Paleomagnetism of the Upper Cretaceous Daijiaping Formation red beds in the Chaling Basin, Hunan Province, China
-
摘要:
由于红层能够携带稳定的天然剩磁, 因此在古地磁研究中被广泛采用。以往对于红层的研究大多集中于河湖相, 对风成相红层的研究较少, 尤其是风成沉积过程及沉积环境对剩磁记录的影响仍缺乏清晰的认识。对湘东南茶陵盆地上白垩统戴家坪组红层开展了古地磁研究, 通过对比分析研究了风成相和河湖相红层携带剩磁的稳定性及其剩磁记录的可靠性。岩石磁学结果显示载磁矿物为磁铁矿、磁赤铁矿、赤铁矿。退磁结果显示, 仅有约1/6的样品能够分离出特征剩磁(ChRM)。虽然两者的ChRM平均方向总体一致(风成相样品磁偏角
D s=222.7°, 磁倾角I s=-43.3°, Fish统计精度参数κ =5.9, 95%置信区间的半顶角角度α 95=20.6°, 数据量n =11;河湖相样品D s=204.6°,I s=-47.8°,κ =2.4,α 95=23.1°,n =28), 但两者单个样品ChRM方向的分布均较为分散。岩石薄片分析表明, 相较于河湖相红层而言, 风成相样品以细颗粒为主, 部分粒度较粗, 几乎无填隙物, 易于受到物理扰动和后期化学作用影响, 使得其剩磁记录的稳定性变差。对取自同一前积纹层不同部位风成相红层样品的退磁结果分析表明, 当前积纹层与层系界面夹角大于20°时, 其剩磁记录受到沉积过程的影响显著。对华南白垩纪红层样品古地磁结果的统计分析表明, 华南白垩纪风成相红层剩磁的稳定性和可靠性总体较弱, 可能是由于其结构松散且赤铁矿含量少, 既不利于原生剩磁的稳定获得, 也易于受到后期化学作用的改造而影响其可靠性。研究结果为风成相红层剩磁记录的稳定性和可靠性研究及其在古地磁研究中的应用提供有利指导。Abstract:Objective Red beds are widely used in palaeomagnetic studies as they can carry stable natural remanence. Most previous studies on red beds have mainly focused on lacustrine-fluvial facies, with limited targeting the aeolian red beds. Consequently, the influence of aeolian deposition processes and sedimentary environments on remanence records remains poorly understood.
Methods In this study, we conducted a palaeomagnetic investigation of the red beds from the Upper Cretaceous Daijiaping Formation in the Chaling Basin, Hunan Province, China, to compare the stability and reliability of remanence in aeolian and lacustrine-fluvial red beds.
Results Rock magnetic results indicate that magnetite, maghemite and hematite are the dominant magnetic remanence carriers. Specimens were subjected to stepwise thermal demagnetization, and only 1/6 of the specimens yielded characteristic remanent magnetisations (ChRMs). Although the mean directions of ChRM in both aeolian(
D s=222.7°,I s=-43.3°,κ =5.9,α 95=20.6°,n =11) and lacustrine-fluvial (D s=204.6°,I s=-47.8°,κ =2.4,α 95=23.1°,n =28) samples are statistically indistinguishable, the distribution of individual ChRM directions is scattered, as evidenced by the largeα 95 values. Thin section observation reveals that the aeolian samples are predominantly composed of fine grains, with some coarser grains and almost no interstitial fillings compared with the lacustrine-fluvial red beds. This makes them susceptible to physical disturbance and subsequent chemical alteration, which compromises the stability of their remanence records. Analysis of palaeomagnetic data of specimens from different positions of an aeolian foreset bed reveals that the reliability of remanence is significantly influenced by aeolian depositional processes in case the angle between the foreset bed and the bedding plane is larger than 20°. Statistical analysis of palaeomagnetic data previously published from the Cretaceous red beds in South China and these in this study suggests that the remanence records in the Cretaceous aeolian red beds in South China tend to be less stable and less reliable, compared with that of the coeval lacustrine-fluvial red beds. It is probably because of their loose structure and low hematite content, which hinders the acquisition of primary remanence and makes them susceptible to diagenetic alteration.Conclusion These findings provide valuable insights for studying the stability and reliability of remanence in aeolian red beds and their application in palaeomagnetic study.
-
Key words:
- paleomagnetism /
- red beds /
- Daijiaping Formation /
- Upper Cretaceous /
- Chaling Basin /
- Hunan
-
图 2 研究区采样剖面照片及地层岩性柱
a.风成相剖面的大型交错层理及采样点松江村;b~d.河湖相剖面采样点1舲舫村、采样点2贝江村、采样点3前夹冲;e.地层岩性柱(据文献[40]修改)
Figure 2. Field photographs of the study sites and the stratigraphic column of the studied sections
图 3 磁化率各向异性等面积投影图及Flinn图解(地层坐标系)
a,b.风成相前积纹层样品磁化率各向异性等面积投影及Flinn图解;c,d.风成相层面样品磁化率各向异性等面积投影及Flinn图解;e~j.河湖相采样点1,2,3样品磁化率各向异性等面积投影及Flinn图解。L为线理(K1/K2);F为面理(K2/K3);N为样品数;K1,K2,K3分别为磁化率各向异性椭球的最大轴、中间轴和最小轴
Figure 3. Equal-area projections of the anisotropy of magnetic susceptibility (AMS)results and F-L diagram in stratigraphic coordinates
表 1 松江村剖面风成相红层层面及前积纹层样品的高温分量(地层坐标系)
Table 1. High-temperature components (HTCs) of specimens from the aeolian red beds and aeolian foreset bed at Songjiangcun in stratigraphic coordinates
样品名 退磁温度/℃ 步数 Ds/(°) Is/(°) MAD 样品名 退磁温度/℃ 步数 Ds/(°) Is/(°) MAD Ba-6B 600~680 6 255.4 -71.5 6.5 Fa-5B 620~680 4 180.0 -45.9 7.0 Bb-3B 600~680 5 216.2 -20.1 12.8 Fa-6B 600~680 5 253.1 2.5 10.6 Bb-8B 640~680 3 212.7 -36.7 9.6 Fb-1B 600~680 5 137.7 -4.8 10.2 Bb-9B 640~680 3 196.3 -18.4 10.8 Fb-3B 600~660 4 237.6 -6.2 12.4 Bc-2 600~680 5 277.3 -31.2 14.3 Fd-1B 600~680 5 210.8 -14.5 14.4 Bc-5 640~680 3 224.4 -35.8 7.6 Fd-7B 620~680 4 153.0 -36.0 13.9 Bc-7 620~680 4 277.8 -14.3 13.5 Fe-5B 580~680 6 224.7 -39.5 9.2 Bd-1 640~680 3 211.5 -24.3 10.9 Fe-6C 620~680 4 161.1 -51.5 12.6 Bd-3 600~660 4 234.8 -53.6 8.0 Fe-7B 560~660 6 218.7 -23.7 14.6 Bd-4B 580~660 5 155.0 -46.5 14.6 Fe-8B 600~680 5 251.6 -36.9 11.8 Bd-5B 620~680 4 177.7 -62.5 6.8 注:样品编号B开头为取自层面样品;F为取自前积纹层样品;Ds为磁偏角;Is为磁倾角;MAD为最大角偏差 表 2 茶陵盆地风成相和河湖相红层样品密度测量数据
Table 2. Density of specimens from the aeolian red beds and lacustrine-fluvial bed in Chaling Basin
样品名 密度/(g·cm-3) 样品名 密度/(g·cm-3) 风成相 Fe-3A 2.050 1 Ba-4A 1.740 6 Fe-4A 1.939 6 Ba-6A 1.751 8 Fe-6B 1.993 6 Bb-1A 1.799 6 Fe-9A 1.980 8 Bb-8A 1.879 7 Fe-10A 1.949 6 Bd-5A 1.666 0 密度平均值=1.875 g/cm3 河湖相 BJa-8A 2.034 4 QJb-3B 2.108 1 BJb-4A 2.136 9 QJb-3A 2.030 7 BJb-7A 2.189 8 LFa-4A 2.212 6 BJc-3A 2.207 4 LFa-5A 2.230 8 BJc-8A 2.098 1 LFa-6A 2.217 4 QJa-3A 1.968 5 LFa-10A 2.104 5 QJa-4A 1.979 2 LFb-1A 2.269 2 QJa-8A 1.999 2 密度平均值=2.119 g/cm3 -
[1] Turner P. The palaeomagnetic evolution of continental red bed[J]. Geological Magazine, 1979, 116(4): 289-301. doi: 10.1017/S0016756800043776 [2] Chen Y, Courtillot V, Cogné J P, et al. The configuration of Asia prior to the collision of India: Cretaceous paleomagnetic constraints[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B12): 21927-21941. doi: 10.1029/93JB02075 [3] Morinaga H, Liu Y Y. Cretaceous paleomagnetism of eastern South China Block: Establishment of the stable body of SCB[J]. Earth and Planetary Science Letters, 2004, 222(3): 971-988. [4] Tong Y B, Yang Z Y, Gao L, et al. Paleomagnetism of Upper Cretaceous red-beds from the eastern Qiangtang Block: Clockwise rotations and latitudinal translation during the India-Asia collision[J]. Journal of Asian Earth Sciences, 2015, 114(S1): 732-749. [5] Li S H, Advokaat E L, Hinsbergen D J J V, et al. Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China: Review and updated kinematic reconstruction[J]. Earth-Science Reviews, 2017, 171: 58-77. doi: 10.1016/j.earscirev.2017.05.007 [6] King J W, Channell J E T. Sedimentary magnetism, environmental magnetism, and magnetostratigraphy[J]. Reviews of Geophysics, 1991, 29(1): 358-370. [7] Beck M E, Burmester R F, Housen B A. The red bed controversy revisited: Shape analysis of Colorado Plateau units suggests long magnetization times[J]. Tectonophysics, 2003, 362(1/4): 335-344. [8] Butler R F. Paleomagnetism: Magnetic domains to geologic terranes[M]. Arizona: Electronic Edition, 2010. [9] 张斌, 刘平, 熊尚发, 等. 赣南晚白垩世红层磁学研究及其地质意义[J]. 地球物理学报, 2017, 60(12): 4709-4729. doi: 10.6038/cjg20171214Zhang B, Liu P, Xiong S F, et al. Magnetic research of Late Cretaceous red beds in southern Jiangxi Province and its geological implications[J]. Chinese Journal of Geophysics, 2017, 60(12): 4709-4729(in Chinese with English abstract). doi: 10.6038/cjg20171214 [10] Zhu Z, Morinaga H, Gui R, et al. Paleomagnetic constraints on the extent of the stable body of the South China Block since the Cretaceous: New data from the Yuanma Basin, China[J]. Earth and Planetary Science Letters, 2006, 248(1/2): 533-544. [11] Sato K, Liu Y Y, Wang Y B, et al. Paleomagnetic study of Cretaceous rocks from Pu'er, western Yunnan, China: Evidence of internal deformation of the Indochina Block[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 1-15. [12] Kawamura T, Hirota M, Aoki H, et al. Tectonic deformation in the southern part of South China Block: Paleomagnetic study of the Early Cretaceous Xinlong Formation from Shangsi Foredeep Depozone in the Guangxi Province[J]. Journal of Geodynamics, 2013, 64: 40-53. doi: 10.1016/j.jog.2012.10.005 [13] Yang Z Y, Sun Z M, Otofuji Y, et al. Discrepant Cretaceous paleomagnetic poles between eastern China and Indochina: A consequence of the extrusion of Indochina[J]. Tectonophysics, 2001, 334(2): 101-113. doi: 10.1016/S0040-1951(01)00061-0 [14] Wang B, Yang Z Y. Late Cretaceous paleomagnetic results from southeastern China, and their geological implication[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 315-333. [15] Li Y X, Shu L S, Wen B, et al. Magnetic inclination shallowing problem and the issue of Eurasia's rigidity: Insights following a palaeomagnetic study of Upper Cretaceous basalts and red beds from SE China[J]. Geophysical Journal International, 2013, 194(3): 1374-1389. doi: 10.1093/gji/ggt181 [16] Al-Juboury A I, Hussain S H, McCann T, et al. Clay mineral diagenesis and red bed colouration: A SEM study of the Gercus Formation (Middle Eocene), northern Iraq[J]. Geological Journal, 2020, 55(12): 7977-7997. doi: 10.1002/gj.3915 [17] 薛艺, 黄宝春, 赵千, 等. 基于剩磁各向异性方法对华北下三叠统红层磁倾角浅化效应的研究[J]. 地球物理学报, 2021, 64(3): 916-924. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202103014.htmXue Y, Huang B C, Zhao Q, et al. Reconnaissance on inclination shallowing effect of Lower Triassic red beds from North China Block by the anisotropy of remanence[J]. Chinese Journal of Geophysics, 2021, 64(3): 916-924(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202103014.htm [18] 王鑫, 孙东怀, 王飞, 等. 塔里木盆地腹地新生界平行剖面的磁性地层研究: 对塔克拉玛干沙漠形成演化的指示意义[J]. 地质力学学报, 2010, 16(4): 411-422. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201004010.htmWang X, Sun D H, Wang F, et al. Magnetic stratigraphy of Cenozoic parallel section in Tarim Basin: Implications for the formation and evolution of the Taklimakan Desert[J]. Journal of Geomechanics, 2010, 16(4): 411-422(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201004010.htm [19] Wang X, Kraatz B, Meng J, et al. Central Asian aridification during the Late Eocene to Early Miocene inferred from preliminary study of shallow marine-eolian sedimentary rocks from northeastern Tajik Basin[J]. Science China: Earth Sciences, 2016, 59(1): 1242-1257. [20] Charusiri P, Imsamut S, Zhuang Z, et al. Paleomagnetism of the Earliest Cretaceous to early Late Cretaceous sandstones, Khorat Group, Northeast Thailand: Implications for tectonic plate movement of the Indochina block[J]. Gondwana Research, 2006, 9(3): 310-325. doi: 10.1016/j.gr.2005.11.006 [21] 罗希. 华南句容盆地和信江盆地上白垩统风成红层的古地磁研究[D]. 南京: 南京大学, 2019.Luo X. Paleomagnetism of the Upper Cretaceous aeolian red beds in Jurong Basin and Xinjiang Basin, South China[D]. Nanjing: Nanjing University, 2019(in Chinese with English abstract). [22] 李祥辉, 张朝凯, 王尹, 等. 华南晚中生代陆相地层年代及关系[J]. 地质学报, 2018, 92(6): 1107-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201806002.htmLi X H, Zhang Z K, Wang Y, et al. Research on the age and relationship of Late Mesozoic continental strata in South China[J]. Acta Geologica Sinica, 2018, 92(6): 1107-1130(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201806002.htm [23] 任纪舜. 印支运动及其在中国大地构造演化中的意义[J]. 中国地质科学院院报, 1984, 5(2): 31-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198402003.htmRen J S. Indosinian orogeny and its significance in the tectonic evolution of China[J]. Bulletin of the Chinese Academy of Geological Sciences, 1984, 5(2): 31-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198402003.htm [24] 任纪舜. 论中国南部的大地构造[J]. 地质学报, 1990, 20(4): 275-288. doi: 10.19762/j.cnki.dizhixuebao.1990.04.001Ren J S. Tectonics of southern China[J]. Acta Geologica Sinica, 1990, 20(4): 275-288(in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.1990.04.001 [25] Ren J S, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 2002, 344(3/4): 175-205. [26] 张岳桥, 董树文, 李建华, 等. 华南中生代大地构造研究新进展[J]. 地球学报, 2012, 33(3): 257-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htmZhang Y Q, Dong S W, Li J H, et al. The new progress in the study of Mesozoic tectonics of South China[J]. Acta Geoscientica Sinica, 2012, 33(3): 257-279(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm [27] Shu L S, Zhou X M, Deng P, et al. Geological features and tectonic evolution of Meso-Cenozoic basins in southeastern China[J]. Geologic Bulletin of China, 2004, 23(9/10): 876-884. [28] Shu L S, Zhou X M, et al. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis[J]. Journal of Asian Earth Sciences, 2009, 34(3): 376-391. doi: 10.1016/j.jseaes.2008.06.004 [29] Li J H, Zhang Y Q, Dong S W, et al. Late Mesozoic-Early Cenozoic deformation history of the Yuanma Basin, central South China[J]. Tectonophysics, 2012, 570: 163-183. [30] 柏道远, 李彬, 李银敏, 等. 湖南常德-安仁断裂印支期构造运动分段性: 来自花岗岩的约束[J]. 地质科技通报, 2021, 40(5): 173-187. doi: 10.19509/j.cnki.dzkq.2021.0038Bai D Y, Li B, Li Y M, et al. Segmentation of the movement in Indosinian of the Changde-Anren fault in Hunan: Constraints from granite[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 173-187(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0038 [31] 曾广乾, 梁恩云, 熊苗, 等. 湘南江永地区多期褶皱的变形特征及叠加关系[J]. 地质科技情报, 2019, 38(4): 153-165.Zeng G Q, Liang E Y, Xiong M, et al. Structural style and superposed relationship of multi-period folds in Jiangyong area, southern Hunan Province[J]. Geological Science and Technology Information, 2019, 38(4): 153-165(in Chinese with English abstract). [32] 舒良树, 周新民, 邓平, 等. 中国东南部中-新生代盆地特征与构造演化[J]. 地质通报, 2004, 23(9/10): 876-884.Shu L S, Zhou X M, Deng P, et al. Characteristics and tectonic evolution of Meso-Cenozoic basins in Southeast China[J]. Geological Bulletin of China, 2004, 23(9/10): 876-884(in Chinese with English abstract). [33] 张岳桥, 赵越, 董树文, 等. 中国东部及林区早白垩世裂陷盆地构造演化阶段[J]. 地学前缘, 2004, 11(3): 123-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403017.htmZhang Y Q, Zhao Y, Dong S W, et al. Tectonic evolution of Early Cretaceous rifted basins in eastern China and forest areas[J]. Earth Science Frontiers, 2004, 11(3): 123-133(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403017.htm [34] 吴根耀. 白垩纪: 中国及邻区板块构造演化的一个重要变换期[J]. 中国地质, 2006, 33(1): 64-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601006.htmWu G Y. Cretaceous: An important transition period in the evolution of plate tectonics in China[J]. Geology in China, 2006, 33(1): 64-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200601006.htm [35] Li J H, Zhang Y Q, Dong S W. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth Science Reviews, 2014, 134(1): 98-136. [36] 高红湘. 湖南茶陵盆地"红层"的划分[J]. 古脊椎动物学报, 1975, 13(2): 89-95.Gao H X. Division of "red bed" in Chaling Basin, Hunan Province[J]. Vertebrata Palasiatica, 1975, 13(2): 89-95(in Chinese with English abstract). [37] 储澄. 湖南攸县、茶陵一带红色岩系[J]. 地层学杂志, 1978, 2(2): 146-151.Chu C. Red rock series in Youxian and Chaling, Hunan[J]. Acta Stratigraphica Sinica, 1978, 2(2): 146-151(in Chinese with English abstract). [38] 湖南省地质调查院. 中国区域地质志·湖南志[M]. 北京: 地质出版社, 2017.Hunan Bureau of Geology and Mineral Resources. Regional geology of Hunan Province[M]. Beijing: Beijing Geological Publishing House, 2017(in Chinese). [39] Xi D P, Wang X Q, Li G B, et al. Cretaceous integrative stratigraphy and timescale of China[J]. Science China: Earth Sciences, 2019, 62(1): 256-286. [40] 刘芮岑. 湖南茶陵盆地晚白垩世-古新世古气候分析[D]. 南京: 南京大学, 2018.Liu R C. Paleoclimate of the Late Cretaceous-Paleocene in the Chaling Basin, Hunan, South China[D]. Nanjing: Nanjing University, 2018(in Chinese with English abstract). [41] Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3): 699-718. [42] Zijderveld J D A.A.C. Demagnetization of rocks: Analysis of results[M]. Amsterdam: Elsevier, 1967: 254-286. [43] Fisher R A. Dispersion on a sphere[J]. Proceedings of the Royal Society of London, 1953, 217: 295-305. [44] Dickinson W R, Suzek C A. Plate tectonics and sandstone composition[J]. American Association of Petroleum Geologists Bulletin, 1979, 63(12): 2164-2172. [45] Deng C, Zhu R, Jackson M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator[J]. Physics and Chemistry of the Earth Part A: Solid Earth and Geodesy, 2001, 26(11/12): 873-878. [46] Liu Q S, Deng C L, Yu Y J, et al. Temperature dependence of magnetic susceptibility in argon environment: Implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-111. [47] 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4): 1041-1048.Liu Q S, Deng C L. Magnetic susceptibility and its environmental significances[J]. Chinese Journal of Geophysics, 2009, 52(4): 1041-1048(in Chinese with English abstract). [48] Jiang Z X, Liu Q S, Dekkers M J, et al. Acquisition of chemical remanent magnetization during experimental ferrihydrite-hematite conversion in Earth-like magnetic field: Implications for paleomagnetic studies of red beds[J]. Earth and Planetary Science Letters, 2015, 428: 1-10. [49] Watson G S. A test for randomness of directions[J]. Geophysical Journal International, 1956, 7(1): 160-161. [50] Kodama K P. Paleomagnetism of sedimentary Rocks: Process and interpretation[M]. Pennsylvania: John Wiley & Sons, 2012. [51] Tarling D H, Hrouda F. The magnetic anisotropy of rocks[M]. New York: Chapman and Hall, 1993. [52] 钱广强, 董治宝, 罗万银, 等. 不同坡度障碍物前气流场特征及其对回涡沙丘形成的影响[J]. 中国科学: 地球科学, 2012, 42(1): 34-41.Qian G Q, Dong Z B, Luo W Y, et al. Airflow patterns upwind of obstacles and their significance for echo dune formation: A field measurement of the effects of the windward slope angle[J]. Science China: Earth Sciences, 2012, 42(1): 34-41(in Chinese with English abstract). [53] Friedrich O, Norris R D, Erbacher J. Evolution of Middle to Late Cretaceous oceans: A 55 m. y. record of earth's temperature and carbon cycle[J]. Geology, 2012, 40(2): 107-110. [54] 白立新, 朱日祥. 沉积剩磁的稳定性问题[J]. 地球物理学进展, 1998, 13(3): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ803.008.htmBai L X, Zhu R X. Stability of sedimentary remanence[J]. Progress in Geophysics, 1998, 13(3): 75-79(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ803.008.htm [55] Creer K M. On the origin of the magnetization of red beds[J]. Journal of Geomagnetism and Geoelectricity, 1962, 13(3/4): 86-100. [56] Irving E. The origin of the palaeomagnetism of the Torridonian sandstones of North-West Scotland[J]. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 1957, 250: 100-110. [57] 胡守云, 王苏民, Appel E. 沉积剩磁的获得和变化[J]. 科学通报, 1998, 43(13): 1353-1363. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199813001.htmHu S Y, Wang S M, Appel E. Acquisition and variation of sedimentary remanence[J]. Science Bulletin, 1998, 43(13): 1353-1363(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199813001.htm [58] 罗希, 李永祥, 李祥辉. 江西信江盆地上白垩统风成红层的古地磁研究[J]. 高校地质学报, 2019, 25(5): 779-790.Luo X, Li Y X, Li X H. Paleomagnetism of the Upper Cretaceous aeolian red beds in Xinjiang Basin, Jiangxi Province, China[J]. Geological Journal of China Universities, 2019, 25(5): 779-790(in Chinese with English abstract). [59] 舒良树. 普通地质学[M]. 第三版. 北京: 北京地质出版社, 2010: 231-237.Shu L S. Physical geology[M]. Third Edition. Beijing: Beijing Geological Publishing House, 2010: 231-237(in Chinese). [60] 董治宝. 中国风沙物理研究五十年[J]. 中国沙漠, 2005, 25(3): 293-305.Dong Z B. Fifty years of aeolian sand physics research in China[J]. Journal of Desert Research, 2005, 25(3): 293-305(in Chinese with English abstract).