留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南堡凹陷东北部东二段重力流砂岩储层发育规律

李聪 鲜本忠 王鹏宇 陈蕾 田荣恒 杨荣超 陈思芮

李聪, 鲜本忠, 王鹏宇, 陈蕾, 田荣恒, 杨荣超, 陈思芮. 南堡凹陷东北部东二段重力流砂岩储层发育规律[J]. 地质科技通报, 2023, 42(2): 159-169. doi: 10.19509/j.cnki.dzkq.tb20220260
引用本文: 李聪, 鲜本忠, 王鹏宇, 陈蕾, 田荣恒, 杨荣超, 陈思芮. 南堡凹陷东北部东二段重力流砂岩储层发育规律[J]. 地质科技通报, 2023, 42(2): 159-169. doi: 10.19509/j.cnki.dzkq.tb20220260
Li Cong, Xian Benzhong, Wang Pengyu, Chen Lei, Tian Rongheng, Yang Rongchao, Chen Sirui. Development law of gravity flow sandstone reservoir in the second Member of the Dongying Formation in the northeastern Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 159-169. doi: 10.19509/j.cnki.dzkq.tb20220260
Citation: Li Cong, Xian Benzhong, Wang Pengyu, Chen Lei, Tian Rongheng, Yang Rongchao, Chen Sirui. Development law of gravity flow sandstone reservoir in the second Member of the Dongying Formation in the northeastern Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 159-169. doi: 10.19509/j.cnki.dzkq.tb20220260

南堡凹陷东北部东二段重力流砂岩储层发育规律

doi: 10.19509/j.cnki.dzkq.tb20220260
基金项目: 

国家自然科学基金项目 41872113

国家自然科学基金项目 42172109

国家自然科学基金项目 42172108

中国石油天然气集团有限公司:中国石油大学(北京)战略合作科技专项 ZLZX2020-02

国家重点研发计划项目 2018YFA0702405

中国石油大学(北京)科研启动基金项目 2462020BJRC002

中国石油大学(北京)科研启动基金项目 2462020YXZZ020

详细信息
    作者简介:

    李聪(1983-), 男, 高级工程师, 主要从事勘探开发综合地质研究工作。E-mail: ls_licong@petrolchina.com.cn

    通讯作者:

    鲜本忠(1973-), 男, 教授, 博士生导师, 主要从事沉积学与储层地质学教学与研究工作。E-mail: xianbzh@cup.edu.cn

  • 中图分类号: P588.2

Development law of gravity flow sandstone reservoir in the second Member of the Dongying Formation in the northeastern Nanpu Depression

  • 摘要:

    随着勘探程度的提高,深水重力流成因的浊积岩储层已成为我国东部断陷湖盆油气勘探开发的重要目标之一。因为沉积分异不足和成岩破坏,重力流砂岩的储层质量通常整体较差,优质储层的预测成为制约其有效油气勘探的关键地质因素。利用岩心、测井资料及储层物性、岩石薄片分析结果,研究了南堡凹陷东北部东营组二段重力流砂岩的岩相特征、成因类型、储层特征,以探索优质储层的控制因素和发育规律。研究表明,区内重力流沉积可细分为8种岩相,解释为滑动滑塌、砂质碎屑流、泥质碎屑流、浊流4类成因。储层物性参数统计分析证实,本区重力流砂岩储层非均质性强,储层质量受控于砂岩成因、砂-泥结构及其影响的溶蚀强度。从成因看,砂质碎屑流和浊流对重力流砂岩优质储层的发育贡献最大。砂质碎屑流成因的块状砂岩厚度较大、泥岩夹层较少、钙质胶结物的溶蚀程度高,储层质量最好;而浊流成因的砂岩厚度较薄,与泥岩呈互层或夹层产出,成岩环境封闭、钙质胶结物溶蚀程度低,储层质量较差。本研究为湖盆深水重力流砂岩油气的高效勘探开发提供了一种基于成因和结构的储层预测思路。

     

  • 图 1  南堡凹陷研究区地理位置(a)、区域地质概况(b)及地层单元划分(c)

    a.渤海湾盆地地理位置;b.南堡凹陷区域概况;c.南堡凹陷岩石地层系统

    Figure 1.  Location (a), geological setting (b), and stratigraphic unit (c) of the Nanpu Depression

    图 2  南堡4号构造带东二段重力流砂岩不同岩相的岩心照片

    a, b.NP4-31井, 3 968 m,滑塌构造含砾砂岩,砂岩呈撕裂状; c.NP4-65井,4 389.52 m,碎屑支撑砾岩相;d.NP4-65井,4 389.46 m,富含泥岩撕裂屑砂岩相,泥岩撕裂屑延呈层状延层理发育;e.NP43-4830井, 3 843.2 m,正粒序含砾砂岩相;f.NP403x14井,3 436.64 m,爬升波纹层理砂岩相,顶部砂泥互层平行纹层;鲍马序列Tc段向上过渡到鲍马序列Td段;g.NP4-22井,3 650.3 m,平行层理砂岩相,内部可见泥质纹层;h.NP43-x4830,3 839.2 m,砂质透镜体、砂质团块,含砾石

    Figure 2.  Core photos of the gravity flow sandstone with different lithofacies of the second Member of the Dongying Formation of the No.4 tectonic belt in the Nanpu Depression

    图 3  南堡凹陷NP4-87井东二段沉积相组成与重力流发育特征(钻井位置详见图 4)

    Figure 3.  Sedimentary facies and gravity flow sedimentary characteristics of the second Member of the Dongying Formation in Well NP4-87 in the Nanpu Depression

    图 4  南堡凹陷东二段关键时期沉积相展布与重力流分布特征(成图范围详见图 1中研究区)

    a.PSS1时期;b.PSS2时期;c.PSS3时期;d.PSS4时期

    Figure 4.  Sedimentary facies and gravity flow sediment distribution characteristics during the key period of the second Member of the Dongying Formation in the Nanpu Depression

    图 5  南堡凹陷东二段重力流砂岩镜下照片与显微结构特征

    a.NP2-52井,3 512.3 m,砂岩镜下照片(-);分选差、棱角-次棱角状;方解石胶结物发育而致密,实测孔隙度为5%,泥质碎屑流沉积;b.NP2-52井,3 513.65 m,砂岩镜下照片(-);分选中等-好、次棱角状;粒间孔隙发育(深蓝色为孔隙),实测孔隙度为28%,砂质碎屑流沉积;c.NP2-53井,3 125.3 m,砂岩镜下照片(-);中等-好、次棱角-次圆状;方解石胶结物发育,局部溶解形成次生孔,实测孔隙度约15%,浊流沉积;d.NP2-53井,3 129.3 m,砂岩镜下照片(-);中等-好、次棱角-次圆状;方解石胶结物完全溶解(深蓝色为孔隙),次生孔隙发育,面孔率16%,实测孔隙度为26%,砂质碎屑流沉积

    Figure 5.  Microstructure characteristics of gravity flow sandstone of the second Member of the Dongying Formation in the Nanpu Depression

    图 6  南堡凹陷4号构造带东二段物性特征统计

    Figure 6.  Geophysical parameter statistics of the second Member of the Dongying Formation in the No.4 tectonic belt in the Nanpu Depression

    图 7  南堡凹陷东二段辫状河三角洲与重力流砂岩储层渗透率-孔隙度交会图

    Figure 7.  Permeability-porosity intersection diagram of braided river delta and gravity flow sandstone of the second Member of the Dongying Formation in the Nanpu Depression

    图 8  南堡凹陷4号构造带孔隙结构特征

    a.粒间溶孔,NP4-80井, 4 184.92 m;b.粒内溶孔,NP4-66井, 3 761 m;c.剩余粒间孔,NP2-53井, 3 127.16 m;d.剩余粒间孔,NP43-4950井, 4 189.4 m;e.微裂缝,NP4-66井, 3 754.9 m, 剩余粒间孔;f.NP41-28井, 3 344.52 m

    Figure 8.  Characteristics of the pore structure in the No.4 tectonic belt in the Nanpu Depression

    图 9  南堡凹陷NP2-52井东二段重力流砂岩岩相-成因-规模与储层物性关系分析图

    Figure 9.  Correlation of lithofacies, sedimentary genesis, gravity flow sandstone scale and reservoir geophysical parameter of the Well NP2-52 of the second Member of the Dongying Formation in the Nanpu Depression

    表  1  南堡凹陷4号构造带岩相特征

    Table  1.   Lithofacies of the No.4 tectonic belt in the Nanpu Depression

    编号 岩相类型 岩性特征 单层厚度/cm 沉积解释
    滑塌变形碎屑支撑砾岩 大量的塑性泥岩基质支撑,变形构造 20~40 滑动滑塌沉积
    碎屑支撑砾岩 富含泥岩撕裂屑,无粒序特征 20~40 砂质碎屑流
    富撕裂屑块状砂岩 中粗砂岩,无粒序,内部含泥岩撕裂屑 15~100 砂质碎屑流
    正粒序含砾砂岩、粗砂岩 中粗砂岩,正粒序,底部具冲刷面,可见泥岩撕裂屑,底部含叠瓦状砾石 10~40 浊流,鲍马序列Ta段
    波状层理砂岩 中细砂岩,波状层理,爬升波纹层理 10~50 浊流,鲍马序列Tc段
    平行层理砂岩 中细砂岩,平行层理 10 浊流,鲍马序列Tb段
    砂岩-泥岩薄互层 细砂岩、粉砂岩及泥岩薄互层 20 浊流沉积体边缘
    液化变形含砂泥岩 塑性变形泥岩沉积,内部含透镜状砂岩 10~30 泥质碎屑流
    下载: 导出CSV
  • [1] 鲜本忠, 安思奇, 施文华. 水下碎屑流沉积: 深水沉积研究热点与进展[J]. 地质论评, 2014, 60(1): 39-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401005.htm

    Xian B Z, An S Q, Shi W H. Subaqueous debris flow: Hotspots and advances of deep-water sedimention[J]. Geological Review, 2014, 60(1): 39-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401005.htm
    [2] 杨田, 操应长, 田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报, 2021, 39(1): 88-111. doi: 10.14027/j.issn.1000-0550.2020.037

    Yang T, Cao Y C, Tian J C. Discussion on research of deep-water gravity flow deposition in lacustrine basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111(in Chinese with English abstract). doi: 10.14027/j.issn.1000-0550.2020.037
    [3] Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10. doi: 10.1306/D426828E-2B26-11D7-8648000102C1865D
    [4] Marr J G, Harff P A, Shanmugam G, et al. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures[J]. Geological Society of America Bulletin, 2001, 113(11): 1377-1386. doi: 10.1130/0016-7606(2001)113<1377:EOSSGF>2.0.CO;2
    [5] Mohrig D, Whipple K X, Hondzo M, et al. Hydroplaning of subaqueous debris flows[J]. GSA Bulletin, 1998(110): 387-394.
    [6] 杨田, 操应长, 王艳忠, 等. 深水重力流类型、沉积特征及成因机制: 以济阳坳陷沙河街组三段中亚段为例[J]. 石油学报, 2015, 36(9): 1048-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509003.htm

    Yang T, Cao Y C, Wang Y Z, et al. Types, sedimentary characteristics and genetic mechanisms of deep-water gravity flows: A case study of the middle submember in Member 3 of Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica, 2015, 36(9): 1048-1059(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509003.htm
    [7] 杨田, 操应长, 田景春, 等. 陆相湖盆深水重力流混合事件层沉积及沉积学意义[J]. 地质学报, 2021, 95(12): 3842-3857. doi: 10.3969/j.issn.0001-5717.2021.12.019

    Yang T, Cao Y C, Tian J C, et al. Deposition of deep-water gravity-flow hybird event beds in lacustrine basins and their sedimentological significance[J]. Acta Geologica Sinica, 2021, 95(12): 3842-3857(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.12.019
    [8] 陈宇航, 朱增伍, 贾鹏, 等. 重力流沉积砂岩的成因、改造及油气勘探意义[J]. 地质科技情报, 2017, 36(5): 148-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705020.htm

    Chen Y H, Zhu Z W, Jia P, et al. Genetic mechanism and rework of deep-water sedimentary sand and its significance for petroleum exploration[J]. Geological Science and Technology Information, 2017, 36(5): 148-155(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705020.htm
    [9] 孙国桐. 深水重力流沉积研究进展[J]. 地质科技情报, 2015, 34(3): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503005.htm

    Sun G T. A review of deep-water gravity-flow deposition research[J]. Geological Science and Technology Information, 2015, 34(3): 30-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503005.htm
    [10] 李相博, 刘化清, 潘树新, 等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报, 2019, 37(5): 904-921. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905003.htm

    Li X B, Liu H Q, Pan S X, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905003.htm
    [11] 刘策, 于炳松, 蒋锐, 等. 湖盆重力流沉积特征及模式[J]. 地质科技情报, 2017, 36(5): 133-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705018.htm

    Liu C, Yu B S, Jiang R, et al. Sedimentary feature and mode of gravity flow in lacustrine basin: Example from Ordos Basin and Luanping Basin[J]. Geological Science and Technology Information, 2017, 36(5): 133-142(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705018.htm
    [12] 鲜本忠, 王璐, 刘建平, 等. 东营凹陷东部始新世三角洲供给型重力流-沉积特征与模式[J]. 中国石油大学学报: 自然科学版, 2016, 40(5): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201605003.htm

    Xian B Z, Wang L, Liu J P, et al. Sedimentary characteristics and model of delta-fed turbidites in Eocene eastern Dongying Depression[J]. Journal of China University of Petroleum: Edition of Natural Science, 2016, 40(5): 10-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201605003.htm
    [13] 符勇, 李忠诚, 万谱, 等. 三角洲前缘滑塌型重力流沉积特征及控制因素: 以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101018.htm

    Fu Y, Li Z C, Wan P, et al. Sedimentary characteristics and controlling factors of slump gravity flow in delta front: A case study of Qing 1 Member in Da'an area, Songliao Basin[J]. Lithologic Reservoirs, 2021, 33(1): 198-208(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101018.htm
    [14] 王华, 陈思, 巩天浩, 等. 牵引流化重力流沉积过程与堆积机制[J]. 地质科技通报, 2020, 39(1): 95-104. doi: 10.19509/j.cnki.dzkq.2020.0111

    Wang H, Chen S, Gong T H, et al. Sedimentary process and accumulation mechanism of traction fluidization gravity flow: An example from Qikou Sag, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 95-104(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0111
    [15] 鲜本忠, 万锦峰, 姜在兴, 等. 断陷湖盆洼陷带重力流沉积特征与模式: 以南堡凹陷东部东营组为例[J]. 地学前缘, 2012, 19(1): 121-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201015.htm

    Xian B Z, Wan J F, Jiang Z X, et al. Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin: A case study from Dongying Formation in Nanpu Depression[J]. Earth Science Frontiers, 2012, 19(1): 121-135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201015.htm
    [16] Chen P, Xian B, Li M, et al. A giant lacustrine flood-related turbidite system in the Triassic Ordos Basin, China: Sedimentary processes and depositional architecture[J]. Sedimentology, 2021, 68(7): 3279-3306.
    [17] Zhang J, Wu S, Hu G, et al. Sea-level control on the submarine fan architecture in a deepwater sequence of the Niger Delta Basin[J]. Marine and Petroleum Geology, 2018, 94: 179-197.
    [18] Pu X, Zhao X, Wang J, et al. Reservoirs properties of slump-type sub-lacustrine fans and their main control factors in first Member of Paleogene Shahejie Formation in Binhai area, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(5): 977-989.
    [19] Yang T, Cao Y, Friis H, et al. Genesis and distribution pattern of carbonate cements in lacustrine deep-water gravity-flow sandstone reservoirs in the third Member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China[J]. Marine and Petroleum Geology, 2018, 92: 547-564.
    [20] Chen D, Pang X, Jiang Z, et al. Reservoir characteristics and their effects on hydrocarbon accumulation in lacustrine turbidites in the Jiyang Super-depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2009, 26(2): 149-162.
    [21] Zhao X, Pu X, Zhou L, et al. Geologic characteristics of deep water deposits and exploration discoveries in slope zones of fault lake basin: A case study of Paleogene Shahejie Formation in Banqiao-Qibei slope, Qikou Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2017, 44(2): 171-182.
    [22] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
    [23] Haughton P, Davis C, Mccaffrey W, et al. Hybrid sediment gravity flow deposits: Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918.
    [24] 操应长, 燕苗苗, 葸克来, 等. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素[J]. 沉积学报. 2019, 37(5): 945-956. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905006.htm

    Cao Y C, Yan M M, XI K L, et al. The characteristics and controlling factors of glutenite reservoir in the Triassic Baikouquan Formation, Xiazijie area, Mahu Depression[J]. Acta Sedimentologica Sinica, 2019, 37(5): 945-956(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905006.htm
    [25] 管红, 朱筱敏. 南堡凹陷滩海地区古近系砂岩孔隙类型、分布及其控制因素[J]. 中国石油大学学报: 自然科学版, 2009, 33(4): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200904004.htm

    Guan H, Zhu X M. Types, distribution of sandstone pore of Paleaogene and its controlling factors in beach area, Nanpu Sag[J]. Journal of China University of Petroleum: Edition of Natural Science, 2009, 33(4): 22-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200904004.htm
    [26] 吴浩, 纪友亮, 周勇, 等. 南堡凹陷南部古近系深层优质储层成因[J]. 中国矿业大学学报, 2019, 48(3): 553-569. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201903010.htm

    Wu H, Ji Y L, Zhou Y, et al. Origin of the Paleogene deep burial high-quality reservoirs in the southern Nanpu Sag[J]. Journal of China University of Mining & Technology, 2019, 48(3): 553-569(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201903010.htm
    [27] 张艺楼, 吴浩, 纪友亮, 等. 南堡凹陷南部不同构造带东二段储层孔隙结构差异及其对储层质量的影响[J]. 岩石矿物学杂志, 2020, 39(1): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202001007.htm

    Zhang Y L, Wu H, Ji Y L, et al. Characteristics of pore structure differences in the 2th Member reservoir of Oligocene Dongying Formation, southern Nanpu Sag: Implications for reservoir quality[J]. Acta Petrologica et Mineralogica, 2020, 39(1): 85-95(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202001007.htm
    [28] 王恩泽, 刘国勇, 庞雄奇, 等. 南堡凹陷中深层碎屑岩储集层成岩演化特征及成因机制[J]. 石油勘探与开发, 2020, 47(2): 321-333. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002012.htm

    Wang E Z, Liu G Y, Pang X Q, et al. Diagenetic evolution and formation mechanisms of middle to deep clastic reservoirs in the Nanpu Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2020, 47(2): 321-333(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002012.htm
    [29] 徐波, 廖保方, 张帆, 等. 南堡油田储层构型分级方案建议[J]. 地质科技情报, 2015, 34(2): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502024.htm

    Xu B, Liao B F, Zhang F, et al. Proposal for hierarchical scheme of architectural units to Nanpu Oilfield[J]. Geological Science and Technology Information, 2015, 34(2): 165-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502024.htm
    [30] 李潇鹏. 南堡凹陷沙一段-东营组强烈断拗背景下扇体的精细刻画及差异性研究[D]. 武汉: 中国地质大学(武汉), 2020.

    Li X P. Characterization of fans and analysis of their variations on the background of strong rifting and depression, 1st Member of Shahejie Formation to Dongying Formation, Nanpu Sag[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract).
    [31] Zhang J, Gao J, Wu J, et al. Sedimentary characteristics and seismic geomorphology of the upper third Member of Eocene Dongying Formation in double slope systems of Laoyemiao transverse anticline, Nanpu Sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2019, 109: 36-55.
    [32] Jia H, Liu T, Ji H, et al. Fan-delta facies architecture, morphological evolution and sediment delivery in the Oligocene Dongying Formation of the Nanpu Sag, Bohai Bay Basin, China[J]. Australian Journal of Earth Sciences, 2021, 68(8): 1201-1214.
    [33] 童亨茂, 范彩伟, 孟令箭, 等. 中国东-南部裂陷盆地断裂系统复杂性的表现形式及成因机制: 以南堡凹陷和涠西南凹陷为例[J]. 地质学报, 2018, 92(9): 1753-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201809001.htm

    Tong H M, Fan C W, Meng L J, et al. Manifestation and origin mechanism of the fault system complexity in rift basins in eastern-southern China: Case study of the Nanpu and Weixinan sags[J]. Acta Geologica Sinica, 2018, 92(9): 1753-1765(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201809001.htm
    [34] 童亨茂, 龚发雄, 孟令箭, 等. 渤海湾盆地南堡凹陷边界断层的"跃迁"特征及其成因机制[J]. 大地构造与成矿学, 2018, 42(3): 421-430(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201803001.htm

    Tong H M, Gong F X, Meng L J, et al. Tectonic model of boundary fault migration and its genetic mechanism in the Nanpu Sag, Bohai Bay Basin[J]. Geotectonica et Metallogenia, 2018, 42(3): 421-430(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201803001.htm
    [35] 朱光有, 张水昌, 王拥军, 等. 渤海湾盆地南堡大油田的形成条件与富集机制[J]. 地质学报, 2011, 85(1): 97-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101007.htm

    Zhu G Y, Zhang S C, Wang Y J, et al. Forming condition and enrichment mechanism of the Nanpu Oilfield in the Bohai Bay Basin, China[J]. Acta Geologica Sinica, 2011, 85(1): 97-113(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101007.htm
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  538
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06

目录

    /

    返回文章
    返回