留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型地球化学与水文地质特征对污染物自然衰减影响研究进展

赵萌 姜永海 冯帆 贾永锋 廉新颖 尚长健 臧永歌

赵萌, 姜永海, 冯帆, 贾永锋, 廉新颖, 尚长健, 臧永歌. 典型地球化学与水文地质特征对污染物自然衰减影响研究进展[J]. 地质科技通报, 2023, 42(3): 250-261. doi: 10.19509/j.cnki.dzkq.tb20220257
引用本文: 赵萌, 姜永海, 冯帆, 贾永锋, 廉新颖, 尚长健, 臧永歌. 典型地球化学与水文地质特征对污染物自然衰减影响研究进展[J]. 地质科技通报, 2023, 42(3): 250-261. doi: 10.19509/j.cnki.dzkq.tb20220257
Zhao Meng, Jiang Yonghai, Feng Fan, Jia Yongfeng, Lian Xinying, Shang Changjian, Zang Yongge. Research advances on the influence of typical geochemical and hydrogeological characteristics on the natural attenuation of pollutants[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 250-261. doi: 10.19509/j.cnki.dzkq.tb20220257
Citation: Zhao Meng, Jiang Yonghai, Feng Fan, Jia Yongfeng, Lian Xinying, Shang Changjian, Zang Yongge. Research advances on the influence of typical geochemical and hydrogeological characteristics on the natural attenuation of pollutants[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 250-261. doi: 10.19509/j.cnki.dzkq.tb20220257

典型地球化学与水文地质特征对污染物自然衰减影响研究进展

doi: 10.19509/j.cnki.dzkq.tb20220257
基金项目: 

国家重点研发计划项目 2019YFC1806204

国家自然科学基金项目 41907178

详细信息
    作者简介:

    赵萌(1997—), 女, 现正攻读环境工程专业硕士学位,主要从事地下水污染与防控方面的研究。E-mail: zhmheng@163.com

    通讯作者:

    贾永锋(1988—), 男, 副研究员, 主要从事地下水污染识别与自然衰减效应研究。E-mail: jia_yongfeng@163.com

  • 中图分类号: X501

Research advances on the influence of typical geochemical and hydrogeological characteristics on the natural attenuation of pollutants

  • 摘要:

    监测自然衰减技术(MNA)作为污染场地有效的风险防控手段在世界范围内得到广泛应用, 该技术应用的核心是确定污染物衰减能力及效率。而其衰减能力及效率会受到污染物本身特性, 以及场地典型地球化学、水文地质条件等固有特征影响,明确场地固有性质对污染物自然衰减的影响对该技术的合理应用具有更为重要的实际意义。以场地典型地球化学特征与水文地质特征为重点, 阐述了两者对地下水中污染物自然衰减过程的影响及其作用机理。沉积物有机质和矿物组成等典型地球化学特征控制污染物的吸附络合行为, 同时参与电子传递过程从而影响污染物的生物降解及化学转化过程;水文地质条件方面, 含水层岩性及结构特征会导致渗透性、吸附解吸能力有所差异,从而影响污染物的自然衰减能力, 地下水流速控制污染物对流弥散作用, 同时影响污染物从沉积物固相向地下水的溶解释放以及生物降解动力学过程。总体上, 由于有机质、矿物、微生物组分的复杂性, 加之水文地质条件的不均质性, 场地固有性质对污染物自然衰减的影响研究还有待进一步加强, 尤其要通过长期的场地监测, 识别污染物衰减的时空动态规律, 深化对场地典型地球化学、水文地质条件与污染物相互作用机制的认识。

     

  • 图 1  自然衰减的常见作用途径(改编自文献[3])

    NAPL.非水相液体;LNAPL.轻质非水相液体;DNAPL.重质非水相液体;a.挥发; b.吸附; c.稀释; d.弥散; e.化学转化; f.生物降解

    Figure 1.  Common pathways on natural attenuation processes of pollutants

    图 2  地下水污染羽氧化还原分带示意图[4-5]

    Figure 2.  A schematic diagram illustrating the redox zoning of the groundwater contaminant plume

    图 3  在含还原细菌、金属氧化物、黏土矿物和天然有机质(NOM)体系中增强污染物还原降解的途径[29]

    a.微生物直接还原; b.天然有机质介导还原; c.金属氧化物和黏土矿物间接还原; d.天然有机质结合金属氧化物和黏土矿物间接还原

    Figure 3.  Pathways for enhanced pollutant reduction in systems containing reducing bacteria, metal oxides, clay minerals and natural organic matter (NOM)

    图 4  影响自然衰减破坏性作用过程的场地特征

    Figure 4.  Site characteristics affecting the destructive process of natural attenuation

    图 5  岩性颗粒大小影响污染物自然衰减的物理化学和微生物过程[71]

    RDA1.冗余分析主成分1;RDA2.冗余分析主成分2

    Figure 5.  Effects of medium particle size on physicochemical and microbiological processes of the natural attenuation of pollutants

    图 6  污染含水层水位波动概念模型图[101-102]

    Figure 6.  Conceptual model diagram of the water level fluctuations in contaminated aquifers

    表  1  MNA修复地下水污染的典型场地案例

    Table  1.   Typical site cases of groundwater pollution remediation by MNA

    场地名称 污染原因 污染时长/a 监测时段 监测污染物 主要降解途径 主要过程 资料来源
    澳大利亚某农场 地下储油罐泄露 30 2004-2010年 总石油烃、萘、苯系物 生物作用 硫酸盐还原 文献[8]
    韩国某军事基地 地下储油罐泄露 / 2008-2009年 苯系物 生物作用 反硝化 文献[9]
    中国某农药厂 原辅料储罐泄露 >7 2016-2020年 氯代烃 生物作用 共代谢、还原脱氯 文献[10]
    挪威某垃圾填埋场 渗滤液下渗 >5 1992-2015年 铁、锰等 化学、生物作用 氧化沉淀 文献[11]
    美国某燃气厂 焦油储罐泄露 25 1991-2005年 单/多环芳烃 生物作用、吸附 矿化 文献[12]
    下载: 导出CSV

    表  2  不同岩性等特征下有机污染物的衰减效率

    Table  2.   Attenuation efficiency of organic polluants under different lithology and other characteristics

    实验室数据
    污染物 污染水平/(g·kg-1) 衰减条件 砂∶粉砂: 黏土(wB/%) 衰减程度/% 衰减时间/d 备注 资料来源
    石油 21.1 pH=7.8, 含水量60% 30∶45∶25 61 210 文献[38]
    石油烃 11.5 pH=6.4,含水量15% 砂>91 20~30 270 文献[60]
    石油烃 10.4 pH=6.0,含水量50% 粉砂 17 28 文献[61]
    石油烃 140.0 pH=7.6,含水量30% 砂92 38 80 文献[62]
    柴油 50.0 pH=5.6, 含水量50%~60% 76∶12∶12 21 75 文献[63]
    柴油 3.50 pH=7.1, 含水量60% 黏土>90 84 7 文献[7]
    93 56
    4.25 92 28
    94 56
    场地数据
    污染物 污染水平 衰减条件 砂∶粉砂∶黏土(wB/%) 衰减程度/% 天数/d 备注 资料来源
    柴油 1 L/m2 pH=7.7 30∶42∶28 56 4 土壤表层0~10 cm 文献[64]
    年均降雨量620 mm 99 400 平均值
    石油烃 15 mg/L 年均降雨量436 mm 65 300 可监测的最高浓度 文献[65]
    石油烃 2.3 mg/L / 87 1 460 可监测的最高浓度 文献[66]
    苯系物 3.45 kg/m2 pH=5.0~5.3
    年均降雨量1 600 mm
    黏土 < 5 85 985 污染羽总质量 文献[67]
    下载: 导出CSV
  • [1] Ford R G, Wilkin R T, Acree S. Site characterization to support use of monitored natural attenuation for remediation of inorganic contaminants in ground water[R]. [S. l. ]: U. S. Environmental Protection Agency, 2008.
    [2] Pope D F, Jones J N. Monitored natural attenuation of petroleum hydrocarbons[R]. [S. l. ]: U. S. Environmental Protection Agency, 1999.
    [3] 任黎明. 石化污染场地地下水修复治理挑战与对策[J]. 石油炼制与化工, 2021, 52(4): 119-126. doi: 10.3969/j.issn.1005-2399.2021.04.020

    Ren L M. Challenges and countermeasures of groundwater remediation in petrochemical contaminated sites[J]. Petroleum Processing and Petrochemicals, 2021, 52(4): 119-126(in Chinese with English abstract). doi: 10.3969/j.issn.1005-2399.2021.04.020
    [4] 谢云峰, 曹云者, 柳晓娟, 等. 地下水挥发性有机污染物自然衰减能力评价方法[J]. 环境工程技术学报, 2013, 3(2): 104-112. doi: 10.3969/j.issn.1674-991X.2013.02.018

    Xie Y F, Cao Y Z, Liu X J, et al. Assessment methods of volatile organic contaminants natural attenuation in contaminated aquifers[J]. Journal of Environmental Engineering Technology, 2013, 3(2): 104-112(in Chinese with English abstract). doi: 10.3969/j.issn.1674-991X.2013.02.018
    [5] 夏雨波, 杨悦镇, 杜新强, 等. 石油污染场地浅层地下水MNA原位修复潜能及微生物降解效益评估[J]. 吉林大学学报: 地球科学版, 2011, 41(3): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103030.htm

    Xia Y B, Yang Y Z, Du X Q, et al. Evaluation of in-situ MNA remediation potential and biodegradation efficiency of petroleum-contaminated shallow groundwater[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3): 831-839(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103030.htm
    [6] Naidu R, Megharaj M, Malik S, et al. Monitored natural attenuation (MNA) as a cost effective sustainable remediation technology for petroleum hydrocarbon contaminated sites: Demonstration of scientific evidence[C]//Anon. Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a changing world. [S. l. ]: [s. n. ], 2010.
    [7] Sarkar D, Ferguson M, Datta R, et al. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation[J]. Environ. Pollut., 2005, 136(1): 187-195. doi: 10.1016/j.envpol.2004.09.025
    [8] Naidu R, Nandy S, Megharaj M, et al. Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: A case study[J]. Biodegradation, 2012, 23(6): 881-895. http://www.onacademic.com/detail/journal_1000035662120310_7d35.html
    [9] Lee H, Kang S. A case study of monitored natural attenuation at a military site contaminated by petroleum hydrocarbon in Korea[J]. Journal of Environmental Impact Assessment, 2016, 25(5): 333-344. doi: 10.14249/eia.2016.25.5.333
    [10] 范婷婷, 夏菲洋, 孔令雅, 等. 场地地下水中氯代甲烷烃自然衰减机制[J]. 环境工程学报, 2021, 15(12): 3934-3945. doi: 10.12030/j.cjee.202108083

    Fan T T, Xia F Y, Kong L Y, et al. Natural attenuation mechanism of chloromethane hydrocarbons in groundwater of a typical pesticide contaminated site[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3934-3945(in Chinese with English abstract). doi: 10.12030/j.cjee.202108083
    [11] Abiriga D, Vestgarden L S, Klempe H. Long-term redox conditions in a landfill-leachate-contaminated groundwater[J]. Science of the Total Environment, 2021, 755(2): 143725. http://www.sciencedirect.com/science/article/pii/S0048969720372569
    [12] Neuhauser E F, Ripp J A, Azzolina N A, et al. Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: A 14-year field study[J]. Ground Water Monit R, 2009, 29(3): 66-76. doi: 10.1111/j.1745-6592.2009.01244.x
    [13] 吕晓建. 非正规垃圾填埋场地下水监控自然衰减效果评价研究[D]. 石家庄: 河北地质大学, 2016.

    Lü X J. Study on the effect of monitored natural attenuation repairing technology for groundwater at informal landfill[D]. Shijiazhuang: Hebei GEO University, 2016(in Chinese with English abstract).
    [14] Mulligan C N, Yong R N. Natural attenuation of contaminated soils[J]. Environment International, 2004, 30(4): 587-601. doi: 10.1016/j.envint.2003.11.001
    [15] 刘晓艳, 李英丽, 朱谦雅, 等. 石油类污染物在土壤中的吸附-解吸机理研究及展望[J]. 矿物岩石地球化学通报, 2007, 26(1): 82-87. doi: 10.3969/j.issn.1007-2802.2007.01.012

    Liu X Y, Li Y L, Zhu Q Y, et al. Research on the mechanism of the adsorption-desorption of petroleum pollutants in soils and its prospective[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1): 82-87(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2007.01.012
    [16] 李晓萌. 高砷地下水中溶解性有机物的特征及其给出电子潜力[D]. 北京: 中国地质大学(北京), 2019.

    Li X M. Characteristics and potential electron donating capacities of dissolved organic matter in high arsenic groundwater[D]. Beijing: China University of Geosciences(Beijing), 2019.
    [17] 王宏语, 杨润泽, 张峰, 等. 富含有机质泥页岩岩相表征的研究现状与趋势[J]. 地质科技情报, 2018, 37(2): 141-148. doi: 10.19509/j.cnki.dzkq.2018.0220

    Wang H Y, Yang R Z, Zhang F, et al. Research progress and trend of organic-rich shale lithofacies characterization[J]. Geological Science and Technology Information, 2018, 37(2): 141-148(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2018.0220
    [18] Dong W H, Zhang P, Lin X Y, et al. Natural attenuation of 1, 2, 4-Trichlorobenzene in shallow aquifer at the luhuagang's landfill site, Kaifeng, China[J]. Science of the Total Environment, 2015, 505: 216-222. doi: 10.1016/j.scitotenv.2014.10.002
    [19] Lamichhane S, Bal Krishna K C, Sarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review[J]. Chemosphere, 2016, 148: 336-353. doi: 10.1016/j.chemosphere.2016.01.036
    [20] 焦立新, 孟伟, 郑丙辉, 等. 沉积物老化过程中DOC含量变化对菲吸附-解吸的影响[J]. 生态学报, 2011, 31(3): 866-873. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201103032.htm

    Jiao L X, Meng W, Zheng B H, et al. Effects of dissolve organic carbon (DOC) contents on sorption and desorption of phenanthrene on sediments during ageing[J]. Acta Ecologica Sinica, 2011, 31(3): 866-873(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201103032.htm
    [21] Seunghun K, Baoshan X. Phenanthrene sorption to sequentially extracted soil humic acids and humins[J]. Environmental Science & Technology, 2005, 39(1): 134-140. http://eurekamag.com/pdf.php?pdf=004266992
    [22] Leboeuf E J, Weber W J. A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: Discovery of a humic acid glass transition and an argument for a polymer-based model[J]. Environmental Science & Technology, 1997, 31(6): 1697-1702. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9707086602&site=ehost-live
    [23] Xiao B, Yu Z, Huang W, et al. Black carbon and kerogen in soils and sediments: 2. Their roles in equilibrium sorption of less-polar organic pollutants[J]. Environmental Science & Technology, 2004, 38(22): 5842-5852. http://www.onacademic.com/detail/journal_1000036673411910_0478.html
    [24] Weber W J, McGinley P M, Katz L E. A distributed reactivity model for sorption by soils and sediments: 1. Conceptual basis and equilibrium assessments[J]. Environmental Science & Technology, 1992, 26(10): 1995-1962.
    [25] Xing B, Pignatello J. Dual-mode sorption of low-polarity compounds in glassy poly (Vinyl Chloride) and soil organic matter[J]. Environmental Science & Technology, 1997, 30(1): 1-11.
    [26] 安显金, 肖保华, 邸欣月, 等. 无机沉淀对土壤有机质吸附疏水有机污染物的影响[J]. 地球与环境, 2016, 44(5): 572-580. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201605013.htm

    An X J, Xiao B H, Di X Y, et al. Effect of inorganic ion precipitation on hydrophobic organic pollutant adsorption by non-extracted soil organic matters[J]. Earth and Environment, 2016, 44(5): 572-580(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201605013.htm
    [27] Hatzinger P B, Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability[J]. Environmental Science & Technology, 1995, 29(2): 537-545. http://www.researchgate.net/profile/Paul_Hatzinger/publication/51925639_Effect_of_Aging_of_Chemicals_in_Soil_on_Their_Biodegradability_and_Extractability/links/09e41511bf89a14edc000000/Effect-of-Aging-of-Chemicals-in-Soil-on-Their-Biodegradability-and-Extractability.pdf
    [28] Krohn C, Jin J, Wood J L, et al. Highly decomposed organic carbon mediates the assembly of soil communities with traits for the biodegradation of chlorinated pollutants[J]. Journal of Hazardous Materials, 2021, 404(A): 124077. http://www.sciencedirect.com/science/article/pii/S0304389420320677
    [29] Luan F B, Burgos W D, Xie L, et al. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2010, 44(1): 184-190. http://d.wanfangdata.com.cn/periodical/d6b8f1e2dd1e651138140819b098fb48
    [30] 武春媛, 李芳柏, 周顺桂. 腐殖质呼吸作用及其生态学意义[J]. 生态学报, 2009, 29(3): 1534-1542. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200903056.htm

    Wu C Y, Li F B, Zhou S G. Humus respiration and its ecological significance[J]. Acta Ecologica Sinica, 2009, 29(3): 1534-1542(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200903056.htm
    [31] 袁英, 何小松, 檀文炳, 等. 腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学, 2014, 33(12): 2048-2057. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201412004.htm

    Yuan Y, He X S, Tan W B, et al. Research progress on the redox and electron transfer capacity of humic substances[J]. Environmental Chemistry, 2014, 33(12): 2048-2057(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201412004.htm
    [32] 李丽, 檀文炳, 王国安, 等. 腐殖质电子传递机制及其环境效应研究进展[J]. 环境化学, 2016, 35(2): 254-266. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201602004.htm

    Li L, Tan W B, Wang G A, et al. Electron transfer mechanisms of humic substances and their environmental implications: A review[J]. Environmental Chemistry, 2016, 35(2): 254-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201602004.htm
    [33] 卢桂兰, 王世杰, 郭观林, 等. 草炭强化对油田陈化油泥生物修复工程效果的影响[J]. 环境工程技术学报, 2011, 1(5): 389-395. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201105004.htm

    Lu G L, Wang S J, Guo G L, et al. Influence of peat on the field bioremediation efficiency of aged oily sludge in oil field[J]. Journal of Environmental Engineering Technology, 2011, 1(5): 389-395(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ201105004.htm
    [34] 梁凯旋. 不同电子供体强化高氯酸盐自然衰减的柱实验研究[D]. 北京: 中国地质大学(北京), 2018.

    Liang K X. Column experiments on perchlorate natural attenuation enhanced by different electron donors[D]. Beijing: China University of Geosciences(Beijing), 2018(in Chinese with English abstract).
    [35] Van der Zee F P, Cervantes F J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review[J]. Biotechnology Advances, 2009, 27(3): 256-277. doi: 10.1016/j.biotechadv.2009.01.004
    [36] 胡煜, 陈娟, 王沛芳, 等. 腐殖质参与的卤代有机污染物厌氧降解研究进展[J]. 环境科学与技术, 2020, 43(10): 212-220. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202010028.htm

    Hu Y, Chen J, Wang P F, et al. Research progress in humic substances in anaerobic degradation of halogenated organic pollutants[J]. Environmental Science & Technology, 2020, 43(10): 212-220(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202010028.htm
    [37] Chen C H, Liu P G, Whang L M. Effects of natural organic matters on bioavailability of petroleum hydrocarbons in soil-water environments[J]. Chemosphere, 2019, 233: 843-851. doi: 10.1016/j.chemosphere.2019.05.202
    [38] Tang J, Lu X, Sun Q, et al. Aging effect of petroleum hydrocarbons in soil under different attenuation conditions[J]. Agriculture, Ecosystems and Environment, 2012, 149: 109-117. doi: 10.1016/j.agee.2011.12.020
    [39] 李琬钰, 周建伟, 贾晓岑, 等. 湖南锡矿山锑矿区水环境中DOM三维荧光特征及其对锑污染的指示意义[J]. 地质科技通报, 2022, 41(4): 215-224. doi: 10.19509/j.cnki.dzkq.2022.0119

    Li W Y, Zhou J W, Jia X C, et al. EEMs characteristics of dissolved organic matter in water environment and its implications for antimony contamination in antimony mine of Xikuangshan, Hunan Province[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 215-224(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0119
    [40] 韩张雄, 万的军, 胡建平, 等. 土壤中重金属元素的迁移转化规律及其影响因素[J]. 矿产综合利用, 2017(6): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201706002.htm

    Han Z X, Wang D J, Hu J P, et al. Migration and transformation of heavy metals in soil and its influencing factors[J]. Multipurpose Utilization of Mineral Resources, 2017(6): 5-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201706002.htm
    [41] 祝长成. 石油烃在土壤中的降解特性及修复技术[D]. 西安: 西安建筑科技大学, 2019.

    Zhu C C. Degradation characteristics and repair technology of petroleum hydrocarbons in soil[D]. Xi'an: Xi'an University of Architecture and Technology, 2019(in Chinese with English abstract).
    [42] 张林晔, 包友书, 李钜源, 等. 湖相页岩中矿物和干酪根留油能力实验研究[J]. 石油实验地质, 2015, 37(6): 776-780. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201506017.htm

    Zhang L Y, Bao Y S, Li J Y, et al. Hydrocarbon and crude oil adsorption abilities of minerals and kerogens in lacustrine shales[J]. Petroleum Geology & Experiment, 2015, 37(6): 776-780(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201506017.htm
    [43] 曾祥峰, 张凯, 于晓曼, 等. 碱性盐化条件下蒙脱石和伊利石对镉的吸附特征研究[J]. 农业环境科学学报, 2008, 27(6): 2251-2257. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200806025.htm

    Zeng X F, Zhang K, Yu X M, et al. Adsorption behaviors of Cd on montmorillonite/illite in alkaline saline conditions[J]. Journal of Agro-Environment Science, 2008, 27(6): 2251-2257(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200806025.htm
    [44] 何宏平, 郭九皋, 朱建喜, 等. 蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究[J]. 岩石矿物学杂志, 2001, 20(4): 573-578. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200104042.htm

    He H P, Guo J G, Zhu J X, et al. An experimental study of adsorption capacity of Montmorillonite, Kaolinite and illite for heavy metals[J]. Acta Petrologica Et Mineralogica, 2001, 20(4): 573-578(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200104042.htm
    [45] 荚德安. 土壤中四环素与铜的吸附行为及其影响因素研究[D]. 南京: 南京林业大学, 2008.

    Jia D A. Study of adsorption of tetracycline and copper in soils and impact of factors on their adsorption[D]. Nanjing: Nanjing Forestry University, 2008(in Chinese with English abstract).
    [46] 陈涛, 孙成勋, 杨晓瑛, 等. 土壤主要组分对多氯联苯吸附及共存Cu2+的影响[J]. 中国矿业大学学报, 2012, 41(5): 821-825. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201205022.htm

    Chen T, Sun C X, Yang X Y, et al. Adsorption of PCBs onto main components in soil and effect of coexistent Cu2+[J]. Journal of China University of Mining & Technology, 2012, 41(5): 821-825(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201205022.htm
    [47] 廖高明, 马杰, 谷春云, 等. 污染场地卤代烃非生物自然衰减研究进展[J]. 环境科学研究, 2021, 34(3): 742-754. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202103026.htm

    Liao G M, Ma J, Gu C Y, et al. Research progress on abiotic natural attenuation of halogenated hydrocarbons at contaminated sites[J]. Research of Environmental Sciences, 2021, 34(3): 742-754(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202103026.htm
    [48] Schaefer C E, Ho P, Gurr C, et al. Abiotic dechlorination of chlorinated ethenes in natural clayey soils: Impacts of mineralogy and temperature[J]. Journal of Contaminant Hydrology, 2017, 206(9): 10-17. http://www.onacademic.com/detail/journal_1000040104029510_b9f8.html
    [49] Xie W, Yuan S, Tong M, et al. Contaminant degradation by ·OH during sediment oxygenation: Dependence on Fe(Ⅱ) species[J]. Environmental Science & Technology, 2020, 54(5): 2975-2984. http://pubmed.ncbi.nlm.nih.gov/32023045/
    [50] Usman M, Byrne J M, Chaudhary A, et al. Magnetite and green rust: Synthesis, properties, and environmental applications of mixed-valent iron minerals[J]. Chemical Reviews, 2018, 118(7): 3251-3304.
    [51] 杨学伟. 黏土矿物-溶解铁-微生物复杂体系中六价铬的还原反应的研究[D]. 北京: 中国地质大学(北京), 2019.

    Yang X W. Hexavalent chromium reduction in the complicated system of clay mineral-dissolved iron-microorganism and its possible reaction mechanisms[D]. Beijing: China University of Geosciences(Beijing), 2019(in Chinese with English abstract).
    [52] Kato S, Hashimoto K, Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25): 10042-10046. http://europepmc.org/articles/PMC3382511/
    [53] 冯曦, 朱敏, 何艳. 土壤还原过程对氯代有机污染物还原脱氯的影响与机制[J]. 生态毒理学报, 2017, 12(3): 151-161. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201703013.htm

    Feng X, Zhu M, He Y. Effects and mechanisms of soil redox processes on reductive dechlorination of chlorinated organic pollutants[J]. Asian Journal of Ecotoxicology, 2017, 12(3): 151-161(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201703013.htm
    [54] Berns E C, Sanford R A, Valocchi A J, et al. Contributions of biotic and abiotic pathways to anaerobic trichloroethene transformation in low permeability source zones[J]. Journal of Contaminant Hydrology, 2019, 224: 103480. http://www.onacademic.com/detail/journal_1000042278344099_28c1.html
    [55] Zhang J, Dong H, Liu D, et al. Microbial reduction of Fe(Ⅲ) in illite-smectite minerals by methanogen Methanosarcina mazei[J]. Chemical Geology, 2012, 292/293: 35-44. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0009254111004360&originContentFamily=serial&_origin=article&_ts=1433980019&md5=72163061f0f6634cb9ae479dbff1a1fc
    [56] Entwistle J, Latta D E, Scherer M M, et al. Abiotic degradation of chlorinated solvents by clay minerals and Fe(Ⅱ): Evidence for reactive mineral intermediates[J]. Science of the Total Environment, 2019, 53(24): 14308-14318.
    [57] Luan F, Liu Y, Griffin A M, et al. Iron(Ⅲ)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32[J]. Environmental Science Technology, 2015, 49(3): 1418-1426. doi: 10.1021/es504149y
    [58] 张七道, 肖长源, 李致伟, 等. 黔西北普宜地区富关键金属元素硫铁矿地质、地球化学和S同位素特征及其对成因的约束[J]. 地质科技通报, 2022, 41(4): 149-164. doi: 10.19509/j.cnki.dzkq.2021.0086

    Zhang Q D, Xiao C Y, Li Z W, et al. Geological, geochemical and sulfur isotopic characteristics of critical metal-enriched pyritic ore in the Puyi area, northwest Guizhou Province: Constraints on the genesis of the deposit[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 149-164(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0086
    [59] Liu J, Zhao S, Zhang R, et al. How important is abiotic dissipation in natural attenuation of polycyclic aromatic hydrocarbons in soil?[J]. Science of the Total Environment, 2021, 758(11): 143687. http://www.sciencedirect.com/science/article/pii/S0048969720372181
    [60] Couto M N, Monteiro E, Vasconcelos M T. Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: Comparison of natural attenuation, biostimulation and bioaugmentation[J]. Environmental Science and Pollution Research, 2010, 17(7): 1339-1346. http://www.springerlink.com/content/tl31h88v40650787/
    [61] Schaefer M, Juliane F. The influence of earthworms and organic additives on the biodegradation of oil contaminated soil[J]. Applied Soil Ecology, 2007, 36(1): 53-62. http://www.onacademic.com/detail/journal_1000035352324910_6ea2.html
    [62] Zeneli A, Kastanaki E, Simantiraki F, et al. Monitoring the biodegradation of TPH and PAHs in refinery solid waste by biostimulation and bioaugmentation[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103054. http://www.sciencedirect.com/science/article/pii/S2213343719301770
    [63] Fashina T B, Adesanwo O O, Adebiyi F M. Influence of humic acid on biodegradation of petroleum hydrocarbons in oil-contaminated soils[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(17): 2624-2632. http://www.researchgate.net/profile/Bidemi_Fashina/publication/308665875_Influence_of_humic_acid_on_biodegradation_of_petroleum_hydrocarbons_in_oil-contaminated_soils/links/57f2704e08ae280dd0b56195.pdf
    [64] Serrano A, Gallego M, Gonzalez J L, et al. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil[J]. Environmental Pollution, 2008, 151(3): 494-502. http://www.adbpo.it/on-multi/ADBPO/Home/MonitoraggioidrocarburiLambro-Po/BibliografiaWebLambro/documento13359.html
    [65] 夏雨波, 王冰, 杨悦锁, 等. 石油污染场地浅层地下水监测式自然衰减效果评价[J]. 水文地质工程地质, 2013, 40(6): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201306017.htm

    Xia Y B, Wang B, Yang Y S, et al. Evaluation effect of monitored natural attenuation in groundwater of petroleum-contaminated site[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 85-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201306017.htm
    [66] Lü H, Su X, Wang Y, et al. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site[J]. Chemosphere, 2018, 206: 293-301. http://www.onacademic.com/detail/journal_1000040358039910_4169.html
    [67] Corseuil H X, Monier A L, Fernandes M, et al. BTEX plume dynamics following an ethanol blend release: Geochemical footprint and thermodynamic constraints on natural attenuation[J]. Environmental Science & Technology, 2011, 45(8): 3422-3429. http://alvarez.rice.edu/files/2012/02/135.pdf
    [68] Abbasian F, Lockington R, Mallavarapu M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria[J]. Applied Biochemistry and Biotechnology, 2015, 176(3): 670-699. http://www.researchgate.net/profile/Robin_Lockington/publication/275772693_A_Comprehensive_Review_of_Aliphatic_Hydrocarbon_Biodegradation_by_Bacteria/links/554bf90c0cf29752ee7ebe09.pdf
    [69] Liu Y, Huang H, Liu Q, et al. A reversed compositional pseudo-gradient in biodegraded oil column from Liaohe Basin, NE China[J]. Marine and Petroleum Geology, 2020, 117: 104378. http://www.sciencedirect.com/science/article/pii/S0264817220301616
    [70] Kurt Z, Spain J C. Biodegradation of chlorobenzene, 1, 2-dichlorobenzene, and 1, 4-dichlorobenzene in the vadose zone[J]. Environmental Science Technology, 2013, 47(13): 6846-6854.
    [71] Leland H V, Bruce W N, Shimp N F. Chlorinated hydrocarbon insecticides in sediments if southern Lake Michigan[J]. Environmental Science & Technology, 1973, 7(9): 833-838.
    [72] Perujo N, Sanchez-Vila X, Proia L, et al. Interaction between physical heterogeneity and microbial processes in subsurface sediments: A laboratory-scale column experiment[J]. Environmental Science Technology, 2017, 51(11): 6110-6119. doi: 10.1021/acs.est.6b06506/suppl_file/es6b06506_si_001.pdf
    [73] Puigserver D, Cortes A, Viladevall M, et al. Processes controlling the fate of chloroethenes emanating from DNAPL aged sources in river-aquifer contexts[J]. J. Contam. Hydrol., 2014, 168: 25-40. http://www.onacademic.com/detail/journal_1000036678056310_7abc.html
    [74] Fuentes S, Méndez V, Aguila P, et al. Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 4781-4794. doi: 10.1007%2Fs00253-014-5684-9.pdf
    [75] Gielnik A, Pechaud Y, Huguenot D, et al. Effect of digestate application on microbial respiration and bacterial communities' diversity during bioremediation of weathered petroleum hydrocarbons contaminated soils[J]. Science of the Total Environment, 2019, 670(6): 271-281. http://www.ncbi.nlm.nih.gov/pubmed/30903900
    [76] Beckingham L E. Evaluation of macroscopic porosity-permeability relationships in heterogeneous mineral dissolution and precipitation scenarios[J]. Water Resources Research, 2017, 53(12): 10217-10230. doi: 10.1002/2017WR021306/pdf
    [77] Tran H T, Lin C, Bui X T, et al. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil: Current and future perspectives[J]. Science of the Total Environment, 2021, 753(9): 142250. http://pubmed.ncbi.nlm.nih.gov/33207468/
    [78] Takeuchi M, Kawabe Y, Watanabe E, et al. Comparative study of microbial dechlorination of chlorinated ethenes in an aquifer and a clayey aquitard[J]. J. Contam. Hydrol., 2011, 124(1/4): 14-24. http://www.onacademic.com/detail/journal_1000035056676110_354f.html
    [79] Puigserver D, Herrero J, Parker B L, et al. Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation[J]. Science of the Total Environment, 2020, 712(4): 135679.
    [80] Tobiszewski M, Namiesnik J. Abiotic degradation of chlorinated ethanes and ethenes in water[J]. Environmental Science and Pollution Research International, 2012, 19(6): 1994-2006. doi: 10.1007/s11356-012-0764-9http:/link.springer.com/content/pdf/10.1007/s11356-012-0764-9.pdf
    [81] Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on nature sediments[J]. Water Resource, 1979, 13: 241-248. http://dns2.asia.edu.tw/~ysho/YSHO-English/1000%20WC/PDF/Wat%20Res13,%20241.pdf
    [82] Choi W W, Chen K Y. Associations of chlorinated hydrocarbons with fine particles and humic substances in nearshore surficial sediments[J]. Environmental Science & Technology, 1976, 10(8): 782-786. http://www.onacademic.com/detail/journal_1000036704820210_7b07.html
    [83] 孙东越, 王明玉, 王慧芳, 等. 地下水1, 2-二氯乙烷污染静态氧化修复实验[J]. 环境工程, 2019, 37(9): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201909009.htm

    Sun D Y, Wang M Y, Wang H F, et al. Experimental investigation on static oxidation remediation of 1, 2-dichloroethane in contaminated groundwater[J]. Environmental Engineering, 2019, 37(9): 45-49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201909009.htm
    [84] Falciglia P P, Giustra M G, Vagliasindi F G. Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics[J]. J. Hazard Mater, 2011, 185(1): 392-400. http://www.onacademic.com/detail/journal_1000034087232010_d3de.html
    [85] Dong W H, Cao Z, Li M, et al. Natural attenuation of naphthalene along the river-bank infiltration zone of the Liao River, Shenyang, China[J]. J. Contam. Hydrol., 2019, 220: 26-32. http://pubmed.ncbi.nlm.nih.gov/30502888/
    [86] 陈捷. 石油烃组分在土壤和地下水环境中的分布规律与迁移特征研究[D]. 广州: 华南理工大学, 2018.

    Chen J. Distribution and migration characteristics of petroleum hydrocarbon components in soil and groundwater environment[D]. Guangzhou: South China University of Technology, 2018(in Chinese with English abstract).
    [87] Rama F, Ramos D T, Muller J B, et al. Flow field dynamics and high ethanol content in gasohol blends enhance BTEX migration and biodegradation in groundwater[J]. J. Contam. Hydrol., 2019, 222(4): 17-30. http://www.ncbi.nlm.nih.gov/pubmed/30797547
    [88] Shah N W, Thornton S F, Bottrell S H, et al. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms[J]. J. Contam. Hydrol., 2009, 103(3/4): 119-133. http://www.cabdirect.org/abstracts/20093048060.html
    [89] Jung H, Meile C. Upscaling of microbially driven first-order reactions in heterogeneous porous media[J]. J. Contam. Hydrol., 2019, 224: 103483. http://www.ncbi.nlm.nih.gov/pubmed/31029464
    [90] Bennett P C, Hiebert F K, Rogers J R. Microbial control of mineral-groundwater equilibria: Macroscale to microscale[J]. Hydrogeology Journal, 2000, 8(1): 47-62. http://www.onacademic.com/detail/journal_1000034483125210_8ce4.html
    [91] Steelman C M, Meyer J R, Wanner P, et al. The importance of transects for characterizing aged organic contaminant plumes in groundwater[J]. J. Contam. Hydrol., 2020, 235(10): 103728. http://pubmed.ncbi.nlm.nih.gov/33069942/
    [92] Bradford S A, Rathfelder K M, Lang J, et al. Entrapment and dissolution of DNAPLs in heterogeneous porous media[J]. J. Contam. Hydrol., 2003, 67(1/4): 133-157. http://www.ars.usda.gov/sp2UserFiles/Place/20360500/pdf_pubs/P1777.pdf
    [93] Balseiro-Romero M, Monterroso C, Casares J J. Environmental fate of petroleum hydrocarbons in soil: Review of multiphase transport, mass transfer, and natural attenuation processes[J]. Pedosphere, 2018, 28(6): 833-847. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=TRQY201806001
    [94] Zhang Q, Wang G, Sugiura N, et al. Distribution of petroleum hydrocarbons in soils and the underlying unsaturated subsurface at an abandoned petrochemical site, North China[J]. Hydrological Processes, 2014, 28(4): 2185-2191. http://www.researchgate.net/profile/Guangcai_Wang/publication/264363110_Distribution_of_petroleum_hydrocarbons_in_soils_and_the_underlying_unsaturated_subsurface_at_an_abandoned_petrochemical_site_North_China/links/554a11070cf29ff75c75ee21.pdf
    [95] Lima G, Parker B, Meyer J. Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs[J]. Environmental Science & Technology, 2012, 46(11): 5756-5763.
    [96] Bekins B A, Cozzarelli S M, Godsy E M, et al. Progression of natural attenuation processes at a crude oil spill site: Ⅱ. Controls on spatial distribution of microbial populations[J]. J. Contam. Hydrol., 2001, 53(12): 387-406.
    [97] Dobson R, Schroth M H, Zeyer J. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid[J]. J. Contam. Hydrol., 2007, 94(3/4): 235-248. http://www.onacademic.com/detail/journal_1000035055777810_d06e.html
    [98] Ottosen C B, Ronde V, Mcknight U S, et al. Natural attenuation of a chlorinated ethene plume discharging to a stream: Integrated assessment of hydrogeological, chemical and microbial interactions[J]. Water Res., 2020, 186: 116332. http://pubmed.ncbi.nlm.nih.gov/32871289/
    [99] Kuchovsky T, Sracek O. Natural attenuation of chlorinated solvents: A comparative study[J]. Environmental Geology, 2007, 53(1): 147-157. http://www.springerlink.com/content/n2r53008hx3224k4/
    [100] Fernandez-Rojo L, Hery M, Le Pape P, et al. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD)[J]. Water Res., 2017, 123: 594-606. http://www.onacademic.com/detail/journal_1000039934124610_b111.html
    [101] 李盼盼. 苯系物污染含水层水位波动带内的物-化-生过程研究[D]. 长春: 吉林大学, 2017.

    Li P P. Insight into hydro-chemo-biological processes in water table fluctuation zone of BTEX contaminated aquifer[D]. Changchun: Jilin University, 2017(in Chinese with English abstract).
    [102] Jia M, Bian X, Yuan S. Production of hydroxyl radicals from Fe(Ⅱ) oxygenation induced by groundwater table fluctuations in a sand column[J]. Science of the Total Environment, 2017, 584/585(4): 41-47. http://www.onacademic.com/detail/journal_1000039810518310_6fba.html
    [103] Hsieh P C, Hsu H T, Liao C B, et al. Groundwater response to tidal fluctuation and rainfall in a coastal aquifer[J]. Journal of Hydrology, 2015, 521: 132-140.
    [104] Datry T, Malard F, Gibert J. Dynamics of solutes and dissolved oxygen in shallow urban groundwater below a stormwater infiltration basin[J]. Science of the Total Environment, 2004, 329(1/3): 215-229. http://www.onacademic.com/detail/journal_1000035085296210_29f4.html
    [105] Haberer C M, Rolle M, Liu S, et al. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater[J]. J. Contam. Hydrol., 2011, 122(1/4): 26-39. http://www.presens.de/fileadmin/user_upload/publications_abs/ABS_2011_A_high-resolution_non-invasive_approach_Grathwohl.pdf
    [106] Fry V A, Selker J S, Gorelick S M. Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation[J]. Water Resources Research, 1997, 33(12): 2687-2696. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.913.3306&rep=rep1&type=pdf
    [107] Sinke A J C, Dury O, Zobrist J. Effects of a fluctuating water table: Column study on redox dynamics and fate of some organic pollutant[J]. J. Contam. Hydrol., 1998, 33(9): 231-246. http://www.onacademic.com/detail/journal_1000035638636210_0d04.html
    [108] Farnsworth C E, Voegelin A, Hering J G. Manganese oxidation induced by water table fluctuations in a sand column[J]. Environmental Science & Technology, 2012, 46(1): 277-284. http://www.xueshufan.com/publication/2039756392
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  627
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06

目录

    /

    返回文章
    返回