Dispersion potential of asphaltene in live oil by nanoparticles
-
摘要:
为明确纳米颗粒在高温高压下抑制地层活油中沥青质沉淀的效果及机理, 通过开展高温高压固相颗粒检测实验, 分别采用激光探测、高压显微镜和高温高压过滤等方法, 研究了纳米颗粒二氧化硅(SiO2)(改性)和四氧化三钴(Co3O4)作用下地层活油中沥青质的聚集和沉淀特征, 结合电镜扫描和热重分析实验, 揭示了纳米颗粒抑制沥青质沉淀机理。实验结果表明, 目标储层地层原油中添加SiO2纳米颗粒后, 沥青质沉淀起始压力(
AOP )由原来的59.2 MPa下降至53.4 MPa, 衰竭至35 MPa压力下, 沥青质颗粒的平均粒径由8.82μ m减小至5.53μ m, 沉淀量占比由66.4%降至46.4%。而添加Co3O4纳米颗粒后, 在泡点压力之上未出现明显沥青质沉淀, 35 MPa压力下沥青质颗粒平均粒径仅为1.65μ m, 沉淀量占比仅为13.6%。纳米颗粒能够抑制沥青质分子的析出、减缓沥青质颗粒的聚集速度、降低AOP 及沥青质的沉淀量。与SiO2纳米颗粒相比, Co3O4纳米颗粒具有更高的沥青质吸附亲和力, 抑制效果更好。研究成果为防治沥青质沉积及改善沉积伤害提供了依据。Abstract:Objective In order to clarify the effect and mechanism of nanoparticles on inhibiting asphaltene precipitation in formation live oil formation under high temperature and high pressure.
Methods In this study, by carrying out high-temperature and high-pressure solid particle detection experiment, the aggregation and precipitation characteristics of asphaltene in formation live oil under the action of SiO2 and Co3O4 nanoparticles were studied by means of laser detection, high-pressure microscopy and high-temperature and high-pressure filtration. Combined with the electron microscope scanning and thermogravimetric analysis experiments, the mechanism of nanoparticles inhibiting asphaltene precipitation was revealed.
Results The results show that the initial pressure of asphaltene precipitation (
AOP ) decreases from 59.2 MPa to 53.4 MPa after adding SiO2 nanoparticles to the crude oil of the target reservoir.When the pressure was reduced to 35 MPa, the average particle size of asphaltene particles decreases from 8.82μ m to 5.53μ m, and the proportion of precipitation decreased from 66.4% to 46.4%. After adding Co3O4 nanoparticles, there is no obvious asphaltene precipitation above the bubble point pressure.The average particle size of asphaltene particles is only 1.65μ m under 35 MPa pressure, and the proportion of precipitation is only 13.6%. Nanoparticles can inhibit the precipitation of asphaltene molecules, slow down the aggregation rate of asphaltene particles, and reduceAOP and precipitation. Compared with SiO2, Co3O4 nanoparticles have higher asphaltene adsorption affinity and better inhibition effect.Conclusion The research results provide a basis for preventing asphaltene deposition and improving deposition damage.
-
Key words:
- nanoparticle /
- asphaltene molecule /
- precipitation /
- adsorbent /
- initial pressure
-
通常,原油中含有沥青质并不意味着一定会出现沉积及其相关问题。据实际矿场生产显示,沥青质含量最高的稠油,在生产过程中沥青质基本处于稳定状态,并不会引起油井和储层堵塞[1-3]。而储层压力远远高于泡点压力的超深轻质油藏,原油黏度小,沥青质含量非常低(小于5%),但胶体不稳定指数却非常高,在开发中极易引发严重的沥青质沉积现象[4-6],给生产和作业带来诸多问题。
过去10年中,纳米颗粒在石油工业中的应用呈现高速增长趋势,纳米颗粒具有独特的机械、化学、热和磁性,使其比传统材料具有更多的优越性,在油气田开发中具有广阔的应用前景[7-8]。越来越多的学者选择将纳米颗粒作为防治沥青质沉积的主要方式,纳米颗粒主要通过吸附作用和分散作用2种方式来抑制沥青质沉积,吸附作用是指通过吸附沥青质,使其无法相互碰撞聚集,避免其缔合变大沉积。分散作用是指纳米颗粒能够在沥青质分子表面建立烷基空间稳定层,使沥青质分子稳定分散于原油中。Kazemzadeh等[9]研究了NiO纳米颗粒对原油采收率的影响,以及沥青质在合成油溶液中的吸附机理,发现增加沥青质沉淀剂(正庚烷)的含量可以改善沥青质在纳米颗粒表面的吸附。Taborda等[10]通过实验分别研究了纯SiO2、酸化SiO2和Al2O3纳米颗粒对原油样品中沥青质沉淀的影响,发现了纳米颗粒作用下沥青质聚集体尺寸减小,其中Al2O3效果最好,酸化SiO2次之,纯SiO2最差。Shojaati等[11]研究发现,金属氧化物纳米颗粒Fe3O4、NiO和Al2O3可以有效抑制沥青质沉淀起始点,降低沥青质的沉淀量。
然而,几乎所有的实验研究都是在环境温度和大气压力下进行的,使用的沥青质也是通过向死油中添加饱和烃提取出来的。这种沥青质的物理化学性质与从活油中提取的沥青质的物理化学性质存在较大差异。活油中的沥青质通过与胶质组分相结合而稳定存在于原油中,当压力发生变化时原油的整体介电常数降低,造成沥青质不稳定[12-13]。而死油中沉淀的沥青质是原油与正构烷烃溶剂通过混合而形成的,这种沥青质中的胶质已经被破坏,不含有胶质组分,沥青质颗粒易碎[14-15]。因此,笔者拟在低温N2吸附实验明确纳米颗粒SiO2和Co3O4微观孔隙结构的基础上,开展高温高压固相颗粒检测实验,分别采用激光探测、高压显微镜和高温高压过滤等方法,研究纳米颗粒作用下地层活油中沥青质的聚集和沉淀特征,结合电镜扫描和热重分析实验,揭示纳米颗粒抑制沥青质沉淀机理,为沥青质油藏的高效持续开发提供参考和借鉴。
1. 实验内容
1.1 实验材料
1.1.1 实验原油
实验原油取自鄂尔多斯盆地陕北油区延长组长7储层。由于地层流体样品的代表性将直接影响后续实验的准确性,因此取样时在保证油井正常生产前提下,将井下取样器下放至目标储层(垂深5 830 m)进行取样,并采用氮气保压方式将井下样品在恒压(高于取样点压力2~3 MPa)条件下拉升至地面。然后将井下取样器中的流体样品恒压转移至高压样品容器中,并迅速运往实验室。其中,高压样品容器为活塞式容器,包含3个腔体(样品腔、蒸馏水腔和氮气腔)。当样品腔内压力因温度降低而下降时,氮气腔内的高压氮气将向蒸馏水腔内持续补充压力,确保样品腔内压力保持恒定,流体相态不会发生变化。
通过对地层原油样品开展PVT相态实验(依据国家标准GB/T 26981-2011:油气藏流体物性分析方法[16])和四组分分析(依据石油天然气行业标准NB/SH/T 0509-2010:石油沥青质四组分测定方法[17]),以获取地层原油基本高压物性参数(表 1)。其中地层原油的胶体不稳定指数(即饱和烃和沥青质的总含量与芳香烃和胶质的总含量之比)为2.12(大于阈值0.9),说明地层原油极易发生沥青质沉淀。
表 1 地层原油基本高压物性参数Table 1. Basic high-pressure physical parameters of the formation crude oil参数类型 数值 地层原油组分C1~C7 xB/% 75.83 地层原油组分C8~C12xB/% 15.18 地层原油组分C12+xB/% 6.22 地层原油相对分子质量/(g·mol-1) 78 脱气原油相对分子质量/(g·mol-1) 224 泡点压力/MPa 30.6 溶解气油比/(m3·m-3) 275.4 地层原油密度/(g·cm-3)(71.6 MPa,128.7℃) 0.731 6 地层原油黏度/(mPa·s)(71.6 MPa,128.7℃) 2.78 原油中饱和烃xB/% 65.5 原油中芳香烃xB/% 23.3 原油中胶质xB/% 8.7 原油中沥青质xB/% 2.5 胶体不稳定指数 2.12 1.1.2 纳米颗粒
实验所用纳米颗粒为购买的商业二氧化硅(SiO2)和四氧化三钴(Co3O4)纳米颗粒。通常SiO2纳米颗粒具有极大的比表面积和表面能,极易团聚,致使其在应用中无法发挥纳米颗粒的优异性能。因此,在50℃温度下将水解后的氨基硅烷化合物与SiO2纳米颗粒混合,氨基硅烷化合物将与SiO2的硅醇基团反应,形成改性后的SiO2纳米颗粒,然后将过滤出的SiO2粉末在120℃下干燥2 h,获得实验所需的SiO2纳米颗粒。改性后的纳米粒子表面的活性羟基和不饱和悬空键与改性剂分子间的结合力增强,有效降低纳米粒子的表面结合能,实现纳米粒子的分离。
1.2 实验装置
本次实验的核心装置包括固相颗粒检测系统和全可视PVT测试系统。其中,固相颗粒检测系统为SDS 1000型(图 1),温度范围在-40~200℃,工作压力最高达100 MPa。显微可视测试室由2个相对的蓝宝石窗口组成,可视面积5 mm×5 mm,采用高分辨率长焦距显微镜进行观测,放大倍数达1 000倍。全可视PVT测试系统为PVT 250/2000型,最高温度(T)和压力(P)分别为200℃、200 MPa,最大腔体体积(V)为250 mL。
此外,配套实验装置还包括固相颗粒过滤器、场发射扫描电子显微镜、气体吸附比表面分析仪和热重分析仪等。其中,固相颗粒过滤器一般与固相颗粒检测系统配套使用,内部装有硝酸纤维素滤膜,滤膜孔径的可选范围为0.1~1 μm。场发射扫描电子显微镜(FESEM)为Zeiss G500型,分辨率在0.5~0.9 nm,放大倍数达到2 000 000倍。气体吸附比表面分析仪为ASAP2020型,低温氮气测试孔径范围为1.2~350 nm。热重分析仪为ATS-STA-1550型,温度范围为室温至1 550℃,温度分辨率为0.01℃,天平测量范围为1×10-5~2 g,解析度为1×10-5 g。所需实验仪器还有高压中间容器(最大压力100 MPa,最高温度200℃)、蒸发冷凝装置等。
1.3 实验内容及步骤
1.3.1 纳米颗粒低温氮气吸附实验
实验步骤如下:①用乙醇反复清洗纳米颗粒后将其放置于密闭高压容器内,将密闭容器放置于烘箱内加温180℃烘干干燥,并采用分子真空泵对密闭容器抽真空48 h;②将抽真空后的密闭容器放置于杜瓦瓶中,向杜瓦瓶中加液氮直至液面淹没密闭容器,并恒温至-196℃。然后在不同压力下向密闭容器中注入纯度为99.99%的氮气,测定纳米颗粒的氮气吸附量,并绘制等温吸附解吸曲线;③分别采用标准BET(Brunauer-Emmett-Teller)模型[18]和BJH(Barrett-Joyner-Halenda)模型[19]计算纳米颗粒的比表面积、孔径分布和孔隙体积等参数,再用场发射扫描电子显微镜研究纳米颗粒的表面形态和粒径等特征。
1.3.2 沥青质沉淀测定实验
沥青质沉淀测定实验步骤如下:①添加纳米颗粒。将清洗烘干后的纳米颗粒(按地层原油质量的0.02%,约200×10-6[20-21])加入高压活塞容器中,抽真空后再在恒压条件下将地层原油转入容器中,并用容器中内置电磁搅拌器充分搅拌,使纳米颗粒均匀分散于原油中。②将添加了纳米颗粒的原油转入固相颗粒检测系统的高压容器内平衡24 h,然后在恒温下以0.1 MPa/min的降压速度,将高压容器中的压力由初始地层压力降至80%的泡点压力,记录原油透光率的变化值,并用显微镜拍摄和记录蓝宝石视窗表面沥青质析出及聚集的过程。实验结束后,反复清洗固相颗粒检测系统。③将添加了纳米颗粒的原油再次转入固相颗粒检测系统的高压容器内平衡24 h,并在预设压力间隔下进行恒温降压,每级压力下原油均需平衡72 h以上,直至压力不再波动。然后通过调节回压,在恒压条件下将原油流过过滤器。取下过滤器后,再将过滤器内的压力闪蒸至大气压力,再用甲苯冲洗过滤器,收集冲洗后的溶液,最后加热溶液获取析出的沥青质颗粒,烘干后称重。④采用场发射扫描电子显微镜观察沥青质颗粒的表面形态及尺寸,然后再用热重分析仪测定不同燃烧温度下沥青质颗粒的重量损失。⑤对比实验。采用未添加纳米颗粒的纯地层原油重复步骤②~④,获取无纳米颗粒影响下的沥青质沉淀过程。
2. 实验结果及分析
2.1 纳米颗粒性质
通过绘制氮气吸附量随相对压力(P/P0)的变化曲线,可以获得2种纳米颗粒的吸附和解吸曲线(图 2-a)。从图 2-a可以看出,2种纳米颗粒的吸附和解吸曲线的形态基本相似,但SiO2的氮气吸附量远大于Co3O4。结合国际应用化学联合会(IUPAC)对6种物理吸附曲线的分类标准[22]可知,2种纳米颗粒的等温吸附线整体呈V型曲线,吸附量随相对压力的增加可以划分为2个阶段,即缓慢增加阶段和急剧上升阶段。缓慢增加阶段,纳米颗粒的介孔逐渐被氮分子以单层吸附形式填充;急剧上升阶段,氮分子以多层吸附形式被大量吸附在颗粒表面,直至实验压力接近饱和蒸汽压。2种纳米颗粒的解吸曲线明显滞后,属于典型的H3型,表明纳米颗粒的孔隙结构主要由近似均匀的颗粒构成,分选程度较好。
图 2-b为根据BJH模型计算出的纳米颗粒孔径分布图,从图 2-b可知,2种纳米颗粒的孔隙类型主要为孔径在2~50 nm的介孔。对比沥青质分子大小(小于2 nm),这2种纳米颗粒的孔隙足以吸附沥青质分子。由表 2可知,SiO2纳米颗粒的比表面积和孔隙体积均大于Co3O4,但Co3O4的平均孔径及平均颗粒粒径均大于SiO2。
表 2 纳米颗粒的孔隙结构参数Table 2. Pore structure parameters of nanoparticles纳米颗粒类型 BJH模型 BET模型 平均纳米颗粒粒径/nm 孔隙体积/(10-3mL·g-1) 平均孔径/nm 孔隙体积/(10-3mL·g-1) 平均孔径/nm 比表面积/(m2·g-1) SiO2 395.4 18.85 402.6 19.06 75.82 28.69 Co3O4 133.2 20.28 131.8 24.16 21.35 47.62 2.2 纳米颗粒作用下沥青质沉淀特征
2.2.1 沥青质沉淀起始压力对比
图 3为纯地层原油和添加纳米颗粒后原油透光率随压力的变化曲线。从图 3-a可以看出,当压力由初始地层压力下降至80%的泡点压力时,纯地层原油的透光率呈现先增大后缓慢降低再快速下降的趋势。透光率增大是因为压力降低,体积增大,原油密度下降所致。当压力降至沥青质沉淀起始压力(AOP=59.2 MPa)时,由于沥青质分子析出并逐渐聚集增大,导致原油透光率开始下降。根据设备配备的激光功率,激光可探测的沥青质颗粒的最小尺寸为1~2 μm。随着压力继续降低,透光率会随着沥青质聚集体尺寸的增加而减小。当压力降至泡点压力时,透光率会再次大幅降低,这主要是由于原油中沥青质沉淀与气泡出现双层效应叠加的结果。这2种效应的叠加直接影响了激光探测沥青质的准确性。因此,在泡点压力以上,原油透光率的拐点可以认定为沥青质沉淀起始压力(AOP);而在泡点压力以下,由于气泡的出现,导致透光率的变化无法准确反映沥青质沉淀的变化。结合压降过程中沥青质颗粒的显微图,进一步证实沥青质颗粒的尺寸随压力降低而不断聚集变大。
从图 3-b可以看出,添加了SiO2纳米颗粒后的地层原油透光率的变化趋势与纯地层原油的变化基本相似。但添加了SiO2纳米颗粒后的地层原油的AOP明显降低,为53.4 MPa,比纯地层原油的AOP下降了5.8 MPa,说明SiO2纳米颗粒能够抑制地层原油中沥青质分子的析出和聚集,达到了降低沥青质沉淀初始压力的效果。结合显微图可以看出,在同一压降压力下,添加了SiO2纳米颗粒的地层原油的沥青质聚集体的尺寸明显降低,且在55 MPa下未探测到沥青质颗粒。
从图 3-c可以看出,添加了Co3O4纳米颗粒的地层原油透光率的变化趋势与前2种原油存在明显差异。在泡点压力以上,随压力的降低透光率持续增加,并未出现透光率变化的拐点,说明降压过程中未探测到明显的沥青质颗粒。当压力降至泡点压力时,由于原油中气泡的出现导致透光率开始大幅降低,激光探测到的原油泡点压力与PVT相态实验测得的结果基本一致,客观验证了激光探测的准确性。综上可知,相比SiO2,Co3O4纳米颗粒在抑制沥青质析出和聚集方面的效果更加显著。
2.2.2 沥青质聚集体尺寸对比
根据高压显微镜的放大倍数,显微镜能够观测到的沥青质颗粒粒径在0.5~0.6 μm以上,因此,理论上显微镜观测到沥青质沉淀起始压力(AOP)略高于激光。图 4为高压显微镜下原油中沥青质颗粒随压力的变化图像,可以看出,在60 MPa压力下,纯地层原油样品的图像颜色是均匀的,未发现沥青质颗粒。当压力降至55 MPa时,可以观测到一些细小的沥青质颗粒,平均粒径约为1.32 μm。随着压力继续降低,在45 MPa下,沥青质颗粒聚集体不断增大,平均颗粒粒径增至约5.27 μm。当压力降至35 MPa时,沥青质颗粒的平均粒径达到8.82 μm。然而,通过对比添加了SiO2纳米颗粒的原油发现,当压力降至55 MPa时,并未观测到明显的沥青质颗粒。当压力降至45 MPa时,沥青质颗粒平均粒径为2.21 μm,比纯地层原油同一压力下的平均粒径下降了58%。当压力降至35 MPa时,平均粒径仅为5.53 μm。进一步对比Co3O4纳米颗粒影响下的沥青质颗粒尺寸,当压力分别降至45,35 MPa时,平均粒径分别仅为1.02, 1.65 μm。通过对比35 MPa压力下3种原油中沥青质颗粒粒径的分布(图 5)进一步说明,在同一压降压力下,SiO2与Co3O4纳米颗粒均能有效减缓沥青质的聚集速度,降低沥青质聚集体尺寸,但Co3O4纳米颗粒的效果更佳。
通常,在无纳米颗粒作用下,随着压力的降低,原油中最不稳定的沥青质分子在自缔合作用下形成纳米聚集体(即核),然后相对分子质量较小的沥青质分子将会吸附在核周围,并逐渐聚集和生长。而当原油中存在纳米颗粒时,沥青质聚集体的聚集和生长缺少足够有效的成核,从而有效控制了沥青质沉淀。Co3O4纳米颗粒是一种非常好的沥青质抑制剂和分散剂,具有更高的吸附亲和力,能够更快地吸附沥青质分子。
2.2.3 沥青质沉淀量对比
通过对不同压力下的单相原油进行等温恒压过滤后,可以获得不同压力下的沥青质沉淀量(图 6)。从图 6中可以看出,在泡点压力以上,3种原油中沥青质沉淀量均随压力的降低而增加。根据沥青质溶解度理论可知,在泡点压力以上进行降压,原油虽然为单相,但原油中轻质组分的摩尔体积不断增大,且增大幅度大于重质组分的摩尔体积增加幅度,原油中芳香烃含量降低,导致沥青质溶解度下降,进而造成沥青质沉淀量增加。但添加了纳米颗粒的地层原油中沥青质沉淀量明显降低,当压力降至35 MPa时,纯地层原油的沥青质沉淀量wB为1.66%,占总沥青质含量的66.4%。添加SiO2纳米颗粒后,沥青质沉淀量降至1.16%,占总沥青质含量的46.4%。而添加Co3O4纳米颗粒后,沥青质沉淀量仅为0.34%,占总沥青质含量的13.6%。由此进一步说明,Co3O4纳米颗粒不但能控制沥青质的聚集速度,还能明显降低沥青质的沉淀量。
2.3 纳米颗粒吸附沥青质机理
为明确纳米颗粒对沥青质分子的作用(吸附)机理,通过从过滤器中提取纯沥青质样品和吸附在纳米颗粒上的沥青质样品,分别开展电镜扫描实验和热稳定性实验。需要注意的是,从活油中提取的沥青质的物理化学性质与死油中沉淀的沥青质的物理化学性质存在较大差异。活油中的沥青质通过与胶质组分相结合而稳定存在于原油中,当压力发生变化时原油的整体介电常数降低,造成沥青质不稳定。而死油中沉淀的沥青质是原油与正构烷烃溶剂通过混合而形成的,这种沥青质中的胶质已经被破坏,不含有胶质组分,沥青质颗粒易碎。因此,本节实验所用沥青质均是在降压过程中从活油中提取而来,纳米颗粒与沥青质颗粒之间的相互作用均是发生在真实高温活油之中。因而实验结果能够真实反映沥青质在高温高压条件下的吸附行为。
2.3.1 沥青质微观结构
图 7-a, b分别为沥青质吸附前Co3O4和SiO2纳米颗粒的表面特征,可以看出,Co3O4纳米颗粒的表面形态类似于球形,平均粒径为40~60 nm。而SiO2纳米颗粒的表面形态类似于多边立方体,平均粒径相对较小,为20~30 nm。扫描电镜观测到的纳米颗粒粒径与低温氮气吸附实验的计算结果基本一致(表 2)。图 7-c展示了沥青质颗粒具有的光滑和粗糙2种表面类型,原油中胶质组分易于在沥青质颗粒表面吸附形成聚集体进而产生沉淀。图 7-d展示了纳米颗粒在吸附沥青质后形成的不规则结构的表面形态。原油中沥青质被纳米颗粒吸附后变得更加稳定,它们与原油体系中分散的沥青质或吸附在相邻纳米颗粒上的沥青质之间的亲和力减弱,这种吸附作用有助于提高原油中沥青质的稳定性和分散性,并控制纳米级沥青质聚集体的生长速度。通过对比图 7-e, f后发现,吸附在Co3O4纳米颗粒上的沥青质聚集体的尺寸(图 7-f)小于SiO2纳米颗粒表面上的沥青质聚集体的尺寸(图 7-e),这也进一步证实Co3O4纳米颗粒在抑制沥青质聚集体粒径增长方面具有更好的效果。
2.3.2 沥青质热稳定性
通过对过滤获得的沥青质颗粒进行热重分析,可以对包裹在沥青质聚集体内的纳米颗粒数量和质量进行分析。图 8为纯沥青质和吸附在Co3O4和SiO2表面的沥青质燃烧后剩余质量的变化曲线,可以看出,随着燃烧温度的升高,沥青质颗粒剩余质量占比不断下降,当温度分别达到160~200℃和400~450℃时,热分布特征图中出现了2次质量快速损失的现象。其中,第1次质量损失主要因为脂肪族侧链(即易氧化碳氢化合物)的降解,而第2次质量损失可能与多核芳烃层或堆叠层的降解[23-24]有关。当温度达到600℃时,剩余质量占比基本不再变化,其中纯原油(蓝线)的剩余质量占比仅为2.1%,残留物以多环缩合芳香化合物和不同元素(如V,Ni和Fe)的聚集体为主。而添加了Co3O4和SiO2纳米颗粒后,最高温度燃烧后的残余物主要为纳米颗粒,其含量分别约为37.3%,42.4%,远高于纯沥青质的残余物含量。这说明Co3O4纳米颗粒吸附的沥青质量(约62.7%)多于SiO2纳米颗粒吸附的沥青质量(约57.6%),也间接证实了Co3O4纳米颗粒对沥青质的吸附亲和力比SiO2高。
此外,由图 8还可以看出,吸附在纳米颗粒上的沥青质的最大燃烧温度为520℃,比纯沥青质的600℃下降了约80℃,这主要因为沥青质在纳米颗粒表面上的高吸附性使得沥青质更容易燃烧,加速了其降解过程。
3. 结论
(1) SiO2和Co3O4纳米颗粒的孔隙类型均主要为介孔(孔径2~50 nm),满足吸附沥青质分子的潜力。SiO2纳米颗粒的比表面积和孔隙体积大于Co3O4纳米颗粒,但Co3O4纳米颗粒的平均粒径和平均孔径均大于SiO2纳米颗粒。
(2) 根据激光和高压显微镜探测结果,纯地层原油AOP为59.2 MPa,当压力降至35 MPa时,沥青质颗粒平均粒径为8.82 μm,沥青质沉淀量wB为1.66%,占总沥青质含量的66.4%。当添加SiO2纳米颗粒后,AOP降至53.4 MPa,当压力降至35 MPa时,沥青质颗粒平均粒径降至5.53 μm,沉淀量wB降至1.16%,占总沥青质含量的46.4%。而添加了Co3O4纳米颗粒的地层原油在泡点压力之上未出现明显沥青质沉淀,35 MPa压力下沥青质颗粒平均粒径仅为1.65 μm,沉淀量wB仅为0.34%,占总沥青质含量的13.6%。
(3) 纳米颗粒能够抑制原油中沥青质分子的析出、减缓了沥青质颗粒的聚集速度、降低了AOP及沥青质沉淀量。相比于SiO2纳米颗粒,Co3O4纳米颗粒具有更高的沥青质吸附亲和力,抑制效果更好。
(所有作者声明不存在利益冲突) -
表 1 地层原油基本高压物性参数
Table 1. Basic high-pressure physical parameters of the formation crude oil
参数类型 数值 地层原油组分C1~C7 xB/% 75.83 地层原油组分C8~C12xB/% 15.18 地层原油组分C12+xB/% 6.22 地层原油相对分子质量/(g·mol-1) 78 脱气原油相对分子质量/(g·mol-1) 224 泡点压力/MPa 30.6 溶解气油比/(m3·m-3) 275.4 地层原油密度/(g·cm-3)(71.6 MPa,128.7℃) 0.731 6 地层原油黏度/(mPa·s)(71.6 MPa,128.7℃) 2.78 原油中饱和烃xB/% 65.5 原油中芳香烃xB/% 23.3 原油中胶质xB/% 8.7 原油中沥青质xB/% 2.5 胶体不稳定指数 2.12 表 2 纳米颗粒的孔隙结构参数
Table 2. Pore structure parameters of nanoparticles
纳米颗粒类型 BJH模型 BET模型 平均纳米颗粒粒径/nm 孔隙体积/(10-3mL·g-1) 平均孔径/nm 孔隙体积/(10-3mL·g-1) 平均孔径/nm 比表面积/(m2·g-1) SiO2 395.4 18.85 402.6 19.06 75.82 28.69 Co3O4 133.2 20.28 131.8 24.16 21.35 47.62 -
[1] 李新文, 张国威. 沥青质沉积对原油渗流特征的影响[J]. 地质科技通报, 2021, 40(6): 15-23. doi: 10.19509/j.cnki.dzkq.2021.0602Li X W, Zhang G W. Influence of asphaltene deposition on oil seepage characteristics[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 15-23(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0602 [2] Fakher S, Khlaifat A, Hossain M E, et al. A comprehensive review of sucker rod pumps' components, diagnostics, mathematical models, and common failures and mitigations[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(10): 3815-3839. doi: 10.1007/s13202-021-01270-7 [3] 雷浩. 低渗储层CO2驱油过程中沉淀规律及防治对策研究[D]. 北京: 中国石油大学(北京), 2017.Lei H. Deposition mechanisms and reservoir protection countermeasures of a low-permeability formation in CO2 flooding process[D]. Beijing: China University of Petroleum(Beijing), 2017(in Chinese with English abstract). [4] 王志坚. 深层-超深层异常高压油藏工艺技术对策[J]. 油气地质与采收率, 2020, 27(5): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htmWang Z J. Technological strategies for deep and ultra-deep reservoirs with abnormally high pressure[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 126-132(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005016.htm [5] 刘磊, 曹畅, 程汝镇, 等. 顺北沥青质分子结构和析出沉积规律研究[J]. 复杂油气藏, 2020, 13(4): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202004020.htmLiu L, Cao C, Cheng R Z, et al. Study on molecular structure and precipitation rules of Shunbei asphaltenes[J]. Complex Hydrocarbon Reservoirs, 2020, 13(4): 86-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202004020.htm [6] 王云飞, 魏建光. 减氧空气与轻质原油低温氧化反应特征[J]. 地质科技通报, 2023, 42(2): 207-213. doi: 10.19509/j.cnki.dzkq.2022.0181Wang Y F, Wei J G. Reaction characteristics of low temperature oxidation of light crude oil with disoxidation air[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 207-213(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0181 [7] Kalantari F, Farahbod F. Mixing of crude oil with organic ZnO nano-particles from rice bran to improve physical properties of crude oil: A novel agent for enhanced oil recovery[J]. Natural Resources Research, 2019, 28(3): 1183-1196. doi: 10.1007/s11053-018-9443-y [8] 叶航, 刘琦, 彭勃, 等. 纳米颗粒抑制CO2驱过程中沥青质沉积的研究进展[J]. 油气地质与采收率, 2020, 27(5): 86-94.Ye H, Liu Q, Peng B, et al. Inhibition of nanoparticles on asphaltene deposition during CO2 flooding: A review[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 86-94(in Chinese with English abstract). [9] Kazemzadeh Y, Eshraghi E, Kazemi K, et al. Behavior of asphaltene adsorption onto the metal xxide nanoparticle surface and its effect on heavy oil recovery[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 233-239. [10] Taborda E A, Franco C A, Lopera S H, et al. Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions[J]. Fuel, 2016, 184: 222-232. doi: 10.1016/j.fuel.2016.07.013 [11] Shojaati F, Riazi M, Mousavi S H, et al. Experimental investigation of the inhibitory behavior of metal oxides nanoparticles on asphaltene precipitation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 99-110. [12] Alemi F M, Dehghani S A M, Rashidi A, et al. Potential application of Fe2O3 and functionalized SiO2 nanoparticles for inhibiting asphaltene precipitation in live oil at reservoir conditions[J]. Energy & Fuels, 2021, 35(7): 5908-5924. [13] Eskin D, Omid M, Kamran A, et al. Reservoir impairment by asphaltenes: A critical review[J]. The Canadian Journal of Chemical Engineering, 2016, 94(6): 1202-1217. doi: 10.1002/cjce.22476 [14] Uetani T. Wettability alteration by asphaltene deposition: A field example[C]//Anon. Abu Dhabi International Petroleum Exhibition and Conference, 10-13 November. Abu Dhabi, UAE: Society of Petroleum Engineers, 2014. [15] Papadimitriou N I, Romanos G E, Charalambopoulou G C, et al. Experimental investigation of asphaltene deposition mechanism during oil flow in core samples[J]. Journal of Petroleum Science and Engineering, 2007, 57(3/4): 281-293. [16] 郑希谭, 孙雯悦, 李实, 等. GB/T 26981-2011: 油气藏流体物性分析方法[S]. 北京: 石油工业出版社, 2010.Zheng X T, Sun W Y, Li S, et al. GB/T 26981-2011: Test method for reservoir fluid physical properties[S]. Beijing: Petroleum Industry Press, 2010(in Chinese). [17] 王翠红, 罗爱兰, 王子军. NB/SH/T 0509-2010: 石油沥青质四组分测定方法[S]. 北京: 中国石化出版社, 2010.Wang C H, Luo A L, Wang Z J. NB/SH/T 0509-2010: Test method for separation of asphalt into four fractions[S]. Beijing: SINOPEC Press, 2010(in Chinese). [18] 卢振东, 刘成林, 臧起彪, 等. 高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用: 以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2022, 41(3): 300-310. doi: 10.19509/j.cnki.dzkq.2021.0256Lu Z D, Liu C L, Zang Q B, et al. Application of high pressure mercury injection and nuclear magnetic resonance in analysis of the pore structure of dense sandstone: A case study of the Heshui area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 300-310(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0256 [19] 岳长涛, 李术元, 许心怡, 等. 宜宾地区页岩微孔特征及吸附解吸特性研究[J]. 西南石油大学学报: 自然科学版, 2018, 40(5): 84-94.Yue C T, Li S Y, Xu X Y, et al. Micropore characteristics and adsorption and desorption properties of shales in the Yibin region[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2018, 40(5): 84-94(in Chinese with English abstract). [20] Fard S R, Khadar R H. The effect of inhibitors asphaltene precipitation due to a natural depletion mechanism in crude oil[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2012, 34(20): 1868-1875. doi: 10.1080/15567036.2011.615003 [21] Firoozinia H, Abad K F H, Varamesh A. A comprehensive experimental evaluation of asphaltene dispersants for injection under reservoir conditions[J]. Petroleum Science, 2016, 13(2): 280-291. doi: 10.1007/s12182-016-0078-5 [22] Lyu C, Ning Z, Wang Q, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones[J]. Energy & Fuels, 2018, 32(2): 1395-1405. [23] Maity S K, Blanco E, Ancheyta J, et al. Early stage deactivation of heavy crude oil hydroprocessing Catalysts[J]. Fuel, 2012, 100: 17-23. [24] Hosseinpour N, Mortazavi Y, Bahramian A, et al. Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology[J]. Applied Catalysis A: General, 2014, 477: 159-171. -