留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FLAC3D与无人机航测的全部垮落法采煤塌陷分析

王志民 秦越强 柴晨晖 孙宇飞 李朋伟 岳喜能

王志民, 秦越强, 柴晨晖, 孙宇飞, 李朋伟, 岳喜能. 基于FLAC3D与无人机航测的全部垮落法采煤塌陷分析[J]. 地质科技通报, 2024, 43(1): 204-215. doi: 10.19509/j.cnki.dzkq.tb20220250
引用本文: 王志民, 秦越强, 柴晨晖, 孙宇飞, 李朋伟, 岳喜能. 基于FLAC3D与无人机航测的全部垮落法采煤塌陷分析[J]. 地质科技通报, 2024, 43(1): 204-215. doi: 10.19509/j.cnki.dzkq.tb20220250
WANG Zhimin, QIN Yueqiang, CHAI Chenhui, SUN Yufei, LI Pengwei, YUE Xineng. Coal mining collapse analysis of total caving method based on FLAC3D and UAV aerial surveying[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 204-215. doi: 10.19509/j.cnki.dzkq.tb20220250
Citation: WANG Zhimin, QIN Yueqiang, CHAI Chenhui, SUN Yufei, LI Pengwei, YUE Xineng. Coal mining collapse analysis of total caving method based on FLAC3D and UAV aerial surveying[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 204-215. doi: 10.19509/j.cnki.dzkq.tb20220250

基于FLAC3D与无人机航测的全部垮落法采煤塌陷分析

doi: 10.19509/j.cnki.dzkq.tb20220250
基金项目: 

中国地质调查局项目"鄂尔多斯市准格尔旗煤炭矿集区生态修复支撑调查" DD20208078

详细信息
    作者简介:

    王志民, E-mail: 85689352@qq.com

    通讯作者:

    秦越强, E-mail: qyq331851187@163.com

  • 中图分类号: P694

Coal mining collapse analysis of total caving method based on FLAC3D and UAV aerial surveying

More Information
  • 摘要:

    内蒙古串草圪旦煤矿位于黄河中游上段,其全部垮落法采煤导致大面积塌陷,地表生态和环境问题频发。为研究采空区地表裂缝发育规律及塌陷应力与位移场演化特征以串草圪旦煤矿6102工作面为研究对象,利用无人机航测查清了地表裂缝分布范围及规律,构建了FLAC3D数值模型并计算分析了采空区围岩应力及位移变化,将分析结果与无人机航测结果进行了相互验证。结果表明:(1)塌陷主要以地裂缝为表现形式,主要分布于矿区西北部及中西部。工作面发育2类地裂缝,一类为弧形阶梯式裂缝群,呈平行分布且以间隔5~20 m出现,大部分形成阶梯式高度为15~130 cm的错台,裂缝以3°~5°的偏角垂直工作面推进方向发育;另一类为直线型边缘裂缝带,拉张破坏严重,平行工作面外围呈带状发育,少数可展布于工作面内部,最外围裂缝至工作面的距离分别为38,53 m。(2)由于地下煤层开挖,采空区顶板出现明显的"马鞍状"拉应力集中区,且随着开挖的推进地表集中区拉应力先增大后减小,最大值为0.181 MPa;(3)采空区顶部完全垮塌,地表垂直位移最大值在采空区正中间,最大值约5.5 m;地表水平位移最大值位于采空区煤柱正上方,最大值1.93 m。(4)数值模拟计算的沉降量、裂缝角与无人机航测数据基本一致。研究成果可为煤层开采带来的生态环境问题解决方案提供参考依据。

     

  • 图 1  串草圪旦矿区位置图

    Figure 1.  Location of the Chuancaogedan Coal Mine area

    图 2  串草圪旦煤矿I-I′地质剖面

    Figure 2.  I-I′ geological section of Chuancaogedan Coal Mine

    图 3  研究技术路线

    Figure 3.  Research technical route

    图 4  无人机航线图

    Figure 4.  Map of UAV route

    图 5  工作区0.05 m航飞正射遥感影像

    Figure 5.  0.05 m aero-flying ortho remote sensing image in working area

    图 6  局部放大的工作区航飞影像(DOM)(a)和立体地貌(DSM)(b)

    Figure 6.  Local magnified navigation image(DOM)(a) and stereo landform(DSM) (b) of workspace

    图 7  6102工作面地裂缝分布图

    Figure 7.  Distribution of the ground cracks in the 6102 working face

    图 8  弧形裂缝

    Figure 8.  Curved ground crack

    图 9  直线型裂缝

    Figure 9.  Linear ground crack

    图 10  6102工作面三维地质模型

    Figure 10.  3D geological model of 6102 working face

    图 11  模型边界约束

    Figure 11.  Model boundary constraints

    图 12  煤层开挖σ1云图

    Figure 12.  σ1 cloud map of coal seam excavation

    图 13  开挖步数与距离关系(X=250 m; Z=35 m)

    Figure 13.  Relationship between the number of excavation steps and distance (X=250 m; Z=35 m)

    图 14  煤层开挖Z位移云图

    Figure 14.  Z displacement cloud map of coal seam excavation

    图 15  地表下沉量曲线

    Figure 15.  Surface subsidence curve

    图 16  地表倾斜度曲线

    Figure 16.  Surface inclination curve

    图 17  地表水平移动曲线

    Figure 17.  Horizontal surface movement curve

    图 18  地表水平变形曲线

    Figure 18.  Surface horizontal deformation curve

    图 19  不同开挖步数的裂缝角

    Figure 19.  Crack angle of excavation steps

    图 20  6102工作面裂缝影响角计算图

    Figure 20.  Calculation diagram of the crack influence angle of 6102 working face

    图 21  I-I′剖面地形变化对比(2011—2021年)

    Figure 21.  Comparison of topographic changes in the I-I′ section(2011-2021)

    图 22  无人机DEM数据分析与FLAC3D数值模拟的地表位移对比

    Figure 22.  Comparison between UAV DEM data analysis and FLAC3D numerical simulation of surface displacement

    表  1  CW-15无人机性能指标

    Table  1.   Performance indexes of CW-15 UAV

    性能指标 参数
    机长/mm 1 720
    翼展/mm 3 610
    飞行高度/m 5 000
    整机重量/kg 16.5
    航摄仪像素 4 200万
    分辨率 7 952×5 304
    巡航速度/(m·s-1) 19
    3 kg载荷续航时间/min 160
    抗风能力/级 6
    降落精度/m 0.1
    定焦镜头/mm 35
    CCD全画幅 35.9 mm×24 mm
    下载: 导出CSV

    表  2  岩层物理力学参数

    Table  2.   Physical and mechanical parameters of rock strata

    岩性 岩层厚度/m 密度/(kg·m-3) 内摩擦角/(°) 凝聚力/MPa 抗拉强度/MPa 泊松比ν 体积模量/GPa 剪切模量/GPa
    黄土 35 1 860 28 0.03 0.18 0.31 1.96 0.75
    砂质泥岩 19 2 720 42 2.30 6.80 0.23 7.44 5.07
    细粒砂岩 14 2 580 45 1.40 4.50 0.22 7.80 5.14
    砂质泥岩 32 2 690 43 3.20 2.80 0.23 5.31 3.95
    细粒砂岩 9 2 570 40 2.70 1.90 0.22 5.04 3.43
    砂质泥岩 14 2 770 38 3.30 3.20 0.22 1.56 1.05
    细粒砂岩 16 2 910 40 3.00 3.20 0.22 5.54 3.45
    砂质泥岩 6 2 740 39 4.20 3.10 0.24 3.69 2.52
    6# 10 1 530 25 0.90 0.30 0.35 2.22 0.74
    砂质泥岩 9 2 740 39 4.20 3.10 0.24 3.69 2.52
    细粒砂岩 16 2 910 40 3.10 3.60 0.22 5.54 3.45
    下载: 导出CSV
  • [1] 杨国松, 应磊. 从煤矿采空区塌陷问题分析我国能源发展战略[J]. 中国资源综合利用, 2020, 38(5): 73-76. doi: 10.3969/j.issn.1008-9500.2020.05.023

    YANG G S, YING L. Analysis of China's energy development strategy from coal mine goaf collapse problem[J]. Comprehensive Utilization of Resources in China, 2020, 38(5): 73-76. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-9500.2020.05.023
    [2] 甘智慧, 尚慧, 杜荣军, 等. 基于FLAC3D和DEM数据的缓倾斜煤层开采沉陷分析[J]. 煤田地质与勘探, 2021, 49(3): 158-166.

    GAN Z H, SHANG H, DU R J, et al. Mining subsidence analysis of gently inclined coal seam based on FLAC3D and DEM data[J]. Coal Geology and Exploration, 2021, 49(3): 158-166. (in Chinese with English abstract)
    [3] ZHANG S F, ZHANG J. Ground subsidence monitoring in a mining area based on mountainous time function and EnKF methods using GPS data[J]. Remote Sensing, 2022, 14(24): 6359. doi: 10.3390/rs14246359
    [4] MENG X X, LIU W T, ZHAO J Y, et al. In situ investigation and numerical simulation of the failure depth of an inclined coal seam floor: A case study[J]. Mine Water and the Environment, 2019, 38(3), 686-694. doi: 10.1007/s10230-019-00596-3
    [5] 艾顺岭. 串草圪旦煤矿综放条件下地表裂隙发育规律[J]. 水力采煤与管道运输, 2015, 42(1): 81-82.

    AI S L. Development regularity of surface fractures under fully mechanized caving in Chuancaogedan Coal Mine[J]. Hydraulic Mining and Pipeline Transportation, 2015, 42(1): 81-82. (in Chinese with English abstract)
    [6] 王永辉, 倪岳晖, 周建伟, 等. 基于概率积分法的横河煤矿巨厚松散层下开采沉陷预测分析[J]. 地质科技情报, 2014, 33(4): 219-224.

    WANG Y H, NI Y H, ZHOU J W, et al. Prediction and analysis of mining subsidence under huge thick unconsolidated strata in Henghe Coal Mine based on probability integral method[J]. Geological Science and Technology Information, 2014, 33(4): 219-224. (in Chinese with English abstract)
    [7] WANG L, SHANG J. Research on 3D Laser Scanning Monitoring Method for Mining Subsidence Based on the Auxiliary for Probability Integral Method[J]. KSCE Journal of Civil Engineering, 2021, 25(11): 4403-4416. doi: 10.1007/s12205-021-0053-6
    [8] 田杰, 王显军, 叶明亮. 高原山区煤矿地下开采地表塌陷机理探讨[J]. 甘肃科技, 2013, 29(4): 44-46. doi: 10.3969/j.issn.1000-0952.2013.04.015

    TIAN J, WANG X J, YE M L. Discussion on the mechanism of ground subsidence in underground coal mining in plateau mountainous area[J]. Gansu Science and Technology, 2013, 29(4): 44-46. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0952.2013.04.015
    [9] 王明立. 急倾斜煤层开采岩层破坏机理及地表移动理论研究[D]. 北京: 煤炭科学研究总院, 2008.

    WANG M L. Study on rock strata failure mechanism and surface movement theory of steeply inclined coal seam mining[D]. Beijing: General Research Institute of Coal Science, 2008. (in Chinese with English abstract)
    [10] 巩跃斌, 华明国, 黄晓昇. 余吾煤业7602工作面"三带"发育规律相似材料模拟试验研究[J]. 煤炭科技, 2019, 40(4): 47-51.

    GONG Y B, HUA M G, HUANG X S. Simulation test of similar materials for "three zones" development law in 7602 working face of Yuwu Coal Industry[J]. Coal Science and Technology, 2019, 40(4): 47-51. (in Chinese with English abstract)
    [11] ZHANG J W, WANG Z W, SONG Z X. Numerical study on movement of dynamic strata in combined open-pit and underground mining based on similar material simulation experiment[J]. Arabian Journal of Geosciences, 2020, 13(16): 785. doi: 10.1007/s12517-020-05766-0
    [12] SUN W B, ZHOU F, SHAO J L, et al. Development status and prospects of mine physical similar material simulation experiments[J]. Geotechnical and Geological Engineering, 2019, 37(4): 3025-3036. doi: 10.1007/s10706-019-00821-4
    [13] 张俊, 姚多喜. 煤层底板变形破坏的相似材料模拟研究综述[J]. 唐山学院学报, 2019, 32(6): 47-51.

    ZHANG J, YAO D X. Review of similar materials simulation for deformation and failure of coal seam floor[J]. Journal of Tangshan University, 2019, 32(6): 47-51. (in Chinese with English abstract)
    [14] 杜子龙, 仪梦婷. 基于FLAC3D的深部开采沉陷预计数值模拟[J]. 测绘与空间地理信息, 2021, 44(7): 182-185. doi: 10.3969/j.issn.1672-5867.2021.07.047

    DU Z L, YI M T. Numerical simulation of deep mining subsidence prediction based on FLAC3D[J]. Geomatics & Spatial Information Technology, 2021, 44(7): 182-185. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-5867.2021.07.047
    [15] 魏广, 黄琰杰. 基于FLAC3D的某采空区三维变形特征分析[J]. 有色金属设计, 2022, 49(1): 114-117.

    WEI G, HUANG Y J. Three-dimensional deformation characteristics analysis of a goaf based on FLAC3D[J]. Nonferrous Metals Design, 2022, 49(1): 114-117. (in Chinese with English abstract)
    [16] 张兆威. 浅埋复合顶板沿空留巷矿压显现规律数值模拟研究[J]. 中国矿业, 2021, 30(增刊1): 338-343.

    ZHANG Z W. Numerical simulation study on mining pressure behavior of shallow buried composite roof goaf retaining[J]. China Mining, 2021, 30(S1): 338-343. (in Chinese with English abstract)
    [17] GONG Y Q, GUO G L, WANG L P, et al. A data-intensive numerical modeling method for large-scale rock strata and its application in mining subsidence prediction[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1687-1703.
    [18] LI P X, TAN Z X, YAN L L. A shaft pillar mining subsidence calculation using both probability integral method and numerical simulation[J]. Computer Modeling in Engineering & Sciences, 2018, 117(2): 231-250.
    [19] 杜春雪. 缓倾斜中厚矿体开采采场顶板稳定性特征研究[D]. 河北邯郸: 河北工程大学, 2022.

    DU C X. Study on the stability characteristics of stope roof of gently inclined medium thick orebody mining[D]. Handan Hebei: Hebei University of Engineering, 2022. (in Chinese with English abstract)
    [20] 许国胜, 许胜军, 李德海, 等. 采空区上覆岩层应力恢复规律的模拟分析[J]. 煤炭技术, 2021, 40(8): 8-11.

    XU G S, XU S J, LI D H, et al. Simulation analysis of stress recovery law of overlying strata in goaf[J]. Coal Technology, 2021, 40(8): 8-11. (in Chinese with English abstract)
    [21] 王晖, 李智毅, 杨为民, 等. 松散黄土堆积层下煤矿采空区地表塌陷形成机理[J]. 现代地质, 2008, 22(5): 877-883.

    WANG H, LI Z Y, YANG W M, et al. Mechanism of surface collapse in mined-out area of coal mine under loose loess accumulation layer[J]. Geoscience, 2008, 22(5): 877-883(in Chinese with Englishabstract).
    [22] 吉彪. 矿井采空区地表塌陷的机理分析[J]. 山西能源学院学报, 2018, 31(5): 1-3.

    JI B. Mechanism analysis of surface collapse in mined-out area[J]. Journal of Shanxi Energy University, 2018, 31(5): 1-3. (in Chinese with English abstract)
    [23] 王竞争. 矿井采空区地表塌陷的机理探究[J]. 世界有色金属, 2020, 35(11): 41-42.

    WANG J Z. Study on the mechanism of ground subsidence in mined-out area[J]. World Nonferrous Metals, 2020, 35(11): 41-42. (in Chinese with English abstract)
    [24] 郭龙辉. 采空区覆岩运动规律相似材料模拟试验研究[J]. 佳木斯大学学报(自然科学版), 2020, 38(3): 26-28.

    GUO L H. Simulation experiment of similar material on overlying rock movement in goaf[J]. Journal of Jiamusi University(Natural Science Edition), 2020, 38(3): 26-28. (in Chinese with English abstract)
    [25] 黄庆享, 韩金博. 浅埋近距离煤层开采裂隙演化机理研究[J]. 采矿与安全工程学报, 2019, 36(4): 706-711.

    HUANG Q X, HAN J B. Research on fracture evolution mechanism of shallow and near coal seam mining[J]. Journal of Mining and Safety Engineering, 2019, 36(4): 706-711. (in Chinese with English abstract)
    [26] 谢晓深, 侯恩科, 高冠杰, 等. 宁夏羊场湾煤矿浅埋煤层开采地面塌陷发育规律及形成机理[J]. 地质通报, 2018, 37(12): 2233-2240.

    XIE X S, HOU E K, GAO G J, et al. Development regularity and formation mechanism of ground collapse in shallow coal seam mining in Yangchangwan Coal Mine, Ningxia[J]. Geological Bulletin of China, 2018, 37(12): 2233-2240. (in Chinese with English abstract)
    [27] 董佳慧, 牛瑞卿, 亓梦茹, 等. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报, 2022, 41(2): 187-196.

    DONG J H, NIU R Q, QI M R, et al. Identification of ground disaster hidden danger based on InSAR technology and disaster-pregnant background index[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 187-196. (in Chinese with English abstract)
    [28] 郑重, 张敬东, 杜建华. 基于分水岭算法的地质塌陷遥感识别方法研究[J]. 地质科技情报, 2018, 37(6): 226-231.

    ZHENG Z, ZHANG J D, DU J H. Remote sensing identification of geological collapse based on watershed algorithm[J]. Geological Science and Technology Information, 2018, 37(6): 226-231. (in Chinese with English abstract)
    [29] 丁要轩, 龚文平, 程展, 等. 基于多期无人机影像的滑坡地表竖向变形测量模型试验研究与工程应用[J]. 地质科技通报, 2023, 42(2): 267-278.

    DING Y X, GONG W P, CHENG Z, et al. Model tests of the vertical ground deformation measurement based on multiple UAV images and its application[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 267-278. (in Chinese with English abstract)
    [30] 侯恩科, 首召贵, 徐友宁, 等. 无人机遥感技术在采煤地面塌陷监测中的应用[J]. 煤田地质与勘探, 2017, 45(6): 102-110.

    HOU E K, SHOU Z G, XU Y N, et al. Application of unmanned aerial vehicle remote sensing technology in coal mining ground collapse monitoring[J]. Coal Geology and Exploration, 2017, 45(6): 102-110. (in Chinese with English abstract)
    [31] 谢和平, 周宏伟, 王金安, 等. FLAC在煤矿开采沉陷预测中的应用及对比分析[J]. 岩石力学与工程学报, 1999, 8(4): 397-401.

    XIE H P, ZHOU H W, WANG J A, et al. Application and comparative analysis of FLAC in coal mining subsidence prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 8(4): 397-401. (in Chinese with English abstract)
    [32] 于秋鸽, 张华兴, 邓伟男, 等. 基于关键层理论的地表偏态下沉影响因素分析[J]. 煤炭学报, 2018, 43(5): 1322-1327.

    YU Q G, ZHANG H X, DENG W N, et al. Analysis of influencing factors of surface skewness subsidence based on key stratum theory[J]. Journal of China Coal Society, 2018, 43(5): 1322-1327. (in Chinese with English abstract)
    [33] 余学义, 张恩强. 开采损害学[M]. 北京: 煤炭工业出版社, 2010.

    YU X Y, ZHANG E Q. Mining damage science[M]. Beijing: China Coal Industry Press, 2010. (in Chinese)
    [34] 姬文斌. 黄土矿区不同采高情况下地表裂缝特征研究[D]. 西安: 西安科技大学, 2017.

    JI W B. Study on surface fracture characteristics under different mining heights in loess mining area[D]. Xi'an: Xi'an University of Science and Technology, 2017. (in Chinese with English abstract)
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  415
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 录用日期:  2022-08-20
  • 修回日期:  2022-08-19

目录

    /

    返回文章
    返回