留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江汉盆地新生代早期河流演化研究:来自地表河流和盆地钻孔碎屑锆石U-Pb年龄的约束

张洋 陈孝康 林旭 李长安 刘海金 刘杰

张洋, 陈孝康, 林旭, 李长安, 刘海金, 刘杰. 江汉盆地新生代早期河流演化研究:来自地表河流和盆地钻孔碎屑锆石U-Pb年龄的约束[J]. 地质科技通报, 2023, 42(6): 106-117. doi: 10.19509/j.cnki.dzkq.tb20220154
引用本文: 张洋, 陈孝康, 林旭, 李长安, 刘海金, 刘杰. 江汉盆地新生代早期河流演化研究:来自地表河流和盆地钻孔碎屑锆石U-Pb年龄的约束[J]. 地质科技通报, 2023, 42(6): 106-117. doi: 10.19509/j.cnki.dzkq.tb20220154
Zhang Yang, Chen Xiaokang, Lin Xu, Li Chang'an, Liu Haijin, Liu Jie. Early Cenozoic drainage evolution in the Jianghan Basin: Constraints from detrital zircon U-Pb ages of surface rivers and cores in the basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 106-117. doi: 10.19509/j.cnki.dzkq.tb20220154
Citation: Zhang Yang, Chen Xiaokang, Lin Xu, Li Chang'an, Liu Haijin, Liu Jie. Early Cenozoic drainage evolution in the Jianghan Basin: Constraints from detrital zircon U-Pb ages of surface rivers and cores in the basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 106-117. doi: 10.19509/j.cnki.dzkq.tb20220154

江汉盆地新生代早期河流演化研究:来自地表河流和盆地钻孔碎屑锆石U-Pb年龄的约束

doi: 10.19509/j.cnki.dzkq.tb20220154
基金项目: 

国家自然科学基金项目 41972212

湖北省楚天学者人才计划 8210403

详细信息
    作者简介:

    张洋(1987—), 男, 讲师, 主要从事建筑与土木工程相关研究工作。E-mail: 33702577@cug.edu.cn

    通讯作者:

    林旭(1984—), 男, 副教授, 主要从事青藏高原隆升和中国大河起源的教学和科研工作。E-mail: hanwuji-life@163.com

  • 中图分类号: P534.6;P343.1

Early Cenozoic drainage evolution in the Jianghan Basin: Constraints from detrital zircon U-Pb ages of surface rivers and cores in the basin

  • 摘要:

    大型河流的演化是构造-气候相互作用的结果, 对其开展演化历史研究是揭示地球深部动力过程对地表过程影响的关键切入点。保存于江汉盆地的新生代地层详细记录了汉江、长江等大型河流的演化信息。通过对汉江流域进行系统的碎屑锆石U-Pb年龄分析(n = 690), 结合前人在江汉盆地主要汇入河流发表的锆石U-Pb年龄数据, 将其与江汉盆地内早始新世沉积钻孔的锆石U-Pb年龄数据进行了对比。结果表明, 汉江下游的碎屑锆石U-Pb年龄物质组成混合了秦岭西部、大巴山和秦岭东部的河流碎屑物质信号, 采用其下游干流样品的锆石U-Pb年龄组成进行物源对比更具有代表性; 江汉盆地早始新世的碎屑物质主要来自秦岭和大别山, 这主要归结为江汉盆地内部断陷与这些造山带的隆升形成显著的地势差异, 为大型河流发育奠定基础; 发源于武陵山和黄陵背斜的河流此时并不是江汉盆地中部、东部和南部凹陷的物质供给河流; 黄陵背斜以西的长江在早始新世未进入江汉盆地。总体而言, 江汉盆地在新生代早期的沉积物源以近源造山带为主, 是对盆地周缘造山带隆升和类季风气候的沉积响应。

     

  • 图 1  江汉盆地位置图

    图中数字分别代表前人采样点(1[5],2[6],3[7])。1为长江、汉江和湘江的采样点,分别位于宜昌、钟祥和长沙;2为汉江的采样点,靠近武汉;3的采样点主要位于长江各主要支流汇入其干流前几千米处

    Figure 1.  Location of the Jianghan Basin

    图 2  江汉盆地地层构造划分和地层柱状图

    a. 江汉盆地构造单元划分(据文献[31]修改),c-c代表图 2-c中的剖面位置; b. 江汉盆地沉积地层柱状图(据文献[31]修改); c. 江汉盆地剖面c-c古近纪时沉积相复原图(据文献[32]修改)

    Figure 2.  Stratigraphic structure division and column chart of the Jianghan Basin

    图 3  江汉盆地钻孔位置图

    a. 江汉盆地地质图(据文献[36]修改); b. 钻孔采样图(据文献[36])

    Figure 3.  Borehole locations in the Jianghan Basin

    图 4  野外样品采集点分布图

    图中数字代表前人采样点(1[5]、2[29]、3[6]),1和2采样点靠近襄阳,3采样点靠近武汉

    Figure 4.  Distribution of sampling locations with the number for previous sampling points

    图 5  锆石Th/U结果散点图

    Figure 5.  Scatter plot of the ratio of Th/U for detrital zircon grains

    图 6  江汉及唐白河锆石U-Pb年龄频率分布图

    a~g. 汉江上游和中游(本次研究); h. 唐白河(据文献[26]); i. 汉江下游(据文献[40])

    Figure 6.  Frequency distribution of detrital zircon U-Pb ages in the Hanjiag river and Tangbai river

    图 7  汉江盆地锆石U-Pb年龄频率分布图

    a~e. 钻孔数据(据文献[36]); f. 长江(据文献[29]); g. 汉江(据文献[6]); h~l. 沮漳河、湘江、清江+澧水+沅江、汨罗江+陆水、澴水+举水+巴水(据文献[5])

    Figure 7.  U-Pb age frequency distribution of zircons in the Jianghan Basin

    图 8  江汉盆地锆石U-Pb年龄三维MDS图

    Figure 8.  Three dimensional scaling map of the detrital zircon U-Pb ages in the Jianghan Basin

    图 9  古地理重建图

    a. 早始新世华南板块河流分布图;b. 早古近纪华南板块构造与气候特征图(据文献[52, 62]修改)

    Figure 9.  Paleogeographic reconstruction

    表  1  样品采集信息

    Table  1.   Collected sampling information

    河流/钻孔(样品) 采样点 经度(E) 纬度(N) 数据来源
    堰河(MX-1) 勉县 106°43′1″ 33°08′51″ 本研究
    漾家河(MX-3) 勉县 106°44′15″ 33°07′38″ 本研究
    汉江(ML-1) 勉县 106°44′43″ 33°08′34″ 本研究
    旬河(XYH-1) 旬阳 109°20′07″ 32°49′18″ 本研究
    汉江(XY-1) 旬阳 109°21′29″ 32°46′08″ 本研究
    堵河(DY-1) 黄龙 110°33′43″ 32°41′10″ 本研究
    汉江(XF-1) 襄阳 111°58′18″ 32°05′43″ 本研究
    汉江 武汉 114°12′02″ 30°35′12″ 文献[6]
    唐白河 襄阳 112°18′36″ 32°07′45″ 文献[5]
    长江 宜昌 111°18′43″ 30°39′49″ 文献[29]
    沮漳河 当阳 111°44′56″ 30°53′59″ 文献[5]
    澴河 孝昌 113°57′47″ 31°14′58″ 文献[5]
    倒水 李集 114°40′08″ 30°52′59″ 文献[5]
    举水 新洲 114°45′42″ 30°55′47″ 文献[5]
    巴河 竹瓦 115°06′11″ 30°38′33″ 文献[5]
    陆水 赤壁 113°51′34″ 29°44′56″ 文献[5]
    汨罗江 汨罗 113°08′54″ 28°47′30″ 文献[5]
    湘江 衡阳 112°56′55″ 28°08′21″ 文献[29]
    资江 桃江 112°11′49″ 28°36′09″ 文献[5]
    沅江 武陵 111°38′27″ 28°59′38″ 文献[5]
    澧水 澧县 111°49′55″ 29°37′23″ 文献[5]
    清江 宜都 107°29′06″ 29°32′55″ 文献[5]
    钻孔(M96) 文献[36]
    钻孔(Yx2) 文献[36]
    钻孔(Yx1) 文献[36]
    钻孔(Y1-1) 文献[36]
    钻孔(Jx9) 文献[36]
    钻孔(Cc1) 文献[36]
    钻孔(H12) 文献[36]
    下载: 导出CSV
  • [1] Willett S D, Slingerland R, Hovius N. Uplift, shortening, and steady state topography in active mountain belts[J]. American Journal of Science, 2001, 301(4/5): 455-485.
    [2] Zhang Y, Wang Q, Chen L, et al. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2008, 53(4): 584-590. doi: 10.1007/s11434-008-0111-1
    [3] Yang S, Wang Z, Guo Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1): 56-65. doi: 10.1016/j.jseaes.2008.12.002
    [4] Zheng H, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110
    [5] 林旭, 吴中海, 赵希涛, 等. 江汉盆地河流碎屑锆石U-Pb年龄特征及其对物源示踪研究的启示[J]. 地球学报, 2022, 43(1): 73-81.

    Lin X, Wu Z H, Zhao X T, et al. Zircon U-Pb ages of fluvial detrital zircons in the Jianghan Basin and their implications for provenance tracing[J]. Acta Geologica Sinica, 2022, 43(1): 73-81.
    [6] Liang Z W, Gao S, Hawkesworth C J, et al. Step-like growth of the continental crust in South China: Evidence from detrital zircons in Yangtze River sediments[J]. Lithos, 2018, 320: 155-171.
    [7] Wang J, Li C, Yang Y, et al. Detrital zircon geochronology and provenance of core sediments in Zhoulao Town, Jianghan Plain, China[J]. Journal of Earth Science, 2010, 21(3): 257-271. doi: 10.1007/s12583-010-0090-4
    [8] 林旭, 刘静. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质, 2019, 41(2): 499-520.

    Lin X, Liu J. A review of mountain-basin couping of Jianghan and Dongting basins with their surrounding mountains[J]. Seismology and Geology, 2019, 41(2): 499-520(in Chinese with English abstract).
    [9] 徐政语, 卢文忠, 林舸, 等. 秦岭-大别造山带与江南造山带的差异隆升过程: 来自江汉盆地中-新生代沉积记录的证据[J]. 地质科学, 2005, 40(2): 179-197.

    Xu Z Y, Lu W Z, Lin K, et al. Discrepant uplifting processes of the Qinling-Dabie and Jiangnan orogens: Evidence from Meso-Cenozoic sedimentary records in the Jianghan Superimposed Basin[J]. Chinese Journal of Geology, 2005, 40(2): 179-197(in Chinese with English abstract).
    [10] Lee J S, Chao Y T. Geology of the gorge district of the Yangtze(from Ichang to Tzekuei) with special reference to the development of the Gorges[J]. Bulletin of the Geological Society of China, 1924, 3(3/4): 351-391.
    [11] 李承三. 长江发育史[J]. 人民长江, 1956(12): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE195612001.htm

    Li C S. Development history of the Yangtze River[J]. Yangtze River, 1956(12): 3-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE195612001.htm
    [12] Lee C Y. The development of the Upper Yangtze valley[J]. Bulletin of the Geological Society of China, 1934, 3(2): 107-118.
    [13] 沈玉昌. 长江上游河谷[M]. 北京: 科学出版社, 1965.

    Shen Y C. Upper Yangtze River valley[M]. Beijing: Science Press, 1965(in Chinese).
    [14] 杨达源. 长江地貌过程[M]. 北京: 地质出版社, 2006.

    Yang D Y. Geomorphic process of the Yangtze River[M]. Beijing: Geological Publishing House, 2006(in Chinese).
    [15] Richardson N J, Densmore A L, Seward D, et al. Did incision of the Three Gorges begin in the Eocene?[J]. Geology, 2010, 38(6): 551-554. doi: 10.1130/G30527.1
    [16] Wang P, Zheng H, Chen L, et al. Exhumation of the Huangling anticline in the Three Gorges region: Cenozoic sedimentary record from the western Jianghan Basin, China[J]. Basin Research, 2014, 26(4): 505-522. doi: 10.1111/bre.12047
    [17] Jiao R, Yang R, Yuan X. Incision history of the Three Gorges, Yangtze River constrained from inversion of river profiles and low-temperature thermochronological data[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(3): e2020JF005767. doi: 10.1029/2020JF005767
    [18] Xiang F, Zhu L, Wang C, et al. Quaternary sediment in the Yichang area: Implications for the formation of the Three Gorges of the Yangtze River[J]. Geomorphology, 2007, 85(3/4): 249-258.
    [19] 康春国, 李长安, 张玉芬, 等. 宜昌砾石层重矿物组合特征及物源示踪分析[J]. 地质学报, 2014, 88(2): 254-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402008.htm

    Kang C G, Li C A, Zhang Y F, et al. Heavy mineral characteristics of the Yichang gravel layers and provenance tracing[J]. Acta Geologica Sinica, 2014, 88(2): 254-262(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201402008.htm
    [20] 沈玉昌. 汉水河谷的地貌及其发育史[J]. 地理学报, 1956, 22(4): 295-323.

    Shen Y C. Geomorphology of the Hanshui valley[J]. Acta Geographica Sinica, 1956, 22(4): 295-323(in Chinese with English abstract).
    [21] 王明明. 汉中盆地周缘断裂活动性研究及发震构造分析[D]. 北京: 中国地震局地质研究所, 2010.

    Wang M M. A study on developmental mechanism and tectonic evolution of the Hanzhong Basin[D]. Beijing: China Earthquake Administration, 2010(in Chinese with English abstract).
    [22] 任美锷, 杨戍. 湘江流域的某些地貌和第四纪地质问题[J]. 地理学报, 1957, 23(4): 359-377.

    Ren M E, Yang S. Some problems on the geomorphology and Quaternary geology of the Hsiang Kiang Basin, Hunan Province[J]. Acta Geographica Sinica, 1957, 23(4): 359-377(in Chinese with English abstract).
    [23] Jia J, Zheng H, Huang X, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(15): 1520-1528. doi: 10.1007/s11434-010-3091-x
    [24] Fu X, Zhu W, Geng J, et al. The present-day Yangtze River was established in the Late Miocene: Evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences, 2021, 205: 104600. doi: 10.1016/j.jseaes.2020.104600
    [25] Zhang J, Krijgsman W, Lu Y, et al. Detrital zircon ages reveal Yangtze provenance since the Early Oligocene in the East China Sea Shelf Basin[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2021, 577: 110548. doi: 10.1016/j.palaeo.2021.110548
    [26] 林旭, 赵希涛, 吴中海, 等. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 2020, 39(6): 10-18. doi: 10.19509/j.cnki.dzkq.2020.0602

    Lin X, Zhao X T, Wu Z H, et al. Source tracing of K-feldspar of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 10-18(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0602
    [27] Deng B, Chew D, Mark C, et al. Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda[J]. GSA Bulletin, 2021, 133(1/2): 199-211.
    [28] 林旭, 李玲玲, 刘静, 等. 长江早更新世向江汉盆地输送碎屑物质: 来自碎屑锆石U-Pb年龄的约束[J/OL]. 地球科学. https://kns.cnki.net/kcms/detail/42.1874.P.20220214.1116.004.html.

    Lin X, Li L L, Liu J, et al. The Yangtze River contributed detrital materials to the Jianghan Basin during the Early Pleistocene: Constraints from detrital zircon U-Pb ages[J/OL]. Earth Sciences. https://kns.cnki.net/kcms/detail/42.1874.P.20220214.1116.004.html(in Chinese with English abstract).
    [29] He M Y, Zheng H B, Clift P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in central China[J]. Chemical Geology, 2013, 360: 186-203.
    [30] Li S, Suo Y, Li X, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews, 2019, 192: 91-137. doi: 10.1016/j.earscirev.2019.03.003
    [31] 戴世昭. 江汉盐湖盆地石油地质[M]. 北京: 石油工业出版社, 1997.

    Dai S Z. Petroleum geology of Jianghan Salt Lake Basin[M]. Beijing: Petroleum Industry Press, 1997(in Chinese).
    [32] 姚纪明, 剧永涛, 劳海港, 等. 中扬子区晚侏罗世至新近纪沉积特征研究[M]. 武汉: 武汉大学出版社, 2015.

    Yao J M, Ju Y T, Lao H G, et al. Sedimentary characteristics from Late Jurassic to Neogene in the Middle Yangtze Area[M]. Wuhan: Wuhan University Press, 2015(in Chinese).
    [33] 李俊. 中扬子上侏罗纪-古近系古水流特征及其与盆地充填演化的关系[D]. 北京: 中国地质大学(北京), 2009.

    Li J. Relationship between characteristics of paleocurrent and basin-filling evolution of Upper Jurassic-Paleogene in middle Yangtze area[D]. Beijing: China University of Geosciences (Beijing), 2009(in Chinese with English abstract).
    [34] Yu X, Liu C, Wang C, et al. Provenance of rift sediments in a composite basin-mountain system: Constraints from petrography, whole-rock geochemistry, and detrital zircon U-Pb geochronology of the Paleocene Shashi Formation, southwestern Jianghan Basin, central China[J]. International Journal of Earth Sciences, 2018, 107(8): 2741-2766. doi: 10.1007/s00531-018-1624-8
    [35] 吴路路. 江汉盆地的开始、演化与夭折: 基底构造与地幔动力的共同制约[D]. 武汉: 中国地质大学(武汉), 2019.

    Wu L L. The initiation, evolution and abandonment of the Jianghan Basin: Combined influence of basement structures and mantle dynamics[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in Chinese with English abstract).
    [36] Wu L L, Mei L F, Liu Y S, et al. Multiple provenance of rift sediments in the composite basin-mountain system: Constraints from detrital zircon U-Pb geochronology and heavy minerals of the Early Eocene Jianghan Basin, central China[J]. Sedimentary Geology, 2017, 349: 46-61.
    [37] 王孝磊, 周金城, 陈昕, 等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 2017, 36(5): 714-735.

    Wang X L, Zhou J C, Chen X, et al. Formation and evolution of the Jiangnan Orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 714-735(in Chinese with English abstract).
    [38] 郑志锋. 中扬子地区晚中生代构造转型: 秭归盆地沉积及黄陵背斜隆升的研究[D]. 广州: 中国科学院广州地球化学研究所, 2019.

    Zheng Z F. Late Mesozoic structural transition in the Middle Yangtze Region: Study on sedimentation of Zigui Basin and uplift of Huangling anticline[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2019(in Chinese with English abstract).
    [39] Zhang S, Liu C, Yang M, et al. Decoding provenance and tectonothermal events by detrital zircon fission-track and U-Pb double dating: A case of the Southern Ordos Basin[J]. Acta Geologica Sinica: English Edition, 2019, 93(4): 845-856.
    [40] Saylor J E, Jordan J C, Sundell K E, et al. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau[J]. Basin Research, 2018, 30(3): 544-563.
    [41] 张凌, 王平, 陈玺赟, 等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202004008.htm

    Zhang L, Wang P, Chen X Y, et al. Review indetrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202004008.htm
    [42] Deng B, Chew D, Jiang L, et al. Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte Basin: Implications for a transcontinental source-to-sink system during Late Cretaceous time[J]. Bulletin, 2018, 130(11/12): 2087-2109.
    [43] Zhao X D, Zhang H P, Hetzel R, et al. Existence of a continental-scale river system in eastern Tibet during the Late Cretaceous-Early Palaeogene[J]. Nature communications, 2021, 12(1): 7231.
    [44] Chen Y, Yan M D, Fang X M, et al. Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River[J]. Earth and Planetary Science Letters, 2017, 476: 22-33.
    [45] Feng Y, Song C, He P, et al. Detrital zircon U-Pb geochronology of the Jianchuan Basin, southeastern Tibetan Plateau, and its implications for tectonic and paleodrainage evolution[J]. Terra Nova, 2021, 33(6): 560-572.
    [46] Zheng H, Clift P D, He M, et al. Formation of the First Bend in the Late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 2021, 49(1): 35-39.
    [47] Zhang Z, Daly J S, Yan Y, et al. No connection between the Yangtze and Red rivers since the Late Eocene[J]. Marine and Petroleum Geology, 2021, 129: 105115.
    [48] 胡忠贵, 胡明毅, 胡九珍, 等. 潜江凹陷东部地区新沟咀组下段浅水三角洲沉积模式[J]. 中国地质, 2011, 38(5): 1263-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105014.htm

    Hu Z G, Hu M Y, Hu J Z, et al. Shallow water delta depositional model of the lower segment of the Xingouzui Formation in eastern Qianjiang Depression[J]. Geology in China, 2011, 38(5): 1263-1273(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105014.htm
    [49] 谢春安, 胡明毅, 贾秀容, 等. 潜江凹陷马王庙地区古近系新沟嘴组下段物源分析[J]. 海洋石油, 2010, 30(4): 56-60.

    Xie C A, Hu M Y, Jia X R, et al. Provenance analysis of the Lower Member of Xingouzui Formation of Paleogene System in Mawangmiao area of Qianjiang Sag[J]. Offshore Oil, 2010, 30(4): 56-60(in Chinese with English abstract).
    [50] 袁志云. 江汉盆地新沟嘴组沉积充填特征及其构造控制作用研究[D]. 北京: 中国地质大学(北京), 2010.

    Yuan Z Y. Study on sedimentary filling characteristics and tectonic control of Xinguozui Formation in Jianghan Basin[D]. Beijing: China University of Geosciences (Beijing), 2010(in Chinese with English abstract).
    [51] 余小灿, 王春连, 刘成林, 等. 江陵凹陷古新统沉积岩稀土元素地球化学特征及其地质意义[J]. 矿床地质, 2014, 33(5): 1057-1068.

    Yu X C, Wang C L, Liu C L, et al. REE geochemical characteristics of sedimentary rocks in Jiangling Depression and their geological significance[J]. Mineral Deposits, 2014, 33(5): 1057-1068(in Chinese with English abstract).
    [52] Li J H, Zhang Y Q, Dong S W, et al. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98-136.
    [53] Tang S L, Yan D P, Qiu L, et al. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics?[J]. Gondwana Research, 2014, 25(4): 1644-1659.
    [54] 吴中海, 吴珍汉, 万景林, 等. 华山新生代隆升-剥蚀历史的裂变径迹热年代学分析[J]. 地质科技情报, 2003, 22(3): 27-32.

    Wu Z H, Wu Z H, Wan J L, et al. Cenozoic uplift and denudation history of Huashan Mountains: Evidence from fission track thermochronology of Huashan granite[J]. Geological Science and Technology Information, 2003, 22(3): 27-32(in Chinese with English abstract).
    [55] Enkelmann E, Ratschbacher L, Jonckheere R, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J]. Geological Society of America Bulletin, 2006, 118(5/6): 651-671.
    [56] Zhang W, Wang F, Wu L, et al. Reactivated margin of the western North China Craton in the Late Cretaceous: Constraints from zircon (U-Th)/He thermochronology of Taibai Mountain[J]. Tectonics, 2022, 41(2): e2021TC007058.
    [57] Xu C, Zhou Z, Van D E P, et al. Apatite-fission-track geochronology and its tectonic correlation in the Dabieshan orogen, central China[J]. Science in China Series D: Earth Sciences, 2005, 48(4): 506-520.
    [58] Hu S B, Kohn B P, Raza A, et al. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology[J]. Tectonophysics, 2006, 420(3/4): 409-429.
    [59] Ding R X, Chang Y, Min K, et al. Post-orogenic topographic evolution of the Dabie orogen, eastern China: Insights from apatite and zircon (U-Th)/He thermochronology[J]. Geomorphology, 2021, 374: 107487.
    [60] Shen C B, Hu D, Min K, et al. Post-orogenic tectonic evolution of the Jiangnan-Xuefeng orogenic belt: Insights from multiple geochronometric dating of the Mufushan Massif, South China[J]. Journal of Earth Science, 2020, 31(5): 905-918.
    [61] Hu S, Raza A, Min K, et al. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the North China craton through the Qinling orogen into the Yangtze Craton, central China[J]. Tectonics, 2006, 25(6): TC6009.
    [62] Teng X, Fang X, Kaufman A J, et al. Sedimentological and mineralogical records from drill core SKD1 in the Jianghan Basin, central China, and their implications for Late Cretaceous-Early Eocene climate change[J]. Journal of Asian Earth Sciences, 2019, 182: 103936.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  671
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 录用日期:  2022-05-09
  • 修回日期:  2022-04-20

目录

    /

    返回文章
    返回