留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正交匹配追踪的深度波数谱分解及其在含油气储层预测中的应用

唐甜 巴素玉 时瑞坤 王楠 田媛 顾汉明

唐甜, 巴素玉, 时瑞坤, 王楠, 田媛, 顾汉明. 基于正交匹配追踪的深度波数谱分解及其在含油气储层预测中的应用[J]. 地质科技通报, 2024, 43(1): 360-370. doi: 10.19509/j.cnki.dzkq.tb20220237
引用本文: 唐甜, 巴素玉, 时瑞坤, 王楠, 田媛, 顾汉明. 基于正交匹配追踪的深度波数谱分解及其在含油气储层预测中的应用[J]. 地质科技通报, 2024, 43(1): 360-370. doi: 10.19509/j.cnki.dzkq.tb20220237
TANG Tian, BA Suyu, SHI Ruikun, WANG Nan, TIAN Yuan, GU Hanming. Depth wavenumber spectral decomposition based on orthogonal matching pursuit and its application in hydrocarbon reservoir prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 360-370. doi: 10.19509/j.cnki.dzkq.tb20220237
Citation: TANG Tian, BA Suyu, SHI Ruikun, WANG Nan, TIAN Yuan, GU Hanming. Depth wavenumber spectral decomposition based on orthogonal matching pursuit and its application in hydrocarbon reservoir prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 360-370. doi: 10.19509/j.cnki.dzkq.tb20220237

基于正交匹配追踪的深度波数谱分解及其在含油气储层预测中的应用

doi: 10.19509/j.cnki.dzkq.tb20220237
基金项目: 

胜利油田分公司基础前瞻课题"深度偏移资料时深双域地震属性特征研究" YJQ2103

中国石化课题"砂砾岩体沉积模式与圈闭描述技术推广应用" P21091

详细信息
    作者简介:

    唐甜, E-mail: t553471525@126.com

    通讯作者:

    顾汉明, E-mail: hmgu@cug.edu.cn

  • 中图分类号: P631.4;P618.13

Depth wavenumber spectral decomposition based on orthogonal matching pursuit and its application in hydrocarbon reservoir prediction

More Information
  • 摘要:

    常规时间域地震属性分析是利用由叠前深度偏移数据转换至时间域的数据,这种转换将造成有效高频信息的损失,为了充分利用深度域资料成像精度高的优势,有必要开展深度域资料属性分析工作。由于深度域波数与频率和波速有关,如何获得高分辨率深度波数谱是深度域地震属性分析的关键。采用基于稀疏反演的谱分解方法,通过建立深度域过完备子波库,利用正交匹配追踪算法提高深度波数谱计算分辨率,通过理论模型的深度波数谱属性计算,并与时频谱属性进行对比,分析含油气储层的深度波数谱变化特征,通过实际资料的深度波数谱属性分析应用,验证利用深度波数谱进行含油气性预测的实用性。结果表明,基于正交匹配追踪算法的深度波数谱分解方法具有较高分辨率,可作为深度域含油气储层预测的高精度手段之一。实际数据应用表明,深度波数谱含油气储层下方出现低波数伴影现象,可作为深度域指示油气储层存在的标志,基于正交匹配追踪的深度波数谱分解方法可有效识别低波数伴影异常,对深度域地震资料进行含油气储层预测。

     

  • 图 1  楔状体模型

    Figure 1.  Wedge model

    图 2  楔状体等频剖面

    Figure 2.  Common frequency profiles of the wedge model

    图 3  楔状体等波数剖面

    Figure 3.  Common wavenumber profiles of the wedge model

    图 4  含油气储层复杂模型

    Figure 4.  Complex model with hydrocarbon-bearing reservoir

    图 5  模型单道记录谱分解结果

    Figure 5.  Spectral decompositionresults of a single trace of the model

    图 6  含油气储层模型的等频剖面

    Figure 6.  Common frequency profiles of the model with hydrocarbon-bearing reservoirs

    图 7  含油气储层模型的等波数剖面

    Figure 7.  Common wavenumber profiles of the model with hydrocarbon-bearing reservoirs

    图 8  实际过57井深度(a)和时间(b)剖面

    Figure 8.  Seismic profile across Well 57 in the depth domain (a) and time domain (b)

    图 9  时间域与深度域过57井记录谱分解结果

    Figure 9.  Spectral decomposition of seismic traces across Well 57 in the time domain and depth domain

    图 10  时间域实际资料等频剖面

    Figure 10.  Common frequency profiles of field data in the time domain

    图 11  深度域实际资料等波数剖面

    Figure 11.  Common wavenumber profiles of field data in the depth domain

    图 12  时间域实际资料等频切片

    Figure 12.  Common frequency sections of field data in the time domain

    图 13  深度域实际资料等波数切片

    Figure 13.  Common wavenumber sections of field data in the depth domain

  • [1] 胡中平, 孔祥宁, 潘宏勋, 等. 叠前深度域地震属性技术研究及展望[J]. 石油物探, 2004, 43(增刊1): 28-30.

    HU Z P, KONG X N, PAN H X, et al. Research and prospect of seismic attribute technology in prestack depth domain[J]. Geophysical Prospecting for Petroleum, 2004, 43(S1): 28-30. (in Chinese with English abstract)
    [2] 何惺华. 深度域地震资料若干问题初探[J]. 石油物探, 2004, 43(4): 353-358, 5.

    HE X H. Discussion on seismic data of depth domain[J]. Geophysical Prospecting for Petroleum, 2004, 43(4): 353-358, 5. (in Chinese with English abstract)
    [3] 孙建国. 深度域处理解释技术[J]. 勘探地球物理进展, 2005, 40(6): 381-392, 9.

    SUN J G. Data processing and interpretation techniques in depth domain[J]. Progress in Exploration Geophysics, 2005, 40(6): 381-392, 9. (in Chinese with English abstract)
    [4] 郝晓红, 晏玉环. 深度域地震资料解释探讨[J]. 海洋石油, 2014, 34(2): 20-24.

    HAO X H, YAN Y H. Seismic data interpretation after PSDM in depth domain[J]. Offshore Oil, 2014, 34(2): 20-24. (in Chinese with English abstract)
    [5] 周赏, 汪关妹, 张万福, 等. 深度域地震资料解释技术应用及效果[J]. 石油地球物理勘探, 2017, 52(增刊1): 92-98, 8-9.

    ZHOU S, WANG G M, ZHANG W F, et al. Depth-domain seismic data interpretation[J]. Oil Geophysical Prospecting, 2017, 52(S1): 92-98, 8-9. (in Chinese with English abstract)
    [6] 梁佳莉, 孙成禹. 地震资料时-深域属性差异分析[C]//佚名. 2020年中国地球科学联合学术年会论文集(十九). 重庆: 北京伯通电子出版社, 2020: 146-148.

    LIANG J L, SUN C Y. Analysis of time-depth domain attribute difference of seismic data[C]//Anon. Proceedings of 2020 China Geosciences Federation Annual Conference. Chongqing: Beijing Botong Electronic Publishing House, 2020: 146-148. (in Chinese with English abstract)
    [7] HE Z H, XIONG X J, BIAN L E. Numerical simulation of seismic low-frequency shadows and its application[J]. Applied Geophysics, 2008, 5(4): 301-306. doi: 10.1007/s11770-008-0040-4
    [8] MALLAT S, ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082
    [9] CHAKRABORTY A, OKAYA D. Frequency-time decomposition of seismic data using wavelet-based methods[J]. Geophysics, 1995, 60(6): 1906-1916. doi: 10.1190/1.1443922
    [10] CASTAGNA J P, SUN S J, ROBERT W S. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003, 22(2): 120-127. doi: 10.1190/1.1559038
    [11] LIU J, WU Y, HAN D, et al. Time-frequency decomposition based on Ricker wavelet[C]//Anon. Expanded Abstracts of 74th Annual International SEG Mtg. [S. l. ]: [s. n. ], 2004.
    [12] LIU J, MARFURT K J. Matching pursuit decomposition using Morlet wavelets[C]//Anon. Expanded Abstracts of 75th Annual International SEG Mtg. [S. l. ]: [s. n. ], 2005.
    [13] WANG Y. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics, 2007, 72(1): 13-20.
    [14] 张繁昌, 刘汉卿, 张立强, 等. 复数道动态匹配追踪算法的改进[J]. 石油地球物理勘探, 2016, 51(1): 183-189.

    ZHANG F C, LIU H Q, ZHANG L Q, et al. Improved complex-trace dynamic matching pursuit algorithm[J]. Oil Geophysical Prospecting, 2016, 51(1): 183-189. (in Chinese with English abstract)
    [15] 刘霞, 陈晨, 赵玉婷, 等. 基于粒子群快速优化MP算法的多子波分解与重构[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1855-1861.

    LIU X, CHEN C, ZHAO Y T, et al. Multi-wavelet decomposition and reconstruction based on matching pursuit algorithm fast optimized by particle swarm[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1855-1861. (in Chinese with English abstract)
    [16] 王珺, 李永庆. 遗传算法和正交时频原子相结合的地震记录快速匹配追踪[J]. 石油地球物理勘探, 2016, 51(5): 881-888, 893, 834.

    WANG J, LI Y Q. Seismic trace fast matching pursuit based on genetic algorithm and orthogonal time-frequency atom[J]. Oil Geophysical Prospecting, 2016, 51(5): 881-888, 893, 834. (in Chinese with English abstract)
    [17] LI C H, ZHANG F C. Matching pursuit parallel decomposition of seismic data[J]. Computers and Geosciences, 2017, 104: 54-61. doi: 10.1016/j.cageo.2017.04.005
    [18] 王聪, 巫南克, 王世锋. GPU并行在匹配追踪算法中的应用[J]. 工程地球物理学报, 2018, 15(5): 567-572.

    WANG C, WU N K, WANG S F. Application of GPU parallel computing to matching pursuit algorithm[J]. Chinese Journal of Engineering Geophysics, 2018, 15(5): 567-572. (in Chinese with English abstract)
    [19] 邓世广, 王淑艳, 赵文津, 等. 基于OpenMP并行计算的匹配追踪时频分析方法[J]. 石油地球物理勘探, 2018, 53(3): 454-461, 1-2.

    DENG S G, WANG S Y, ZHAO W J, et al. A matching pursuit time-frequency analysis method based on OpenMP parallel computing[J]. Oil Geophysical Prospecting, 2018, 53(3): 454-461, 1-2. (in Chinese with English abstract)
    [20] 杨午阳, 杨庆, 何欣, 等. 改进的高精度匹配追踪方法研究及应用[J]. 地球物理学报, 2017, 60(7): 2825-2832.

    YANG W Y, YANG Q, HE X, et al. Research and application of improved high precision matching pursuit method[J]. Chinese Journal of Geophysics, 2017, 60(7): 2825-2832. (in Chinese with English abstract)
    [21] 孙劲松, 陈国雄, 刘天佑. 基于改进Morlet小波的MP算法在地震频谱分析中的应用[J]. 地质科技情报, 2011, 30(5): 119-122.

    SUN J S, CHEN G X, LIU T Y. MP algorithm based on improved Morlet wavelet in the seismic spectrum analysis[J]. Geological Science and Technology Information, 2011, 30(5): 119-122. (in Chinese with English abstract)
    [22] 刘杰, 张忠涛, 刘道理, 等. 强反射背景下沉积体边界检测及流体识别方法[J]. 石油物探, 2016, 55(1): 142-149.

    LIU J, ZHANG Z T, LIU D L, et al. Sediment boundary identification and fluid detection for the seismic data with strong background reflections[J]. Geophysical Prospecting for Petroleum, 2016, 55(1): 142-149. (in Chinese with English abstract)
    [23] 李坤, 印兴耀, 宗兆云. 基于匹配追踪谱分解的时频域FAVO流体识别方法[J]. 石油学报, 2016, 37(6): 777-786.

    LI K, YIN X Y, ZONG Z Y. Time frequency-domain FAVO fluid discrimination method based on matching pursuit spectrum decomposition[J]. Acta Petrolei Sinica, 2016, 37(6): 777-786. (in Chinese with English abstract)
    [24] 杨子川, 高利君, 李海英. 匹配追踪时频分析技术在塔河油田缝洞型储层预测中的应用[J]. 地质科技情报, 2017, 36(3): 293-298.

    YANG Z C, GAO L J, LI H Y. Match pursuit time frequency analysis technology in the prediction of fractured reservoirs in Tahe Oilfield[J]. Geological Science and Technology Information, 2017, 36(3): 293-298. (in Chinese with English abstract)
    [25] 陈珊, 徐兴友, 罗晓玲, 等. 基于改进匹配追踪算法的时频属性在薄储层沉积微相研究中的应用[J]. 物探与化探, 2018, 42(5): 1006-1012.

    CHEN S, XU X Y, LUO X L, et al. Time-frequency attribute based on modified matching pursuit algorithm and its application to sedimentary microfacies of thin reservoir area[J]. Geophysical and Geochemical Exploration, 2018, 42(5): 1006-1012. (in Chinese with English abstract)
    [26] 许璐, 吴笑荷, 张明振, 等. 基于局部频率约束的动态匹配追踪强反射识别与分离方法[J]. 石油地球物理勘探, 2019, 54(3): 587-593, 486-487.

    XU L, WU X H, ZHANG M Z, et al. Strong reflection identification and separation based on the local-frequency-constrained dynamic matching pursuit[J]. Oil Geophysical Prospecting, 2019, 54(3): 587-593, 486-487. (in Chinese with English abstract)
    [27] 杨子鹏, 宋维琪, 刘军, 等. 多道联合约束的匹配追踪强反射轴压制方法[J]. 石油地球物理勘探, 2021, 56(1): 77-85, 7.

    YANG Z P, SONG W Q, LIU J, et al. A method of combining multi-channel signals to suppress the strong reflection through matching pursuit[J]. Oil Geophysical Prospecting, 2021, 56(1): 77-85, 7. (in Chinese with English abstract)
    [28] 潘辉, 印兴耀, 李坤, 等. 基于经验模态分解字典的自适应匹配追踪谱分解方法及其在油气检测中的应用[J]. 石油地球物理勘探, 2021, 56(5): 1117-1129, 929-930.

    PAN H, YIN X Y, LI K, et al. Spectral decomposition method of adaptive matching pursuit based on empirical mode decomposition dictionary and its application in oil and gas detection[J]. Oil Geophysical Prospecting, 2021, 56(5): 1117-1129, 929-930. (in Chinese with English abstract)
    [29] 张军华, 王静, 王延光, 等. 基于压缩感知的反射系数域沿层L2范数约束去强屏蔽方法[J]. 石油地球物理勘探, 2022, 57(2): 405-413, 246-247.

    ZHANG J H, WANG J, WANG Y G, et al. A strong shielding removal method of reflection coefficient domain based on compressed sensing with L2 norm constraint along layer[J]. Oil Geophysical Prospecting, 2022, 57(2): 405-413, 246-247. (in Chinese with English abstract)
    [30] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108
    [31] GU H M, STEWART R, LI Z J, et al. Calculation of relative seismic attenuation from reflection time-frequency differences in carbonate reservoir[C]//Anon. 77th Annual International Meeting, SEG, Expanded Abstracts. [S. l. ]: [s. n. ], 2007: 1495-1498.
  • 加载中
图(13)
计量
  • 文章访问数:  158
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 录用日期:  2022-07-06
  • 修回日期:  2022-07-05

目录

    /

    返回文章
    返回