Constraints of sedimentary environment on phosphorization of phosphorus-bearing rock series in the Xinhua Gezhongwu Formation, Zhijin County, Guizhou Province
-
摘要:
贵州织金新华早寒武世超大型富稀土磷矿床属于典型的海相沉积型矿床, 长期以来, 对其成矿环境及成矿机制的认识尚存在分歧。在重点研究含磷岩系岩(矿)石显微特征的基础上, 结合元素地球化学证据, 求证了戈仲伍组含磷岩系沉积环境及其形成机制, 丰富了扬子陆块同类型矿产的研究资料。该含磷岩系从下到上, 矿石结构构造发生了规律性的变化: 颗粒稍变细; 粒间填隙物由以亮晶白云石胶结物为主变为硅质、胶磷矿等泥晶基质, 再变为以亮晶白云石胶结物为主, 最后变为泥晶胶磷矿、硅质等; 胶结方式由以孔隙式胶结为主转换为孔隙式-基底式胶结, 支撑类型由颗粒支撑变化为颗粒-杂基支撑; 岩层单层厚度变薄, 颜色变深, 交错层理变得不发育; 反映含磷岩系沉积于强水动力的潮下带, 上部沉积水体较下部有所加深、水动力条件稍变弱。含磷岩系显著的Ce负异常(
δ Ce介于0.32~0.39)、较低的Ni/Co比值(0.98~6.07)和V/Cr比值(0.57~12.50), 表现出沉积水体具有与现代海洋环境相似的氧化特征; 较低的103·Sr/Ca比值(2.00~3.38)及1/Σ(Al2O3+TiO2)比值(0.57~3.45)说明古水深总体较浅, 但变化频繁; Fe, Cu, Ba含量分布特点指示下部碳酸盐古生产力比上部高。在各种条件耦合的古环境中, 磷块岩经历沉淀-冲搅-颠选-胶结-固结作用最终富集形成。Abstract:Objective The Early Cambrian superlarge rare earth-rich phosphate deposit in Xinhua, Zhijin County, Guizhou Province, is a typical marine sedimentary deposit. There have long been controversial on the mineralisation environment and mineralisation mechanism.
Methods In this paper, the sedimentary environment and formation mechanism of the phosphorus-bearing rock series in the Gezhongwu Formation are verified, through the study of the microscopic characteristics of phosphorus-bearing rock series rocks or ores and the evidence of elemental geochemistry.
Results This study reveal the regular changes in the structure of phosphorite from the bottom up of the phosphorous-bearing rock series: the grain sizes decreasing; the interstitial materials between grains vary from bright dolomite cement to micritic matrix, such as siliceous and collophanite, followed by bright dolomite cement and finally micrite collophanite and siliceous. The cementation mode has mainly converted from pore cementation to pore-based cementation, and the supports change from grain to grain-matrix supports. Moreover, the single layers of the rocks become thinner and darker, and the development of staggered bedding was decreased.
Conclusion These characteristics reflect that the sedimentary environment of the phosphorus-bearing rock series is a subtidal zone with strong hydrodynamic forces, and of the upper section has sedimentary depths higher and hydrodynamic conditions slightly weaker than those of the lower section. The significant negative Ce anomalies (
δ Ce between 0.32-0.39) and low Ni/Co (0.98-6.07) and V/Cr ratios (0.57-12.50) of the phosphorus-bearing rock series show that the sedimentary water had oxidation characteristics similar to those of a modern marine environment. The lower 103·Sr/Ca(2.00-3.38) and 1/Σ(Al2O3+TiO2) ratios (0.57-3.45) indicate that the ancient water depth was generally shallow, but the relative depth changed frequently. The distribution characteristics of Fe, Cu and Ba contents indicate that the palaeoproductivity of carbonate in the lower section is higher than that in the upper section. In the palaeoenvironment where various conditions are coupled, the phosphorite was finally enriched and formed by precipitation-stirring-subdivision-cementation-solidification. -
图 1 贵州织金新华磷矿地质简图(据文献[7]修编)
Figure 1. Geological sketch of the Xinhua phosphate deposit in Zhijin County, Guizhou Province
图 3 贵州贵织金戈仲伍组磷块岩岩(矿)结构特征
a.长条形小壳化石(ZJH-1);b.尖锥形小壳化石(ZJH-2);c.钉子形软舌螺(ZJH-3);d.软舌螺内部特征(ZJH-5);e~g.胶磷矿砂屑(ZJH-6、ZJH-8、ZJH-9);h.砾屑(ZJH-1);i.复鲕(ZJH-1);j.真鲕(ZJH-2);k.薄皮鲕(ZJH-2);l.椭圆形团块(ZJH-1);m.藻团块(ZJH-4);n.长条形团块(ZJH-6);o.不规则形团块(ZJH-3);p.黄铁矿团粒及有机质(ZJH-10)
Figure 3. Structural features of phosphorite rocks(ores) in the Gezhongwu Formation, Zhijin County, Guizhou Province
图 5 贵州织金戈仲伍组磷块岩显微特征
Dol.白云石;Clh.胶磷矿;CM.黏土矿物;Q.石英;Ap.磷灰石。a.白云质磷块岩(ZJH-1),粒屑主要为生物屑和砾屑,生物屑呈定向排列,白云质胶结,颗粒支撑,(+);b.白云质磷块岩(ZJH-6),粒屑主要为生物屑和砂屑,生物屑呈半定向排列,白云质胶结,颗粒支撑,(-);c.磷块岩(ZJH-8),砂屑、生物屑定向排列,填隙物以胶磷矿、硅质为主,颗粒-杂基支撑,(+);d.硅质磷块岩(ZJH-5),硅化明显,砾屑、生物屑定向排列,填隙物以硅质、胶磷矿为主,颗粒-杂基支撑,(-)
Figure 5. Microscopic features of phosphorite in the Gezhongwu Formation, Zhijin County, Guizhou Province
表 1 贵州织金戈仲伍组含磷岩系矿层及围岩主量元素质量分数及比值
Table 1. Content of major elements in the ore horizon and wall-rock of the phosphorus-bearing rock series in the Gezhongwu Formation, Zhijin County, Guizhou Province
样品 ZJH-1 ZJH-2 ZJH-3 ZJH-4 ZJH-5 ZJH-6 ZJH-7 ZJH-8 ZJH-9 ZJH-10 ZJH-11 ZJH-12 ZJH-13 磷块岩平均值 CaO 44.8 42.5 46.2 40.4 26.7 42.9 36.0 51.1 54.5 52.4 0.50 0.59 2.77 43.7 P2O5 26.6 21.9 33.3 27.9 11.9 22.1 16.2 35.6 39.3 38.7 0.21 0.32 0.68 27.4 SiO2 4.92 3.16 12.4 23.8 37.0 4.5 14.8 3.20 0.55 2.76 55.9 56.9 55.4 10.7 MgO 5.85 9.14 0.50 1.22 6.67 8.83 9.00 2.13 0.20 0.17 1.65 1.41 1.56 4.37 Fe2O3 2.34 1.91 2.90 0.47 0.56 0.64 0.68 0.82 0.80 0.81 5.24 3.72 2.95 1.19 Al2O3 0.71 0.36 0.73 0.85 1.53 0.37 1.65 0.68 0.21 0.90 16.5 17.4 16.1 0.80 Na2O 0.13 0.09 0.17 0.14 0.09 0.09 0.11 0.15 0.15 0.19 0.12 0.13 0.15 0.13 K2O 0.11 0.05 0.22 0.23 0.38 0.07 0.41 0.13 0.02 0.18 4.80 4.96 4.71 0.18 TiO2 wB/% 0.05 0.02 0.04 0.04 0.01 0.01 0.10 0.02 0.08 0.04 0.69 0.94 0.65 0.05 MnO 0.19 0.11 0.09 0.04 0.06 0.09 0.09 0.03 0.04 0.02 0.01 0.01 0.01 0.08 SrO 0.08 0.07 0.10 0.08 0.04 0.07 0.05 0.10 0.12 0.10 0.01 0.01 0.02 0.08 BaO 0.05 0.08 0.24 0.13 0.01 0.02 0.02 0.03 0.04 0.04 0.06 0.06 0.45 0.07 Cr2O3 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.04 0.01 0.01 烧失量 14.1 20.4 3.03 4.01 14.8 19.9 20.2 5.46 2.19 2.41 13.5 12.9 14.5 10.6 总计 99.9 99.7 99.9 99.2 99.8 99.6 99.2 99.5 98.2 98.7 99.2 99.4 100 99.4 Ca 28.7 26.5 29.6 26.7 17.6 28.1 23.8 32.6 34.6 34.0 0.38 0.42 1.87 28.2 Fe 1.47 1.18 1.84 0.35 0.41 0.44 0.47 0.54 0.54 0.55 3.75 2.65 2.10 0.78 Al wB/% 0.41 0.20 0.40 0.48 0.83 0.22 0.91 0.39 0.15 0.50 7.61 7.98 7.73 0.45 Mn 0.13 0.07 0.06 0.03 0.04 0.06 0.06 0.02 0.02 0.01 0.01 0.01 0.01 0.05 Fe/Mn 11.5 16.1 31.8 12.7 10.6 7.28 7.97 30.7 26.2 43.3 721 564 438 19.8 Al/Ti 12.1 12.5 14.3 20.9 27.7 14.7 45.5 21.7 3.41 20.0 21.0 15.7 21.1 19.3 Ca/(Ca+Fe) 0.95 0.96 0.94 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.09 0.14 0.47 0.97 1/∑(Al2O3+TiO2) 1.32 2.63 1.30 1.12 0.65 2.63 0.57 1.43 3.45 1.06 0.06 0.05 0.06 1.62 岩性 白云质磷块岩 白云质磷块岩 磷块岩 硅质磷块岩 硅质磷块岩 白云质磷块岩 硅质白云质磷块岩 磷块岩 磷块岩 磷块岩 黑色页岩 黑色页岩 镍钼富集层 — 表 2 织金戈仲伍组含矿岩系及围岩微量、稀土元素质量分数及比值
Table 2. Contents of trace elelments and REEs of phosphorus-bearing rock series and wall-rock and specific ratios in the Gezhongwu Formation, Zhijin County, Guizhou Province
样品 ZJH-1 ZJH-2 ZJH-3 ZJH-4 ZJH-5 ZJH-6 ZJH-7 ZJH-8 ZJH-9 ZJH-10 ZJH-11 ZJH-12 ZJH-13 磷块岩平均值 地壳丰度 As 5.00 71.0 142 7.00 8.00 < 5.00 5.00 24.0 12.0 14.0 88.0 419 519 29.3 1.80 Ba 550 870 2460 1400 210 290 240 300 430 520 410 500 190 727 425 Co 0.60 3.80 3.00 1.20 8.70 0.90 1.10 2.70 5.50 2.50 11.4 9.20 8.90 3.00 25.0 Cr 13.0 8.00 12.0 11.0 7.00 7.00 17.0 10.0 14.0 14.0 87.0 168 94.0 11.3 100 Cu 8.60 156 371 102 12.7 6.60 15.6 7.30 8.40 152 35.7 35.6 72.1 84.0 55.0 Ga 2.88 2.79 3.46 3.43 2.51 1.81 3.74 3.09 2.9 3.59 21.0 24.2 23.4 3.02 15.0 Ni 3.10 13.7 18.2 3.10 10.4 1.00 1.40 5.20 5.40 12.3 57.7 394 742 7.38 75.0 Sb 5.59 41.4 86.1 15.3 2.42 1.40 8.45 3.63 4.07 72.0 12.2 14.6 40.0 24.0 0.20 Sc wB/10-6 4.30 3.30 5.30 3.10 3.10 2.30 3.40 3.00 2.40 2.20 13.6 11.9 13.2 3.24 22.0 Sr 789 658 1 000 787 351 741 536 967 1135 967 53.7 53.0 125 793 375 Th 5.10 2.60 5.00 4.60 3.10 2.60 4.50 4.60 7.30 4.20 12.3 11.8 9.70 4.36 9.60 Ti 0.03 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.04 0.03 0.36 0.51 0.37 0.03 — U 8.60 11.5 12.9 10.1 4.70 4.90 7.70 9.90 12.8 12.8 22.6 28.1 39.5 9.59 2.70 V 21.0 100 73.0 22.0 13.0 13.0 23.0 12.0 8.00 57.0 307 2440 395 34.2 135 W 0.40 0.60 0.50 0.40 0.30 0.30 0.50 0.40 0.80 0.60 1.60 3.10 1.90 0.48 1.50 Zr 4.30 9.70 19.0 1.80 2.80 2.10 2.30 3.00 3.50 9.30 124 126 122 5.82 165 Zn 8.00 200 369 43.0 26.0 8.00 34.0 370 368 354 46.0 178 672 178 70.0 Sr/Ba 1.43 0.76 0.41 0.56 1.67 2.56 2.23 3.22 2.64 1.86 0.13 0.11 0.66 1.73 0.88 103·Sr/Ca 2.75 2.48 3.38 2.95 2.00 2.64 2.25 2.97 3.28 2.84 14.1 12.6 6.68 2.75 — Ni/Co 5.17 3.61 6.07 2.58 1.20 1.11 1.27 1.93 0.98 4.92 5.06 42.8 83.4 2.88 3.00 Cu/Zn 1.08 0.78 1.01 2.36 0.49 0.83 0.46 0.02 0.02 0.43 0.78 0.20 0.11 0.75 0.79 V/Cr 1.62 12.50 6.08 2.00 1.86 1.86 1.35 1.20 0.57 4.07 3.53 14.5 4.20 3.31 1.35 La 296 213 310 280 100 195 170 316 429 332 32.9 30.2 30.1 264 30.0 Ce 176 159 209 193 70.8 110 119 183 245 190 72.1 43.7 69.4 165 60.0 Pr 47.3 40.3 55.0 51.7 19.0 32.0 31.6 53.3 70.8 55.3 7.36 3.89 7.44 45.6 8.20 Nd 210 184 246 232 80.3 131 129 221 286 225 25.7 12.1 24.5 194 28.0 Sm 37.0 35.6 45.0 42.4 15.4 23.3 23.7 40.2 51.9 41.0 4.17 1.61 4.27 35.6 6.00 Eu 9.08 11.3 13.9 12.5 4.65 6.38 6.72 10.6 13.5 11.2 0.94 0.38 0.99 9.97 1.20 Gd 47.0 44.9 57.6 52.6 19.9 31.3 32.2 53.8 69.1 56.9 4.84 2.15 4.49 46.5 5.40 Tb wB/10-6 6.71 6.23 8.08 7.27 2.75 4.51 4.70 7.62 9.96 8.03 0.70 0.27 0.65 6.59 0.90 Dy 37.8 34.0 44.6 39.7 14.7 26.0 26.6 43.5 55.4 46.1 4.20 1.68 3.75 36.8 3.00 Ho 7.91 6.91 9.23 8.10 3.10 5.44 5.59 9.15 11.4 9.66 0.89 0.37 0.83 7.65 1.20 Er 21.9 18.4 25.2 22.3 8.39 15.6 15.4 25.5 32.2 26.6 2.76 1.34 2.67 21.1 2.80 Tm 2.42 1.96 2.69 2.36 0.93 1.69 1.71 2.78 3.48 2.83 0.42 0.23 0.37 2.29 0.48 Yb 12.05 9.65 13.35 11.60 4.84 8.83 8.69 14.05 17.25 14.10 2.91 1.92 2.61 11.44 3.00 Lu 1.48 1.17 1.69 1.41 0.63 1.13 1.11 1.75 2.15 1.81 0.45 0.31 0.40 1.43 0.50 Y 429 346 491 428 159 305 283 502 636 520 25.0 12.8 24.8 410 33.0 ∑REE 1341 1112 1532 1385 504 896 858 1484 1933 1540 185 113 177 1259 184 ∑LREE 775 643 879 812 290 497 479 824 1096 854 143 91.9 137 715 133 ∑HREE 566 469 653 573 214 399 379 660 837 686 42.2 21.1 40.6 544 50.3 (La/Yb)N 2.46 2.21 2.32 2.41 2.07 2.21 1.96 2.25 2.49 2.35 1.13 1.57 1.15 2.31 1.00 ∑LREE/∑HREE 1.37 1.37 1.34 1.42 1.35 1.24 1.26 1.25 1.31 1.24 3.40 4.36 3.37 1.32 2.65 δCe 0.34 0.39 0.37 0.37 0.37 0.32 0.37 0.32 0.32 0.32 1.07 0.89 1.07 0.35 0.42 注:δCe=2CeN/LaN+PrN,N代表澳大利亚后太古宙页岩标准化后的值[30],地壳元素丰度数据引自文献[31] 表 3 颗粒与泥晶比值及水动力能量
Table 3. Ratio of grains to micrity and hydrodynamic energy
颗粒/泥晶 颗粒φB/% 沉积环境水动力能量 9∶1 90 强动荡水体沉积 75 强-中等动荡水体沉积 1∶1 50 中等动荡水体沉积 1∶9 25 弱-间歇动荡水体沉积 10 静水沉积 -
[1] 梁坤萍, 程国繁, 覃庆炎, 等. 贵州织金新华磷矿区风化磷块岩形成条件及风化淋滤富集机制初步研究[J]. 地质科技通报, 2022, 41(4): 172-183. doi: 10.19509/j.cnki.dzkq.2022.0110Liang K P, Cheng G F, Qin Q Y, et al. A preliminary study on the formation conditions and weathering leaching enrichment mechanism of secondary phosphorite in the Xinhua phosphate mining area, Zhijin, Guizhou[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 172-183(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0110 [2] Chen J Y, Yang R D, Wei H R, et al. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze region[J]. Journal of Rare Earths, 2013, 31(1): 101-112. doi: 10.1016/S1002-0721(12)60242-7 [3] Wen H J, Carignan J, Zhang Y X, et al. Molybdenum isotopic records across the Precambrian-Cambrian boundary[J]. Geology, 2011, 39(8): 775-778. doi: 10.1130/G32055.1 [4] Fan H F, Wen H J, Zhu X K. Marine redox conditions in the Early Cambrian Ocean: Insights from the Lower Cambrian phosphorite deposits, South China[J]. Journal of Earth Science, 2016, 27(2): 282-296. doi: 10.1007/s12583-016-0687-3 [5] Yang H Y, Xiao J F, Xia Y, et al. Phosphorite generative processes around the Precambrian-Cambrian boundary in South China: An integrated study of Mo and phosphate O isotopic compositions[J]. Geoscience Frontiers, 2021, 12(5): 243-269. [6] 娄方炬, 顾尚义. 贵州织金寒武纪磷块岩中磷灰石和白云石稀土元素的LA-ICP-MS分析: 对沉积环境和成岩过程的指示意义[J]. 中国稀土学报, 2020, 38(2): 225-239. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB202002013.htmLou F J, Gu S Y. LA-ICP-MS REE analyses for phosphates and dolomites in cambrian phosphorite in Zhijin, Guizhou Province: Implication for depositional conditions and diagenetic processes[J]. Journal of the Chinese Society of Rare Earths, 2020, 38(2): 225-239(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB202002013.htm [7] 周克林, 付勇, 叶远谋, 等. 贵州寒武纪早期含磷岩系稀土富集特征[J]. 矿物学报, 2019, 39(4): 420-431. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201904009.htmZhou K L, Fu Y, Ye Y M, et al. Characteristics of the REE enrichment of the Early Cambrian phosphorus-rich rocks in Guizhou Province, China[J]. Acta Mineralogica Sinica, 2019, 39(4): 420-431(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201904009.htm [8] 谢宏, 朱立军. 贵州寒武纪梅树村期磷块岩稀土元素存在形式研究[J]. 中国矿业, 2012, 21(6): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201206025.htmXie H, Zhu L J. The modes of occurrence of rare earth elements in posphorite of Meishucun Stage of Cambrian in Guizhou[J]. China Mining Magazine, 2012, 21(6): 65-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201206025.htm [9] 谢宏, 朱立军. 贵州早寒武世早期磷块岩稀土元素赋存状态及分布规律研究[J]. 中国稀土学报, 2012, 30(5): 620-627. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201205018.htmXie H, Zhu L J. Existing state and sistribution rularity of rare earth elements from Early Cambrian phosphorite in Guizhou[J]. Journal of the Chinese Society of Rare Earths, 2012, 30(5): 620-627(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201205018.htm [10] 陈国勇, 杜远生, 张亚冠, 等. 黔中地区震旦纪含磷岩系时空变化及沉积模式[J]. 地质科技情报, 2015, 34(6): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506003.htmChen G Y, Du Y S, Zhang Y G, et al. Spatial and temporal variation and mineralization model of the Sinian phosphorus-bearing sequences in central Guizhou Province[J]. Geological Science and Technology Information, 2015, 34(6): 17-25 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506003.htm [11] 刘洁, 温汉捷, 刘世荣, 等. 贵州织金磷块岩结构及其沉积环境[J]. 矿物学报, 2016, 36(2): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201602014.htmLiu J, Wen H J, Liu S R, et al. Structures and sedimentary environment of phosphorite in Zhijin County, Guizhou Province, China[J]. Acta Mineralogica Sinica, 2016, 36(2): 253-259(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201602014.htm [12] 高磊. 贵州织金寒武系磷块岩中生物的结构特征及与成磷关系分析[D]. 贵阳: 贵州大学, 2019.Gao L. Analysis of structural characteristics of creatures and their relationship with phosphorus formation in the Cambrian phosphorites, Zhijin, Guizhou[D]. Guiyang: Guizhou University, 2019(in Chinese with English abstract). [13] 施春华, 胡瑞忠, 王国芝. 贵州织金磷矿岩元素地球化学特征[J]. 矿物学报, 2006, 26(2): 169-174. doi: 10.3321/j.issn:1000-4734.2006.02.009Shi C H, Hu R Z, Wang G Z. Element geochemiistry of Zhijin phosphorites, Guizhou Province[J]. Acta Mineralogica Sinica, 2006, 26(2): 169-174(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.2006.02.009 [14] 密文天, 林丽, 庞艳春, 等. 湖北宜昌白果园陡山沱组层序地层及磷块岩成因研究[J]. 沉积学报, 2010, 28(3): 471-480. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201003010.htmMi W T, Lin L, Pang Y C, et al. The sequence stratigraphy and genesis of phosphorites of Doushantuo Formation at Baiguoyuan, Yichang, Hubei[J]. Acta Sedimentologica Sinica, 2010, 28(3): 471-480(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201003010.htm [15] Jiang G Q, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze Platform in South China: Implications for a large surface-to-deep ocean δ13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320. [16] Liu D, Fan Q G, Papineau D, et al. Precipitation of protodolomite facilitated by sulfate-reducing bacteria: The role of capsule extracellular polymeric substances[J]. Chemical Geology, 2020, 533: 119415. [17] 郭海燕, 夏勇, 何珊, 等. 贵州织金磷块岩型稀土矿地球化学特征[J]. 矿物学报, 2017, 37(6): 755-763. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201904002.htmGuo H Y, Xia Y, He S, et al. Geochemical characteristics of Zhijin phosphrite type rare-earth deposit, Guizhou Province, China[J]. Acta Mineralogica Sinica, 2017, 37(6): 755-763(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201904002.htm [18] Yang H Y, Xiao J F, Xia Y, et al. Origin of the Ediacaran Weng'an and Kaiyang phosphorite deposits in the Nanhua Basin, SW China[J]. Journal of Asian Earth Sciences, 2019, 182: 103931. [19] Gao P, He Z L, Li S J, et al. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 381-397. [20] Ye Y T, Wang H J, Wang X M, et al. Elemental geochemistry of Lower Cambrian phosphate nodules in Guizhou Province, South China: An integrated study by LA-ICP-MS mapping and solution ICP-MS[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109459. [21] Sato E, Hirajima T, Kamimura K, et al. White mica K-Ar ages from lawsonite-blueschist facies Hakoishi sub-unit and from prehnite-pumpellyite facies Tobiishi sub-unit of the Kurosegawa belt, Kyushu, Japan[J]. Journal of Mineralogical and Petrological Sciences, 2014, 109(6): 258-270. [22] Zhu B, Jiang S Y, Yang J H, et al. Rare earth element and Sr-Nd isotope geochemistry of phosphate nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398(S1): 132-143. [23] 刘世荣, 胡瑞忠, 周国富, 等. 织金新华磷矿碎屑磷灰石的矿物成分研究[J]. 矿物学报, 2008, 28(3): 244-250. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200803003.htmLiu S R, Hu R Z, Zhou G F, et al. Study on the mineral composition of the clastic phosphate in Zhijin phosphate deposits, China[J]. Acta Mineralogica Sinica, 2008, 28(3): 244-250(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200803003.htm [24] Zhu M, Zhang J, Steiner M, et al. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: An integrated approach[J]. Progress in Natural Science, 2003, 13(12): 951-960. [25] Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze Platform shelf(Hubei and Hunan Provinces, Central China)[J]. Sedimentary Geology, 2010, 225(3/4): 99-115. [26] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htmShu L S. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm [27] 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 2013, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htmZhang G W, Guo A L, Wang Y J, et al. Tectonics of South China continent and its implications[J]. Science China: Earth Sciences, 2013, 43(10): 1553-1582(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm [28] Yeasmin R, Chen D, Fu Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian(Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017, 134: 365-386. [29] 冯增昭, 彭勇民, 金振奎, 等. 中国南方寒武纪岩相古地理[J]. 古地理学报, 2001, 3(1): 1-14, 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200101000.htmFeng Z Z, Peng Y M, Jin Z K, et al. Lithofacies palaeogeography of the Cambrian in South China[J]. Journal of Palaeogeography: Chinese Edition, 2001, 3(1): 1-14, 98-101(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200101000.htm [30] McLennan S M. Rare earth elements in sedimentary rocks: Infuence of provenance and sedimentary processes[J]. Reviews in Mineralogy, 1989, 21: 169-200. [31] Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33: 241-265. [32] 李新站, 于维满, 刘才云. 河北涉县巨鲕粒灰岩的成因及地质意义[J]. 矿产与地质, 2018, 32(5): 847-851. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201805009.htmLi X Z, Yu W M, Liu C Y. Causes and geological siynificance of the giant ooids in Shexian, Hebei[J]. Mineral Resources and Geology, 2018, 32(5): 847-851(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201805009.htm [33] 吴文明, 杨瑞东, 刘建中, 等. 贵州开阳龙水地区震旦系洋水组沉积特征及生物成磷作用[J]. 古地理学报, 2021, 23(3): 625-638. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202103011.htmWu W M, Yang R D, Liu J Z, et al. Sedimentary characteristics and biophosphorization of the Sinian Yangshui Formation in Longshui, Kaiyang, Guizhou Province[J]. Journal of Palaeogeography: Chinese Edition, 2021, 23(3): 625-638(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202103011.htm [34] 贾振远, 李之琪. 碳酸盐岩沉积相和沉积环境[M]. 武汉: 中国地质大学出版社, 1989.Jia Z Y, Li Z Q. Sedimentary facies and sedimentary environment of carbonate rocks[M]. Wuhan: China University of Geosciences Press, 1989(in Chinese). [35] 毛铁, 杨瑞东, 高军波, 等. 贵州织金寒武系磷矿沉积特征及灯影组古喀斯特面控矿特征研究[J]. 地质学报, 2015, 89(12): 2374-2388. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201512013.htmMao T, Yang R D, Gao J B, et al. Study of sedimentary feature of Cambrian phosphorite and ore-controlling feature of old karst surface of the Dengying Formation in Zhijin, Guizhou[J]. Acta Geologica Sinica, 2015, 89(12): 2374-2388(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201512013.htm [36] Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia[J]. Marine Geology, 2001, 174(1/4): 341-354. [37] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [38] 张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. doi: 10.19509/j.cnki.dzkq.2021.0508Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0508 [39] Jones B, Manning D A C. Comparion of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129. [40] Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeo environmental indicator[J]. Chemical Geology, 2009, 258(3): 338-353. [41] 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(3): 405-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201103021.htmXiong X H, Xiao J F. Geochemical indicators of sedimentary environments: A summary[J]. Earth and Environment, 2011, 39(3): 405-414(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201103021.htm [42] Liu X M, Hardisty D S, Lyons T W, et al. Evaluating the fielty of the cerum paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank[J]. Geochimica et Cosmochimica Acta, 2019, 248: 25-42. [43] 丁亚龙, 谢宏, 周忠容, 等. 贵州瓮安岚关磷矿元素特征及沉积环境分析[J]. 地球与环境, 2015, 43(4): 432-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201504008.htmDing Y L, Xie H, Zhou Z R, et al. Element characteristics and sedimentary environment of phosphorite from Weng'an County, Guizhou Province, China[J]. Earth and Environment, 2015, 43(4): 432-440(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201504008.htm [44] Allwood A C, Kamber B S, Walter M R, et al. Trace elements record depositional history of an Early Archean stromatolitic carbonate platform[J]. Chemical Geology, 2010, 270(1/4): 148-163.