observations[J]. Engineering Geology, 2019, 257: 105140.
    [12] 韩旭东, 付杰, 李严严, 等. 舟曲江顶崖滑坡的早期判识及风险评估研究[J]. 水文地质工程地质, 2021, 48(6): 180-186. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106020.htm

    Han X D, Fu J, Li Y Y, et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu county[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 180-186(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106020.htm
    [13] 单新建, 叶洪. 干涉测量合成孔径雷达技术原理及其在测量地震形变场中的应用[J]. 地震学报, 1998, 20(6): 88-96.

    Shan X J, Ye H. Principle of interferometric synthetic aperture radar technology and its application in measuring seismic deformation field[J]. Acta Seismologica Sinica, 1998, 20(6): 88-96(in Chinese with English abstract).
    [14] 范青松, 汤翠莲, 陈于, 等. GPS与InSAR技术在滑坡监测中的应用研究[J]. 测绘科学, 2006, 31(5): 60-62.

    Fan Q S, Tang C L, Cheng Y, et al. Application of GPS and InSAR technology in landslide monitoring[J]. Science of Surveying and Mapping, 2006, 31(5): 60-62(in Chinese with English abstract).
    [15] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别: 以四川丹巴为例[J]. 武汉大学学报: 信息科学版, 2018, 43(12): 2039-2049. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201812031.htm

    Zhang L, Liao M S, Dong J, et al. Early detection of landslide hazards in mountainous areas of west China using time series SAR interferometry: A case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201812031.htm
    [16] 解明礼, 赵建军, 巨能攀, 等. 多源数据滑坡时空演化规律研究: 以黄泥坝子滑坡为例[J]. 武汉大学学报: 信息科学版, 2020, 45(6): 923-932. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202006016.htm

    Jie M L, Zhao J J, Ju N P, et al. Research on temporal and spatial evolution of landslide based on multisource date: A case study of Huangnibazi landslide[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 923-932(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202006016.htm
    [17] 赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 996-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907005.htm

    Zhao C Y, Liu X J, Zhang Q, et al. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907005.htm
    [18] 冯文凯, 顿佳伟, 易小宇, 等. 基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析[J]. 工程地质学报, 2020, 28(2): 384-393.

    Feng W K, Dun J W, Yi X Y, et al. Deformation analysis of Woda Village old landslide in Jinsha River basin using SBAS-InSAR technology[J]. Journal of Engineering Geology, 2020, 28(2): 384-393(in Chinese with English abstract).
    [19] 陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报: 信息科学版, 2019, 44(9): 1342-1354.

    Lu H Y, Li W L, Xu Q, et al. Early detection of landslides in the upstream and downstream areas of the Baige landslide, the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1342-1354(in Chinese with English abstract).
    [20] 钟灵毓, 薛武, 王鹏. 光学遥感影像几何校正方法分析[J]. 北京测绘, 2020, 34(9): 1271-1275.

    Zhong L Y, Xue W, Wang P. Analysis of optical remote sensing image geometric rectification[J]. Beijing Surveying and Mapping, 2020, 34(9): 1271-1275(in Chinese with English abstract).
    [21] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534-1551.

    Xu Q, Zheng G, Li W L, et al. Study on successive landslide damming events of Jinsha River in Baige Village on October 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534-1551(in Chinese with English abstract).
    [22] Cenni N, Fiaschi S, Fabris M. Integrated use of archival aerial photogrammetry, GNSS, and InSAR data for the monitoring of the Patigno landslide (Northern Apennines, Italy)[J]. Landslides, 2021, 18(6): 2247-2263.
    [23] 黄润秋, 李渝生, 严明. 斜坡倾倒变形的工程地质分析[J]. 工程地质学报, 2017, 25(5): 1165-1181.

    Huang R Q, Li Y S, Yan M. The implication and evaluation of toppling failure in engineering geology practice[J]. Journal of Engineering Geology, 2017, 25(5): 1165-1181(in Chinese with English abstract).
    [24] Xie M L, Zhao W H, Ju N P, et al. Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide, Wenchuan, China[J]. Engineering Geology, 2020, 277: 105781.
    [25] 汪超. 地震影响场及烈度衰减关系研究[D]. 成都: 西南交通大学, 2014.

    Wang C. The research of seismic influence filed and intensity attenaution[D]. Chengdu: Southwest Jiaotong University, 2014(in Chinese with English abstract).
    [26] 崔圣华. 强震过程软弱层带地震动响应及大型滑坡启动机制研究[J]. 岩石力学与工程学报, 2018, 37(6): 1560. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806025.htm

    Cui S H. Seismic responses of wake interlayer and initiation mechanisms of large landslides during strong earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1560(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806025.htm
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  692
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-06-06
  • 修回日期:  2022-05-11

目录

    /

    返回文章
    返回