留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转换斜坡型辫状河三角洲沉积特征:以珠江口盆地惠州凹陷始新统为例

陶文芳 葛家旺 雷永昌 李旭彪 朱筱敏

陶文芳, 葛家旺, 雷永昌, 李旭彪, 朱筱敏. 转换斜坡型辫状河三角洲沉积特征:以珠江口盆地惠州凹陷始新统为例[J]. 地质科技通报, 2023, 42(5): 103-114. doi: 10.19509/j.cnki.dzkq.tb20220202
引用本文: 陶文芳, 葛家旺, 雷永昌, 李旭彪, 朱筱敏. 转换斜坡型辫状河三角洲沉积特征:以珠江口盆地惠州凹陷始新统为例[J]. 地质科技通报, 2023, 42(5): 103-114. doi: 10.19509/j.cnki.dzkq.tb20220202
Tao Wenfang, Ge Jiawang, Lei Yongchang, Li Xubiao, Zhu Xiaomin. Depositional characteristics of a relay ramp controlled braided deltaic system: A case study in the Eocene Huizhou Sag, Pearl River Mouth Basin, China[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 103-114. doi: 10.19509/j.cnki.dzkq.tb20220202
Citation: Tao Wenfang, Ge Jiawang, Lei Yongchang, Li Xubiao, Zhu Xiaomin. Depositional characteristics of a relay ramp controlled braided deltaic system: A case study in the Eocene Huizhou Sag, Pearl River Mouth Basin, China[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 103-114. doi: 10.19509/j.cnki.dzkq.tb20220202

转换斜坡型辫状河三角洲沉积特征:以珠江口盆地惠州凹陷始新统为例

doi: 10.19509/j.cnki.dzkq.tb20220202
基金项目: 

国家自然科学基金项目 41902124

构造与油气资源教育部重点实验室开放基金项目 2019-15

联合中海石油(中国)有限公司深圳分公司研究院生产性科研项目 SCKY-2023-SZ-03

详细信息
    作者简介:

    陶文芳(1988-), 女, 工程师, 主要从事珠江口盆地油气勘探及石油地质综合研究。E-mail: taowf@cnooc.com.cn

    通讯作者:

    葛家旺(1988-), 男, 副研究员, 主要从事定量层序地层学及构造-沉积学方面的科研和教学工作。E-mail: gjwddn@163.com

  • 中图分类号: P618.130.2

Depositional characteristics of a relay ramp controlled braided deltaic system: A case study in the Eocene Huizhou Sag, Pearl River Mouth Basin, China

  • 摘要:

    珠江口盆地惠州凹陷始新世发育多个不同类型的转换斜坡(或称为构造转换带), 位于惠州26洼和西江30洼之间的HZ25转换斜坡控制并发育了一套大型近源辫状河三角洲体系。基于新处理的三维地震、钻(测)井、岩心及相关分析化验资料, 详细分析讨论了转换斜坡型辫状河三角洲砂体沉积特征。研究表明, 晚始新世时期气候炎热潮湿, 东沙隆起通过HZ25转换斜坡向惠州26洼输送充沛的物源碎屑, 发育厚层辫状河三角洲成因砂体, 粒度概率曲线和C-M图显示典型牵引流态特征; 砂岩以岩屑砂岩为主, 岩性粒度较粗、分选差, 磨圆度为棱角状-次棱角状; 岩心显示多期次冲刷界面、高角度斜层理、楔状交错层理等强水流动力沉积构造及间断性正韵律。转换斜坡是物源水系主要的运输通道, 辫状河三角洲向前推进距离约8 km, 整体形态为向北东方向展布的坨状或朵叶状。受控于转换斜坡古地貌格局, 辫状河三角洲具有水动力强、距物源较近且物源供给充足的特征, 砂地比平均值约52%。辫状河三角洲前缘砂体是优质储层发育带, 转换斜坡及其控制的厚层优质砂体耦合形成良好的地层-岩性圈闭, 是惠州凹陷深层主要勘探对象。研究区辫状河三角洲整体为一套低孔、低渗储层。辫状河三角洲前缘储层由于泥质杂基含量低, 分选改造中等, 以显孔-原生孔为主, 孔隙连通性较好, 是下一步油气优先勘探评价的对象。

     

  • 图 1  惠州凹陷地理位置(a)、构造纲要(b)和HZ25转换斜坡井位和断层分布(c)

    Figure 1.  Tectonic location (a) and structural outline (b) of the Huizhou Sag and wells and fault distribution (c) in the HZ25 relay ramp

    图 2  珠江口盆地惠州凹陷地层综合柱状图[22-24]

    Figure 2.  Comprehensive column of the Huizhou Sag, eastern Pearl River Mouth Basin

    图 3  HZ25转换斜坡古地貌-沉积体系-砂体含量对应关系

    a.转换带地貌及物源通道,物源主要是NE向;b.砂体厚度等值线图;c.地震前积反射投影,前积优势方向为NE向;d.能量半波长地震属性平面图,反映砂体分布形态

    Figure 3.  Coupling relationship between ancient landform-sedimentary system-sand body content (c) in the HZ25 relay ramp

    图 4  惠州凹陷HZ25转换斜坡文昌组砂岩分选性(a)与磨圆性(b)

    Figure 4.  Sorting (a) and roundness (b) of the sandstones of the Wenchang Formation in the HZ25 relay ramp, Huizhou Sag

    图 5  惠州凹陷HZ25转换斜坡文昌组HA2井三角洲砂岩重矿物组合

    Figure 5.  Heavy mineral assemblages of the deltaic sandstones in the Wenchang Formation of the Well HA2 in the HZ25 relay ramp, Huizhou Sag

    图 6  惠州凹陷HZ25转换斜坡文昌组粒度概率累计曲线(a)和C-M图(b)(HA2井)

    Figure 6.  Cumulative probability curve (a) and C-M graph (b) of the Wenchang Formation (Well HA2) in the HZ25 relay ramp of the Huizhou Sag

    图 7  惠州凹陷HZ25转换斜坡型辫状河三角洲沉积构造特征

    a.细砾岩,高角度交错层理:b.细砾岩,斜层理:c.含砾粗砂岩,块状层理;d.细砾岩,斜层理;e.粉砂岩,波状层理;f.含砾粗砂岩,高角度交错层理;g.细砾岩,交错层理;h.暗色块状泥岩;i.块状细砂岩;j.细砾岩,交错层理;k.具生物扰动的粉细砂岩;l.粗砂岩,高角度交错层理;m.细砾岩,斜层理、槽状交错层理及冲刷面;n.细砾岩及粗砂岩,冲刷面及正粒序;o.含砾粗砂岩,高角度斜层理

    Figure 7.  Sedimentary structures of the relay zone controlled braided delta in the HZ25 relay ramp of the Huizhou Sag

    图 8  惠州凹陷HA1和HA2井辫状河三角洲岩心素描图(岩心照片编号a~o详见图 7)

    Figure 8.  Characteristics of sedimentary sequence of drilling core in braideddelta deposits of Well HA1 and HA2, Huizhou Sag

    图 9  惠州凹陷HZ25转换斜坡型辫状河三角洲地震反射特征(地震测线A-A′和B-B′位置见图 3-c)

    Figure 9.  Seismic reflection characteristics of the braided delta in the HZ25 relay ramp of the Huizhou Sag

    图 10  惠州凹陷HZ25转换斜坡文昌组辫状河三角洲测井相特征

    Figure 10.  Logging facies of braid-river deltaic systems of the Wenchang Formation in the HZ25 relay ramp of the Huizhou Sag

    图 11  惠州凹陷HZ25转换斜坡型辫状河三角洲沉积微相演化剖面图(CoreA1和CoreA2岩心描述见图 8)

    Figure 11.  Cross section of the microfaices evolution of the braideddelta system in the HZ25 relay ramp of the Huizhou Sag

    图 12  惠州凹陷HZ25转换斜坡辫状河三角洲储层孔隙度(a)和渗透率(b)频率分布

    Figure 12.  Histogram of porosity (a) and permeability (b) of the braideddelta reservoir in the HZ25 relay ramp of the Huizhou Sag

    图 13  惠州凹陷HZ25转换斜坡型辫状河三角洲不同亚相储层特征

    Figure 13.  Characteristics of reservoir properties and pore structures in different sedimentary subfacies of braided deltas in the HZ25 relay ramp of the Huizhou Sag

  • [1] Dahlstrom C D A. Structural geology in the eastern margin of the Canadian Rocky Mountain[J]. Bulletin of Canadian Petroleum Geology, 1970, 18(3): 332-406.
    [2] Morley C K, Nelson R A, Patton T L, at al. Transfer zones in the East African Fift system and their relevance to hydrocarbon exploration in rifts[J]. AAPG Bulletin, 1990, 74(8): 1234-1253.
    [3] Gawthorpe R L, Hurst J M. Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy[J]. Journal of the Geological Society, 1993, 150(6): 1137-1152. doi: 10.1144/gsjgs.150.6.1137
    [4] 漆家福. 裂陷盆地中的构造变换带及其石油地质意义[J]. 海相油气地质, 2007, 12(4): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200704009.htm

    Qi J F. Structural transfer zones and significance for hydrocarbon accumulation in rifting basins[J]. Marine Origin Petroleum Geology, 2007, 12(4): 43-50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200704009.htm
    [5] 梁富康, 于兴河, 慕小水, 等. 东濮凹陷南部沙三中段构造调节带对沉积体系的控制作用[J]. 现代地质, 2011, 25(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201101007.htm

    Liang F K, Yu X H, Mu X S, et al. Accommodation zones and their controls on depositional system in the middle of Third Member of Shahejie Formation, south of Dongpu Sag[J]. Geoscience, 2011, 25(1): 55-61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201101007.htm
    [6] 白小鸟, 焦养泉. 伸展盆地的转换斜坡: 控制储层发育与烃类运聚的重要构造单元[J]. 地质科技情报, 2011, 30(6): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201106006.htm

    Bai X N, Jiao Y Q. Relay ramp in extensional basins: An important structure of reservoir deposition and hydrocarbon migration or accumulation[J]. Geological Science and Technology Information, 2011, 30(6): 44-54(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201106006.htm
    [7] Peacock D C P. Propagation, interaction and linkage in normal fault systems[J]. Earth-Science Reviws, 2002, 58: 121-142. doi: 10.1016/S0012-8252(01)00085-X
    [8] Trudgill B D. Structural controls on drainage development in the Canyonlands grabens of southeast Utah[J]. AAPG Bulletin, 2002, 86(6): 1095-1112.
    [9] Young M J, Gawthorpe R L, Sharp I R. Sedimentology and sequence stratigraphy of a transfer zone coarse-grained delta, Miocene Suez Rift, Egypt[J]. Sedimentology, 2000, 47(6): 1081-1104. doi: 10.1046/j.1365-3091.2000.00342.x
    [10] Young M J, Gawthorpe R L, Sharp I R. Architecture and evolution of syn-rift clastic depositional systems towards the tip of a major fault segment, Suez Rift, Egypt[J]. Basin Rearch, 2002, 14(1): 1-23. doi: 10.1046/j.1365-2117.2002.00162.x
    [11] Sohn Y K, Son M. Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang Basin, SE Korea[J]. Sedimentology, 2004, 51(6): 1387-1408. doi: 10.1111/j.1365-3091.2004.00679.x
    [12] Moustafa A R. Controls on the geometry of transfer zones in the Suez Rift and northwest Red Sea: Implications for the structural geometry of rift systems[J]. AAPG Bulletin, 2002, 86(6): 979-1002.
    [13] Oftedal B T, Andresen A, Muller R. Early Triassic syn-rift sedimentation at hold with hope, Northeast Greenland[J]. Onshore-Offshore Relationships on the North Atlantic Margin, 2005, 12: 191-206.
    [14] Gupta S, Underhill J R, Sharp I R, et al. Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt[J]. Basin Research, 1999, 11(2): 167-189. doi: 10.1046/j.1365-2117.1999.00300.x
    [15] Rotevatn A, Tveranger J, Howell J A, et al. Dynamic investigation of the effect of a relay ramp on simulated fluid flow: Geocellular modeling of the Delicate Arch Ramp, Utah[J]. Petroleum Geoscience, 2009, 15(1): 45-58. doi: 10.1144/1354-079309-779
    [16] 王向东, 王任, 石万忠, 等. 中国东部典型裂谷盆地构造活动特征及演化: 以松辽盆地孤店断陷为例[J]. 地质科技通报, 2022, 41(3): 85-95. doi: 10.19509/j.cnki.dzkq.2022.0089

    Wang X D, Wang R, Shi W Z, et al. Tectonic characteristics and evolution of typical rift basins in eastern China: A case study in the Gudian area, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 85-95(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0089
    [17] 葛家旺, 朱筱敏, 雷永昌, 等. 多幕裂陷盆地构造-沉积响应及陆丰凹陷实例分析[J]. 地学前缘, 2021, 28(1): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101008.htm

    Ge J W, Zhu X M, Lei Y C, et al. Tectono-sedimentary development of multiphase rift basins: An example of the Lufeng Depression[J]. Earth Science Frontiers, 2021, 28(1): 77-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101008.htm
    [18] 杨明慧. 渤海湾盆地变换构造特征及其成藏意义[J]. 石油学报, 2009, 30(6): 816-823. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200906005.htm

    Yang M H. Transfer structure and its relation to hydrocarbon exploration in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2009, 30(6): 816-823(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200906005.htm
    [19] 舒誉, 施和生, 杜家元, 等. 珠一坳陷古近系油气成藏特征及勘探方向[J]. 中国海上油气, 2014, 26(3): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403006.htm

    Shu Y, Shi H S, Du J Y, et al. Paleogene characteristics in hydrocarbon accumulation and exploration direction in Zhu I Depression[J]. China Offshore Oil and Gas, 2014, 26(3): 37-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403006.htm
    [20] 施和生, 于水明, 梅廉夫, 等. 珠江口盆地惠州凹陷古近纪幕式裂陷特征[J]. 天然气工业, 2009, 29(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200901012.htm

    Shi H S, Yu S M, Mei L F, et al. Features of Paleogene episodic rifting in Huizhou fault depression in the Pearl River Mouth Basin[J]. Natural Gas Industry, 2009, 29(1): 35-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200901012.htm
    [21] 葛家旺, 朱筱敏, 陶文芳, 等. 惠州凹陷HZ25转换带构造特征与成藏条件[J]. 西南石油大学学报: 自然科学版, 2017, 39(5): 19-30. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201705003.htm

    Ge J W, Zhu X M, Tao W F, et al. The tectonic characteristics and analysis of hydrocarbon accumulation conditions in HZ25 transfer zone in Huizhou Sag, Pearl River Mouth Basin[J]. Journal of Southwest Petroleum University: Science and Technology Edition, 2017, 39(5): 19-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201705003.htm
    [22] 施和生, 何敏, 张丽丽, 等. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气, 2014, 26(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403002.htm

    Shi H S, He M, Zhang L L, et al. Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2014, 26(3): 11-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403002.htm
    [23] 李扬帆, 程超, 何贤科, 等. 惠州凹陷古近系优质烃源岩评价方法研究[J]. 海洋石油, 2015, 35(2): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201502013.htm

    Li Y F, Cheng C, He X K, et al. Evaluation methods for Paleogene source rocks in Huizhou Sag[J]. Offshore Oil, 2015, 35(2): 40-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201502013.htm
    [24] 张丽丽, 舒誉, 蔡国富, 等. 珠江口盆地东部始新世-渐新世沉积环境演变及对烃源条件的影响[J]. 石油学报, 2019, 40(增刊1): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1013.htm

    Zhang L L, Shu Y, Cai G F, et al. Eocene-Oligocene sedimentary environment evolution and its impact on hydrocarbon source conditions in eastern Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1): 153-165(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1013.htm
    [25] 李振雄. 珠江口盆地LF13-2-1井始新统孢粉组合[J]. 中国海上油气, 1998, 12(3): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199803006.htm

    Li Z X. Eocene Palynology of Well LF13-2-1 in Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 1998, 12(3): 168-173(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199803006.htm
    [26] 李洪博. 珠江口盆地惠州凹陷及东沙隆起结构构造特征、演化及其与油气成藏关系讨论[D]. 武汉: 中国地质大学, 2010: 41-54.

    Li H B. The features of construct and structure and the discussion of relationship between evolution with hydrocarbon reservoiring in Huizhou Depression and Dongsha Massif of Pearl River Mouth Basin[D]. Wuhan: China University of Geoscience, 2010: 41-54(in Chinese with English abstract).
    [27] Zhu H T, Yang X H, Liu K, et al. Seismic-based sediment provenance analysis in continental lacustrine rift basins: An example from the Bohai Bay Basin, China[J]. AAPG Bulletin, 2014, 98(10): 1995-2018.
    [28] 梁杰, 刘杰, 牛胜利, 等. 珠江口盆地惠州25转换带文五段低位体系域源-渠-汇耦合关系[J]. 沉积学报, 2022, 40(6): 1451-1460. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202206001.htm

    Liang J, Liu J, Niu S L, et al. Depostional model an source-to-sink characteristics of the lowstand system tract in the 5th member of the Wenchang Formation, Huizhou 25 transfer zone[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1451-1460(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202206001.htm
    [29] 葛家旺, 朱筱敏, 潘荣, 等. 珠江口盆地惠州凹陷文昌组砂岩孔隙定量演化模式: 以HZ-A地区辫状河三角洲储层为例[J]. 沉积学报, 2015, 33(1): 183-193. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501019.htm

    Ge J W, Zhu X N, Pan R, et al. A quantitative porosity evolution model of sandstone for Wenchang Formation in Huizhou Depression, Pearl River Mouth Basin: A case study for braided fluvial delta reservoir of HZ-A area[J]. Acta Sedimentologica Sinica, 2015, 33(1): 183-193(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501019.htm
    [30] 葛家旺, 秦成岗, 朱筱敏, 等. 惠州凹陷HZ25-7构造带文昌组低孔低渗砂岩储层特征和成因机理[J]. 岩性油气藏, 2014, 26(4): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201404007.htm

    Ge J W, Qin C G, Zhu X M, et al. Characteristics and origin of low porosity and low permeability sandstone reservoir of Wenchang Formation in HZ25-7 structural belt of Huizhou Depression[J]. Lithologic Reservoirs, 2014, 26(4): 36-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201404007.htm
    [31] 姚文礼. 四川盆地须家河组致密砂岩物源体系的控储作用[J]. 地质科技通报, 2021, 40(5): 223-230. doi: 10.19509/j.cnki.dzkq.2021.0036

    Yao W L. Reservoir control of tight sandstone provenance system in Xujiahe Formation, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 223-230(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0036
    [32] 徐国盛, 崔恒远, 刘勇, 等. 东海盆地西湖凹陷古近系花港组砂岩储层致密化与油气充注关系[J]. 地质科技通报, 2020, 39(3): 20-29. doi: 10.19509/j.cnki.dzkq.2020.0303

    Xu G S, Cui H Y, Liu Y, et al. Relationship between sandstone reservoirs densification and hydrocarbon charging in the Paleogene Huagang Formation of Xihu Depression, East China Sea Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 20-29(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0303
  • 加载中
图(13)
计量
  • 文章访问数:  714
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 录用日期:  2022-10-03
  • 修回日期:  2022-08-29

目录

    /

    返回文章
    返回