留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用古地磁学方法恢复钻孔岩心原始方位可靠性的探讨:以塔里木盆地钻井为例

谌微微 杨风丽 庄圆 徐铭辰 胡虞杨

谌微微, 杨风丽, 庄圆, 徐铭辰, 胡虞杨. 利用古地磁学方法恢复钻孔岩心原始方位可靠性的探讨:以塔里木盆地钻井为例[J]. 地质科技通报, 2023, 42(6): 266-280. doi: 10.19509/j.cnki.dzkq.tb20220255
引用本文: 谌微微, 杨风丽, 庄圆, 徐铭辰, 胡虞杨. 利用古地磁学方法恢复钻孔岩心原始方位可靠性的探讨:以塔里木盆地钻井为例[J]. 地质科技通报, 2023, 42(6): 266-280. doi: 10.19509/j.cnki.dzkq.tb20220255
Chen Weiwei, Yang Fengli, Zhuang Yuan, Xu Mingchen, Hu Yuyang. On the reliability of drilling core reorientations using palaeomagnetic methods: A case study from the boreholes in the Tarim Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 266-280. doi: 10.19509/j.cnki.dzkq.tb20220255
Citation: Chen Weiwei, Yang Fengli, Zhuang Yuan, Xu Mingchen, Hu Yuyang. On the reliability of drilling core reorientations using palaeomagnetic methods: A case study from the boreholes in the Tarim Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 266-280. doi: 10.19509/j.cnki.dzkq.tb20220255

利用古地磁学方法恢复钻孔岩心原始方位可靠性的探讨:以塔里木盆地钻井为例

doi: 10.19509/j.cnki.dzkq.tb20220255
基金项目: 

同济大学实验教改项目 1350104103

国家自然科学基金重大研究计划重点项目"西太平洋地球系统多圈层相互作用" 92158207

详细信息
    作者简介:

    谌微微(1984—), 女, 工程师, 主要从事构造古地磁学、岩石磁学方面研究工作。E-mail: sww@tongji.edu.cn

    通讯作者:

    杨风丽(1964—), 女, 教授, 博士生导师, 主要从事构造、盆地分析与油气评价方面研究工作。E-mail: Yangfl@tongji.edu.cn

  • 中图分类号: P318.44;P634

On the reliability of drilling core reorientations using palaeomagnetic methods: A case study from the boreholes in the Tarim Basin

  • 摘要:

    针对非定向钻孔岩心原始方位难以确定的科学问题, 利用塔里木盆地5口钻井(TKQ101井、SHUN9井、TAT19井、TZ18井和TS108井)志留纪无定向砂岩样品, 对典型样品进行了岩石磁学、扫描电镜(SEM)和能谱分析(EDS)等实验, 明确了样品的主要载磁矿物, 之后对43块样品进行了退磁处理, 并分析了校正后的磁化率各向异性(AMS)最大轴(Kmax轴)指示的古水流方向, 探讨了利用剩磁恢复岩心原始方位的可靠性。AMS结果揭示的沉积组构支持整个钻孔回次地层近似水平; 岩石磁学、SEM和EDS实验结果表明TKQ101井样品主要载磁矿物为磁铁矿、含有少量针铁矿和赤铁矿, 其他钻井样品主要载磁矿物为磁黄铁矿和磁铁矿。43块样品的系统退磁实验结果显示, TKQ101井岩心样品可分离出可靠的现代场黏滞剩磁方向(VRM)和志留纪地层原生剩磁方向(ChRM), 经VRM和ChRM各自计算获得岩心原始方位旋转量(R, R', 其中R, R'分别为利用VRM和ChRM磁偏角获得的岩心原始方位旋转量)一致, 校正后的Kmax指示的古水流方向也与地质证据相吻合, 支持TKQ101井岩心原始标志线方位需逆时针旋转258.0°~262.0°;其他4口钻井岩心退磁结果呈现单分量特征, 综合分析明确其经历了由喜山期油气运移、聚集等流体活动导致的化学重磁化, 携带的剩磁为现代地磁场的黏滞剩磁和喜山期重磁化成分叠加结果。通过校正后Kmax轴指示的古水流方向和地质证据验证后, 揭示利用VRM获得的恢复岩心原始方位旋转量R较为可靠。综上, 钻井岩心原始方位恢复需要旋转的角度如下: TKQ101井岩心在逆时针旋转258.0°~262.0°后即可获得可靠的原始标志线方位; SHUN9井第4, 5, 6回次岩心标志线的方位需分别逆时针旋转148.1°, 221.2°和318.2°;TAT19钻井第3, 5回次岩心标志线的方位需分别逆时针旋转269.8°, 155.9°;TS108井和TZ18井岩心标志线的方位需分别逆时针旋转239.3°, 256.6°。

     

  • 图 1  塔里木盆地构造简图[34-37] (红色实心圆为钻井取样位置)

    Figure 1.  Simplified tectonic map of the Tarim Basin

    图 2  岩心取样方法及坐标轴转换示意图(x′, y′, z′为钻井岩心的三轴方向;x, y, z为古地磁样品的三轴方向)

    Figure 2.  Sampling methods and schematic diagram of coordinate axis conversion for drill cores

    图 3  柯坪塔格组砂岩样品的磁化率各向异性椭球主轴的等面积投影图(a)及相关参数分析图(b, c)

    Figure 3.  Stereoplots of three principal axes of the AMS ellipsoid and plots of AMS parameters for the Kepingtag Formation sandstone

    图 4  柯坪塔格组砂岩典型样品的岩石磁学结果

    a~c.磁化率随温度变化曲线(χ-T),红色和蓝色曲线分别代表加热和冷却曲线;d~f.等温剩磁(IRM)获得曲线和饱和等温剩磁的反向场退磁曲线;g~i.三轴饱和等温剩磁系统热退磁曲线

    Figure 4.  Rock magnetic results of representative sandstone samples of the Kepingtag Formation

    图 5  柯坪塔格组砂岩典型样品扫描电镜(a~c)与能谱分析图(d~f)

    Figure 5.  Scanning electron microscope images and energy dispersive spectral of representative sandstone samples from the Kepingtag Formation

    图 6  典型样品的热退磁和交变退磁正交矢量图

    实心点代表水平面投影,空心点代表垂直面投影;蓝色点代表参与低温分量统计的步骤,红色点代表参与高温分量统计的步骤;NRM代表天然剩余磁化强度;T代表温度(℃)

    Figure 6.  Zij derveld diagrams of the thermal and alternating-field demagnetization results of representative samples

    图 7  磁组构Kmax轴根据VRM获得的原始方位旋转量(R)校正后的等面积分布图(a~c)和玫瑰花图(d~f)

    b~c中红色实心圆分别代表TS108、TZ18井Kmax校正后在等面积投影图上的分布

    Figure 7.  Equal-area projections(a~c) and rose diagrams(d~f) of the corrected Kmax axis by the original azimuthal rotation(R) obtained from VRM

    表  1  下志留统柯坪塔格组(S1k)钻井岩心编号、深度和岩性

    Table  1.   The number ID, depth and lithology of drilling cores from the Lower Silurian Kepingtag Formation

    样品号 回次 深度/m 岩性 块号
    TKQ 101井S1k TKQ101-1 2 696.5 紫灰色粗粒石英砂岩,绿灰、紫灰色中粒石英砂岩,紫灰色细粒石英砂岩,局部见紫色泥质团块 18
    TKQ101-2 2 697.6 20
    TKQ101-3 2 698.8 26
    TKQ101-4 2 699.7 33
    TKQ101-5 2 700.5 35
    SHUN9井S1k SHUN9-1 5 433.0 灰色中粒岩屑石英砂岩 5
    SHUN9-2 5 434.7 12
    SHUN9-3 5 435.7 16
    SHUN9-4 5 437.6 29
    SHUN9-5 4共39 5 439.4 37
    SHUN9-6 5 470.1 灰色油迹含沥青质中粒岩屑石英砂岩 5
    SHUN9-7 5 470.6 7
    SHUN9-8 5 471.9 14
    SHUN9-9 5 473.5 22
    SHUN9-10 5共44 5 476.0 35
    SHUN9-11 5 579.4 浅灰色油斑细粒岩屑石英砂岩 8
    SHUN9-12 5 580.3 15
    SHUN9-13 5 582.4 26
    SHUN9-14 5 583.7 31
    SHUN9-15 6共38 5 584.7 34
    TAT19井S1k TAT19-5 5 317.5 砂岩 6
    TAT19-6 5 318.0 绿灰、灰色油迹-油斑细粒岩屑石英砂岩、油斑含砾细粒岩屑石英砂岩,细粒岩屑石英砂岩 12
    TAT19-7 5 319.7 38
    TAT19-8 5 321.0 58
    TAT19-9 3共67 5 321.9 65
    TAT19-10 5 380.6 砂岩 2
    TAT19-11 5 381.5 绿灰、浅灰色中粒、细粒岩屑石英砂岩 7
    TAT19-12 5 382.4 12
    TAT19-13 5 383.0 17
    TAT19-14 5 383.9 23
    TAT19-15 5共31 5 384.6 31
    TS108井S1k TS108-7 5 473.0 粉砂岩 7
    TS108-8 5 474.4 12
    TS108-9 5 475.8 19
    TS108-10 5 476.5 26
    TZ18井S1k TZ18-9 5 048.2 长石石英砂岩 14
    TZ18-10 5 049.8 灰色粉砂、细砂岩,与绿灰色泥岩互层 23
    TZ18-11 5 050.4 凝灰岩 27
    TZ18-12 5 051.6 39
    TZ18-13 5 052.7 49
    下载: 导出CSV

    表  2  塔里木志留纪柯坪塔格组(S1k)岩心的黏滞剩磁方向数据

    Table  2.   Summary of the VRM directions for the Silurian Kepingtag Formation(S1k) cores in Tarim

    钻井编号 n 载磁矿物岩心回次 黏滞剩磁(VRM)分量/(°) 采样点的现代场方向/(°)
    DVRM IVRM IYXC к α95 DM IM R
    TKQ101井 4 磁铁矿、赤铁矿、针铁矿 240.7 63.6 59.7 18.2 22.1 0.4 59.5 240.3
    1-3拟合* 3 258.7 64.8 60.0 38.6 20.1 0.4 59.5 258.3
    SHUN9井 18 磁黄铁矿、磁铁矿
    1-5拟合 8* 回次4 149.0 66.6 63.6 16.6 14.0 0.9 58.2 148.1
    6-10拟合 5 回次5 222.1 73.8 70.8 39.4 12.3 0.9 58.2 221.2
    11-15拟合 5 回次6 319.1 81.2 72.0 48.6 11.1 0.9 58.2 318.2
    TAT19井 10 磁黄铁矿、磁铁矿
    5-9拟合 4 回次3 271.1 77.2 75.3 49.1 13.2 1.3 60.8 269.8
    10-15拟合 6 回次5 157.2 83.5 77.0 73.3 7.9 1.3 60.8 155.9
    TS108井 6 磁黄铁矿、磁铁矿 240.4 86.3 78.1 38.7 10.9 1.1 59.8 239.3
    TZ18井 5 磁黄铁矿、磁铁矿 257.8 83.4 81.4 103.3 7.6 1.2 57.6 256.6
    注:n.参与古地磁统计的样品数;1-3拟合*.TKQ101井删除样品4A后的拟合结果;8*.SHUN9井回次4中含3块平行样品参与统计;DVRMIVRM分别为实测获得的黏滞剩磁磁偏角,磁倾角;IYXC.依据YXC磁倾角算法获得的磁倾角;к.统计精度参数;α95.95%置信圆锥半顶角;DMIM分别为钻井采样点的现代场磁偏角和磁倾角;R=DVRM-DM
    下载: 导出CSV
  • [1] Van der Voo R, Watts D R. Paleomagnetic results from igneous and sedimentary rocks from the Michigan Basin borehole[J]. Journal of Geophysical Research, 1978, 83: 5844-5848. doi: 10.1029/JB083iB12p05844
    [2] 吴光琳. 钻探定向岩心的用途和岩心定向技术的进展[J]. 西部探矿工程, 1992, 4(4): 6-10, 71.

    Wu G L. Core orientation and its progress[J]. West-China Exploration Engineering, 1992, 4(4): 6-10, 71(in Chinese with English abstract).
    [3] Lackie M A, Schmidt P W. Drill core orientation using palaeomagnetism[J]. Exploration Geophysics, 1993, 24: 609-614. doi: 10.1071/EG993609
    [4] Rolph T C, Shaw J, Harper T R, et al. Viscous remanent magnetization: A tool for orientation of drill cores[J]. Geological Society London Special Publications, 1995, 98(1): 239-243. doi: 10.1144/GSL.SP.1995.098.01.14
    [5] 岳乐平, 王建其, 邸世祥, 等. 油气田钻井岩心及岩心裂缝方位确定的古地磁原理与方法[J]. 地球物理学进展, 1997, 12(3): 71-76.

    Yue L P, Wang J Q, Di S X, et al. The paleomagnetic principle and method applying to orientation of core and cracks in oil and gas field[J]. Progress in Geophysics, 1997, 12(3): 71-76(in Chinese with English abstract).
    [6] 侯守信, 田国荣. 古地磁岩心定向及其在地应力测量上的应用[J]. 地质力学学报, 1999, 5(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX901.013.htm

    Hou S X, Tian G R. Palaeomgnetic orientation of cores and its applications for insitu stress measurements[J]. Journal of Geomechanics, 1999, 5(1): 90-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX901.013.htm
    [7] 侯守信, 田国荣. 黏滞剩磁(VRM)岩心定向的应用[J]. 岩石力学与工程学报, 2000, 19(增刊1): 1128-1131.

    Hou S X, Tian G R. The application of viscous remanent magnetization in orientation determination by using drill cores[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 1128-1131(in Chinese with English abstract).
    [8] Aidona E, Kondopoulou D, Scholger R, et al. Palaeomagnetic investigations of sediments cores from Axios zone(N. Greece): Implications of low inclinations in the Aegean[J]. Eearth, 2008, 3(1): 7-18. doi: 10.5194/ee-3-7-2008
    [9] Rapalini A E, Luppo T, Llanos M P I, et al. Succesfull paleomagnetic azimuthal orientation of drill cores from a hydrocarbon source rock reservoir: The case of the Vaca Muerta Formation, Neuquen Basin, Argentina[J]. Latinmag Letters, 2013, 3: 1-5.
    [10] 周亚楠, 程鑫, 马轮, 等. 确定地下埋藏砂体与裂缝空间方位的原理和方法[J]. 地球物理学进展, 2015, 30(3): 1243-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503033.htm

    Zhou Y N, Chen X, Ma L, et al. The principles and methods on determining spatial orientation of sandstones and fractures in subsurface reservoir[J]. Progress in Geophysics, 2015, 30(3): 1243-1250(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503033.htm
    [11] 韦乐乐, 程鑫, 刘秀婷, 等. 钻井岩心裂缝重定向方法研究[J]. 地质学刊, 2015, 39(2): 318-321.

    Wei L L, Chen X, Liu X T, et al. A method of redirecting fractures in drilling cores[J]. Journal of Geology, 2015, 39(2): 318-321(in Chinese with English abstract).
    [12] 韦乐乐. 鄂尔多斯盆地东南部延长组岩心裂缝重定向[J]. 地质科技情报, 2017, 36(3): 33-37.

    Wei L L. Redirecting core fracture of Yanchang Formation in the southeastern Ordos Basin[J]. Geological Science and Technology Information, 2017, 36(3): 33-37(in Chinese with English abstract).
    [13] 葛坤朋, 谢基海, 应阳根, 等. 钻孔岩心重定向的古地磁学新方法及其在华南铀矿床岩心定向中的初步应用[J]. 地球物理学报, 2020, 63(8): 3037-3049.

    Ge K P, Xie J H, Ying Y G, et al. A new paleomagnetic method of borehole core reorientation and its preliminary applications in reorientation of cores of uranium deposits in southern China[J]. Chinese Journal of Geophysics, 2020, 63(8): 3037-3049(in Chinese with English abstract).
    [14] 孟小红, 周海民. 冀东油田钻井岩心的磁学研究[J]. 地球物理学报, 1997, 40(6): 809-820.

    Meng X H, Zhou H M. Magnetic study of drill-cores in Jidong Oil Field[J]. Acta Geophysica Sinica, 1997, 40(6): 809-820(in Chinese with English abstract).
    [15] 杨斌谊, 吴汉宁, 李学森, 等. 南泥湾油田钻井岩心古地磁学初步研究[J]. 石油与天然气地质, 2002, 23(4): 397-401.

    Yang B Y, Wu H N, Li X S, et al. Paleomagnetic research of drilling cores in Naniwan Oil Field[J]. Oil and Gas Geology, 2002, 23(4): 397-401(in Chinese with English abstract).
    [16] 杨斌谊, 龚建军, 陈建军. 确定油田钻井岩心原始方位的古地磁学方法探讨[J]. 西北地质, 2003, 36(4): 79-83.

    Yang B Y, Gong J J, Chen J J. Paleomagnetism research on orientation of drilling cores in oil field[J]. Northwestern Geology, 2003, 36(4): 79-83(in Chinese with English abstract).
    [17] 梁利平, 王海军, 程鑫, 等. 钻井岩心古水流方向确定方法和原理[J]. 地球物理学进展, 2012, 27(1): 370-375. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201201044.htm

    Liang L P, Wang H J, Cheng X, et al. Methods and principles to direction identify of the drilling core's paleocurrent[J]. Progress in Geophysics, 2012, 27(1): 370-375(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201201044.htm
    [18] 刘秀婷, 韦乐乐, 周亚楠, 等. 磁组构分析岩心古水流方向原理与应用[J]. 西部探矿工程, 2014, 26(8): 86-89, 91.

    Liu X T, Wei L L, Zhou Y N, et al. The principle and application of magnetic fabric to paleocurrent estimation of drilling cores[J]. West-China Exploration Engineering, 2014, 26(8): 86-89, 91(in Chinese with English abstract).
    [19] 刘秀婷, 韦乐乐, 苏海伦, 等. 利用古地磁学研究岩心古水流的方法与应用: 以延长油田西南部延长组为例[J]. 断块油气田, 2015, 22(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201501005.htm

    Liu X T, Wei L L, Su H L, et al. Method of paleomagnetism to study directions of core paleocurrent and its application: Taking Yanchang Formation in Southwest Yanchang Oilfield as an example[J]. Fault-Block Oil & Gas Field, 2015, 22(1): 21-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201501005.htm
    [20] 杨振宇, Moreau M G. Montcornet钻孔岩心的古地磁研究[J]. 地球物理学报, 1998, 41(5): 652-657.

    Yang Z Y, Moreau M G. Paleomagnetic study of the Montcornet drilled core[J]. Acta Geophysica Sinica, 1998, 41(5): 652-657(in Chinese with English abstract).
    [21] 韩非, 秦华峰, 季强, 等. 鲁科一井上白垩统沉积岩岩石磁学和天然剩磁分析: 兼论利用剩磁方向恢复钻孔岩心原始方位的可行性[J]. 地球物理学报, 2017, 60(12): 4730-4740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201712015.htm

    Han F, Qian H F, Ji Q, et al. Rock magnetism and paleomagnetism of Late Cretaceous sedimentary rocks in borehole CCSD-LK-I(Shandong Province) and implications for the feasibility of coreorientation recovery using natural remanent magnetization[J]. Chinese Journal of Geophysics, 2017, 60(12): 4730-4740(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201712015.htm
    [22] 谢基海, 葛坤朋, 徐慧茹, 等. 古地磁学岩心定向方法回顾[J]. 地球物理学进展, 2020, 35(3): 906-917.

    Xie J H, Ge K P, Xu H R, et al. Review of paleomagnetic core orientation method[J]. Progress in Geophysics, 2020, 35(3): 906-917(in Chinese with English abstract).
    [23] Hailwood E A, Ding F. Palaeomagnetic reorientation of cores and the magnetic fabric of hydrocarbon reservoir sands[J]. Geological Society London Special Publications, 1995, 98(1): 245-258.
    [24] Tauxe L, Constable C, Johnson C L, et al. Paleomagnetism of the southwestern U.S.A. recorded by 0-5 Ma igneous rocks[J]. Geochemistry Geophysics Geosystems, 2003, 4: 8802.
    [25] 章凤奇, 宋吉水, 沈忠悦, 等. 松辽盆地北部深层火山岩剩磁特征与裂缝定向研究[J]. 地球物理学报, 2007, 50(4): 1167-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704026.htm

    Zhang F Q, Song J S, Shen Z Y, et al. A study on fracture orientation and characteristic of remnant paleomagnetization of deep-burial volcanic rocks, North of the Songliao Basin[J]. Chinese Journal of Geophysics, 2007, 50(4): 1167-1173(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704026.htm
    [26] Parés J M, Schleicher A M, Van D, et al. Paleomagnetic reorientation of San Andreas Fault Observatory at Depth(SAFOD) core[J]. Geophysical Research Letters, 2008, 35(2): 226-236.
    [27] 朱日祥, 杨振宇, 马醒华, 等. 中国主要地块显生宙古地磁视极移曲线与地块运动[J]. 中国科学: D辑, 1998, 28(增刊1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1000.htm

    Zhu R X, Yang Z Y, Ma X H, et al. Phanerozoic paleomagnetic apparent polar shift curve and block movement of major blocks in China[J]. Science in China: Series D, 1998, 28(S1): 1-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1000.htm
    [28] 孙丽莎, 黄宝春. 塔里木地块奥陶纪古地磁新结果及其构造意义[J]. 地球物理学报, 2009, 52(7): 1836-1848.

    Sun L S, Huang B C. New paleomagnetic result for Ordovician rocks from the Tarim Block, Northwest China and its tectonic implications[J]. Chinese Journal of Geophysics, 2009, 52(7): 1836-1848(in Chinese with English abstract).
    [29] 许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27(1): 1-22.

    Xu Z Q, Li S T, Zhang J X, et al. Paleo-Asian and Tethyan tectonic systems with docking the Tarim Block[J]. Acta Petrologica Sinica, 2011, 27(1): 1-22(in Chinese with English abstract).
    [30] 陈槚俊, 何登发, 孙方源, 等. 塔北隆起晚奥陶世-中泥盆世古隆起格局演变[J]. 石油与天然气地质, 2021, 42(2): 285-298.

    Chen J J, He D F, Sun F Y, et al. Framework evolution of North Tarim paleo-uplift from the Late Ordovician to Middle Devonian[J]. Oil & Gas Geology, 2021, 42(2): 285-298(in Chinese with English abstract).
    [31] 王素英, 张翔, 田景春, 等. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5): 81-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202105008.htm

    Wang S Y, Zhang X, Tian J C, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5): 81-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202105008.htm
    [32] 刘军, 龚伟, 黄超, 等. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112

    Liu J, Gong W, Huang C, et al. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No. 5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 1-11(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0112
    [33] 宁博, 李百强, 吴珍珍, 等. 塔里木盆地中央隆起带寒武系-奥陶系白云岩成岩相及其地球化学特征[J]. 地质科技通报, 2022, 41(4): 46-56. doi: 10.19509/j.cnki.dzkq.2021.0257

    Ning B, Li B Q, Wu Z Z, et al. Diagenetic facies of dolomite and geochemical characteristics across the Cambrian-Ordovician transitions in the Central Uplift Zone, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 46-56(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0257
    [34] 刘凡瑀, 陈红汉, 唐大卿, 等. 塔里木盆地中-新生界构造单元划分[J]. 地质科技情报, 2012, 31(3): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203005.htm

    Liu F Y, Chen H H, Tang D Q, et al. Division of Mesozoic and Cenozoic structural units in Tarim Basin[J]. Geological Science and Technology Information, 2012, 31(3): 24-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203005.htm
    [35] 陈永权, 周新源, 赵葵东, 等. 塔里木盆地塔中19井奥陶系蓬莱坝组云灰互层段的岩性旋回特征与"顶侵型"埋藏云化模式的建立[J]. 沉积学报, 2009, 27(2): 202-211.

    Chen Y Q, Zhou X Y, Zhao K D, et al. The petrologic rhythm of Lower Ordovician Penglaiba Formation encountered by Well Tazhong 19 and new dolomitization model, Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(2): 202-211(in Chinese with English abstract).
    [36] 孙乃泉, 云露, 蒲仁海, 等. 塔里木盆地顺9井区柯坪塔格组下段沉积微相与储层展布[J]. 吉林大学学报: 地球科学版, 2013, 43(6): 1716-1725. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306002.htm

    Sun N Q, Yun L, Pu R H, et al. The microfacies and reservoir distribution of the Lower Member of Kepingtage Formation in Shun 9 well area in Tarim Basin[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(6): 1716-1725(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306002.htm
    [37] 杨风丽, 徐铭辰, 庄圆, 等. 古生代中国中西部三大陆块古地理位置重建与演变[J]. 地学前缘, 2022, 29(6): 265-276. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206018.htm

    Yang F L, Xu M C, Zhuang Y, et al. Paleozoic paleogeographic reconstruction and evolution of the three continental blocks of central and western China[J]. Earth Science Frontiers, 2022, 29(6): 265-276(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206018.htm
    [38] Richter C, Acton G, Endris C, et al. Handbook for shipboard paleomagnetists[Z]. [S. l.]: ODP Tech. Note, 2007: 34.
    [39] Lowrie W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties[J]. Geophysical Research Letters, 1990, 17(2): 159-162.
    [40] 裴军令, 孙知明, 李海兵, 等. 青藏高原西北缘晚新生代沉积岩古流向的磁化率各向异性确定及其构造意义[J]. 岩石学报, 2008, 24(7): 1613-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807018.htm

    Pei J L, Sun Z M, Li H B, et al. Paleocurrent direction of the Late Cenozoic sedimentary sequence of the Tibetan Plateau northwestern margin constrained by AMS and its tectonic implications[J]. Acta Petrologica Sinica, 2008, 24(7): 1613-1620(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807018.htm
    [41] 张志亮, 沈忠悦, 汪新, 等. 库车坳陷克拉苏河新生代沉积岩磁组构特征与古流向分析[J]. 地球物理学报, 2013, 56(2): 567-578.

    Zhang Z L, Shen Z Y, Wang X, et al. Characteristics of magnetic fabrics and paleocurrent directions of Cenozoic sediments in the Kelasu River, Kuqa Depression[J]. Chinese Journal of Geophysics, 2013, 56(2): 567-578(in Chinese with English abstract).
    [42] 敖红, 邓成龙. 磁性矿物的磁学鉴别方法回顾[J]. 地球物理学进展, 2007, 22(2): 432-442.

    Ao H, Deng C L. Review in the identification of magnetic minerals[J]. Progress in Geophysics, 2007, 22(2): 432-442(in Chinese with English abstract).
    [43] 刘青松, 邓成龙, 潘永信. 磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义[J]. 第四纪研究, 2007, 27(6): 955-962. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200706011.htm

    Liu Q S, Deng C L, Pan Y X. Temperature-dependency and frequency-dependency of magnetic susceptibility of magnetite and maghemite and their significance for environmental magnetism[J]. Quaternary Sciences, 2007, 27(6): 955-962(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200706011.htm
    [44] Deng C L, He H Y, Pan Y X, et al. Chronology of the terrestrial Upper Cretaceous in the Songliao Basin, Northeast Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 44-54.
    [45] 兰书琪, 卫弼天, 幸龙云, 等. 鄂尔多斯盆地南缘上奥陶统赵老峪组岩石磁学研究[J/OL]. 地质科技通报: 1-12[2023-06-04]. https://doi.org/10.19509/j.cnki.dzkq.tb20220647.

    Lan S Q, Wei B T, Xing L Y, et al. Rock magnetism of the U-pper Ordovician Zhaolaoyu Formation, southern margin of the Ordos Basin[J/OL]. Bulletin of Geological Science and Technology: 1-12[2023-06-04]. https://doi.org/10.19509/j.cnki.dzkq.tb20220647(in Chinese with English abstract).
    [46] 李波, 石显耀, 李学杰, 等. 西菲律宾海西部沉积物磁学特征及其环境意义[J]. 地质科技情报, 2016, 35(5): 34-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605005.htm

    Li B, Shi X Y, Li X J, et al. Magnetic properties of sediments from the western West Philippine Sea and their environmental implicaitons[J]. Geological Science and Technology Information, 2016, 35(5): 34-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605005.htm
    [47] 王保锋, 程鑫, 姜南. 等. 羌北地块晚志留世龙木措上组岩石磁学特征[J]. 地质科技通报, 2023, 42(6): 310-318. doi: 10.19509/j.cnki.dzkq.tb20220102

    Wang B F, Chen X, Jiang N, et al. Study on the magnetic proerties of the Late Silurian Longmuco Upper Formation rocks fr-om North Qiangtang Terrane[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 310-318. (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.tb20220102
    [48] Fuller M. Magnetic orientation of borehole cores[J]. Geophysics, 1969, 34(5): 772-774.
    [49] 李学森, 熊国锦. 钻井岩心重定向的古地磁方法及其可靠性[J]. 石油勘探与开发, 2006, 33(5): 581-585.

    Li X S, Xiong G J. Paleomagnetic mehod of reorienting cores and its reliability[J]. Petroleum Exploration & Development, 2006, 33(5): 581-585(in Chinese with English abstract).
    [50] Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3): 699-718.
    [51] Enkin R J. The direction correction test for paleomagnetism[D]. Paris: Universite de Paris, 1990.
    [52] Zijderveld J D A. A C. Demagnetization of rocks: Analysis of results[J]. Developments in Solid Earth Geophysics, 2013, 3: 254-286.
    [53] Huang B C, Piper J D A, Sun L S, et al. New paleomagnetic results for Ordovician and Silurian rocks of the Tarim Block, Northwest China and their paleogeographic implications[J]. Tectonophysics, 2019, 755: 91-108.
    [54] Butler R. Paleomagnetism: Magnetic domains to geologic terranes[M]. Boston: Blackwell Scientific Publications, 1992.
    [55] Fisher R.A. Dispersion on a sphere[J]. Proceedings of the Royal society of London, 1953, 217: 295-305.
    [56] Kent J T. The Fisher-Bingham distribution on the sphere[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1982, 44(1): 71-80.
    [57] 袁学诚. 古地磁学原理及其应用[M]. 北京: 地质出版社, 1991.

    Yuan X C. Principles and applications of paleomagnetism[M]. Beijing: Geological Publishing House, 1991(in Chinese).
    [58] 谈晓冬, 方大钧, 王朋岩, 等. 塔里木盆地北部中、新生代钻孔岩心古地磁研究: 喜山期岩石重磁化与油气移聚[J]. 地球物理学报, 1995, 38(5): 688-691.

    Tan X D, Fang D J, Wang P Y, et al. Paleomagnetic study of the Mesozoic and Cenozoic bore hole in North Tarim Basin: Himalayian remagnetization and hydrocarbon migration and collection[J]. Acta Geophysica Sinica, 1995, 38(5): 688-691(in Chinese with English abstract).
    [59] 方大钧, 王朋岩, 沈忠悦, 等. 塔里木地块新生代古地磁结果及显生宙视极移曲线[J]. 中国科学: D辑, 1998, 28(增刊1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1010.htm

    Fang D J, Wang P Y, Shen Z Y, et al. Cenozoic paleomagnetic results of Tarim Block and Phanerozoic apparent polar wander curve[J]. Science in China: Series D, 1998, 28(S1): 90-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1010.htm
    [60] 方大钧, 沈忠悦, 谈晓冬. 塔里木盆地喜山期岩石重磁化研究[J]. 科学通报, 2002, 47(2): 88-95.

    Fang D J, Shen Z Y, Tan X D. Study on the remagnetization of Himalayan rocks in Tarim Basin[J]. Chinese Science Bulletin, 2002, 47(2): 88-95(in Chinese with English abstract).
    [61] 李海燕, 张世红. 黄铁矿加热过程中的矿相变化研究: 基于磁化率随温度变化特征分析[J]. 地球物理学报, 2005, 48(6): 1384-1391.

    Li H Y, Zhang S H. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities[J]. Chinese Journal of Geophysics, 2005, 48(6): 1384-1391(in Chinese with English abstract).
    [62] Collinson D. Methods in rock magnetism and palaeomagnetism[M]. Netherlands: Springer, 1983.
    [63] 谈晓冬, 王朋岩, 姜莉萍. 钻孔岩心古地磁研究方法进展[J]. 地球物理学进展, 1994, 9(3): 98-103.

    Tan X D, Wang P Y, Jiang L P. Progress in techniques for bore hole paleomagnetic research[J]. Progress in Geophysics, 1994, 9(3): 98-103(in Chinese with English abstract).
    [64] 王怿, 戎嘉余, 唐鹏, 等. 中国志留纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 271-285.

    Wang Y, Rong J Y, Tang P, et al. Lithostratigraphic subdivision and correlation of the Silurian in China[J]. Journal of Stratigraphy, 2021, 45(3): 271-285(in Chinese with English abstract).
    [65] Li Y P, McWilliams M, Sharps R, et al. A Devonian paleomagnetic pole from red beds of the Tarim Block, China[J]. Journal of Geophysical Research, 1990, 95(B12): 19185-19198.
    [66] 方大钧, 金国海, 姜莉萍, 等. 塔里木盆地古生代古地磁结果及其构造地质意义[J]. 地球物理学报, 1996, 39(4): 522-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX604.011.htm

    Fang D J, Jin G H, Jiang L P, et al. Paleozoic paleomagnetic results and the tectonic significance of Tarim Plate[J]. Acta Geophysica Sinica, 1996, 39(4): 522-532(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX604.011.htm
    [67] 贾进华, 张宝民, 朱世海, 等. 塔里木盆地志留纪地层、沉积特征与岩相古地理[J]. 古地理学报, 2006, 8(3): 339-352.

    Jia J H, Zhang B M, Zhu S H, et al. Stratigraphy, sedimentary characteristics and lithofacies palaeogeography of the Silurian in Tarim Basin[J]. Journal of Palaeogeography, 2006, 8(3): 339-352(in Chinese with English abstract).
    [68] 霍斐斐, 邵瑞琦, 姜南, 等. 柴达木盆地北缘中新生代地层的磁组构特征及其沉积构造学意义[J]. 地球物理学报, 2020, 63(2): 583-596.

    Huo F F, Shao R Q, Jiang N, et al. Anisotropy of magnetic susceptibility of Mesozoic and Cenozoic sediments in the northern margin of Qaidam Basin and its sedimentary-tectonic significance[J]. Chinese Journal of Geophysics, 2020, 63(2): 583-596(in Chinese with English abstract).
    [69] 邬光辉, 张宝收, 郭春利, 等. 塔里木盆地北部志留系碎屑锆石测年及其地质意义[J]. 大地构造与成矿学, 2009, 33(3): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903016.htm

    Wu G H, Zhang B S, Guo C L, et al. Detrital zircon U-Pb dating for the Silurian in northern Tarim Basin and its significance[J]. Geotectonica et Metallogenia, 2009, 33(3): 418-426(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903016.htm
    [70] 张乾. 塔东地区志留系碎屑岩沉积环境与沉积相研究[D]. 北京: 中国地质大学(北京), 2014.

    Zhang Q. Study on the Silurian sedimentary environment and facies of clastic rocks in the eastern Tarim Basin[D]. Beijing: China University of Geosciences(Beijing), 2014(in Chinese with English abstract).
    [71] 刘晓林. 塔里木盆地志留系沉积相与油气分布[D]. 山东青岛: 中国海洋大学, 2009.

    Liu X L. Sedimentary facies and oil-gas distribution characteristics of the Silurian in Tarim Basin[D]. Qingdao Shandong: Ocean University of China, 2009(in Chinese with English abstract).
    [72] 林畅松, 李思田, 刘景彦, 等. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J]. 岩石学报, 2011, 27(1): 210-218.

    Lin C S, Li S T, Liu J Y, et al. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages[J]. Acta Petrologica Sinica, 2011, 27(1): 210-218(in Chinese with English abstract).
    [73] 刘景彦, 杨海军, 杨永恒, 等. 塔里木盆地东北缘志留纪构造活动的U-Pb年代证据及盆内响应[J]. 中国科学: 地球科学, 2012, 42(8): 1218-1233.

    Liu J Y, Yang H J, Yang Y H, et al. The U-Pb chronologic evidence and sedimentary responses of Silurian tectonic activities at northeastern margin of Tarim Basin[J]. Science China: Earth Science, 2012, 42(8): 1218-1233(in Chinese with English abstract).
    [74] 牛露, 于炳松, 张文博. 塔里木盆地北部地区下志留统柯坪塔格组物源分析与物源区母岩年龄确定[J]. 沉积学报, 2013, 31(3): 421-429. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201303005.htm

    Niu L, Yu B S, Zhang W B. Provenance analysis and dating of parent rocks of the sandstones from Kepingtage Formation(Silurian) in the northern Tarim Basin[J]. Acta Sedimentologica Sinica, 2013, 31(3): 421-429(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201303005.htm
    [75] 李祥权, 丁洪坤, 彭鹏, 等. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据[J]. 地球科学, 2021, 46(8): 2819-2831.

    Li X Q, Ding H K, Peng P, et al. Provenance of Silurian Kepingtage Formation in Tazhong area, Tarim Basin: Evidence from detrital zircon U-Pb geochronology[J]. Earth Science, 2021, 46(8): 2819-2831(in Chinese with English abstract).
    [76] 曾庆鲁, 王力宝, 王朝锋, 等. 塔中地区志留系柯坪塔格组上3亚段沉积体系类型及分布规律[J]. 中国石油勘探, 2019, 24(1): 95-104.

    Zeng Q L, Wang L B, Wang C F, et al. Sedimentary system types and distribution of the 3rd upper sub-member of Silurian Kepingtag Formation in Tazhong area, Tarim Basin[J]. China Petroleum Exploration, 2019, 24(1): 95-104(in Chinese with English abstract).
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  326
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 录用日期:  2023-07-19
  • 修回日期:  2023-06-28

目录

    /

    返回文章
    返回