留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DNAPL场地污染通量升尺度预测的敏感性分析

宋美钰 施小清 康学远 吴吉春

宋美钰, 施小清, 康学远, 吴吉春. DNAPL场地污染通量升尺度预测的敏感性分析[J]. 地质科技通报, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262
引用本文: 宋美钰, 施小清, 康学远, 吴吉春. DNAPL场地污染通量升尺度预测的敏感性分析[J]. 地质科技通报, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262
Song Meiyu, Shi Xiaoqing, Kang Xueyuan, Wu Jichun. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262
Citation: Song Meiyu, Shi Xiaoqing, Kang Xueyuan, Wu Jichun. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262

DNAPL场地污染通量升尺度预测的敏感性分析

doi: 10.19509/j.cnki.dzkq.tb20220262
基金项目: 

国家重点研发计划项目 2018YFC1800604

国家自然科学基金项目 41977157

详细信息
    作者简介:

    宋美钰(1998—),女,现正攻读水文学与水资源专业硕士学位,主要从事地下水数值模拟研究工作。E-mail: songmeiyu@smail.nju.edu.cn

    通讯作者:

    施小清(1979—),男,教授,主要从事地下水流数值模拟研究工作。E-mail: shixq@nju.edu.cn

  • 中图分类号: X141

Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites

  • 摘要:

    重非水相液体(DNAPL)污染问题日益严重。为评估DNAPL污染场地的环境风险, 常采用升尺度模型推估DNAPL污染源区溶解相的质量通量(溶解通量)。由于升尺度模型中的参数较多, 调查成本较高, 因此需筛选模型中的关键参数, 指导实际污染场地设计合理的观测数据采集方案。首先对升尺度模型中6个参数(地下水平均流速q、标准化浓度C0/Ceq、离散状DNAPL质量比例GF0、初始时刻离散状DNAPL贡献的通量比例fg、拟合参数β1β2)开展全局敏感性分析, 识别其中关键参数, 进而采用局部敏感性分析定量化关键参数的变化对通量预测的影响。研究结果表明, 参数q、C0/CeqGF0fg对通量预测有较大影响。qC0/Ceq在整个衰减过程中敏感性均相对较高, GF0fg随着衰减过程的进行, 敏感性不断增高, 分别在衰减中后期和后期达到峰值; 对于不同结构的污染源区, qC0/Ceq增大时, 通量的增幅基本不变。随着污染源区中离散状DNAPL和池状DNAPL间的质量比例(GTP)增大, GF0fg增大时, 其对通量预测的影响不断增大或减小。因此在预测溶解通量时需将调查成本重点应用于qC0/Ceq; 在合理设计污染源区修复方案时, 应重点调查GF0; 在预测污染源区寿命时, fg为重要调查对象; 对于所有结构的污染源区, qC0/Ceq均为重要调查对象, 对于GTP较大的污染源区, 应将调查成本重点应用于GF0, 对于GTP较小的污染源区, 应重点调查fg

     

  • 图 1  污染通量的升尺度预测[12]

    Figure 1.  Upscaling prediction of the mass flux

    图 2  算例渗透场(a)、饱和度(b)及污染羽(c)分布

    Figure 2.  Examples of infiltration field (a), saturation (b) and contamination plume (c) distribution

    图 3  Morris法敏感性分析平均结果

    Figure 3.  Average results of Morris method sensitivity analysis

    图 4  Morris法敏感性分析结果时变曲线

    Figure 4.  Time-varying curves of the results obtained from the Morris method sensitivity analysis

    图 5  Sobol法敏感性分析结果

    Figure 5.  Results of Sobol method sensitivity analysis

    图 6  参数q变化时(a)以及参数C0/Ceq变化时(b)通量的95%置信区间

    Figure 6.  95% confidence interval of the mass flux with changes in q (a), and with changes in C0/Ceq (b)

    图 7  参数GF0变化时(a)以及参数fg变化时(b)通量的95%置信区间

    Figure 7.  95% confidence interval of the mass fluxwith changes in GF0 (a), and with changes in fg (b)

    图 8  参数增加5%时通量的平均增幅

    Figure 8.  Average increase in flux for a 5% increase in parameters

    表  1  模型参数设置

    Table  1.   Setting of the model input parameters

    参数 取值
    研究区范围/m 50×25×15
    网格尺寸/m 1×1×1
    观测断面位置/m x=50
    生成参考场的地质参数
    lnKi的协方差函数 q(x, x′)=σKi2exp(-|xx′|/I2)
    lnKi的相关长度/m Ix, Iy, Iz=18, 6.25, 1
    lnKi的方差 σlnKi2=2.0
    lnKi的均值/ln(m·s-1) μlnKi=-8.0
    平均粒径/μm 295
    流体性质 DNAPL
    密度/(kg·m-3) 1 000 1 496
    黏滞性/(Pa·s) 0.001 0.000 89
    DNAPL污染源区
    泄露位置/m (25, 12.5, 0.5)
    DNAPL类型 三氯乙烯
    DNAPL的残余饱和度 0.20
    Brooks-Corey模型参数λ 2
    DNAPL的总质量/kg 2 000
    泄露速率/(m3·s-1) 5×10-20~5×10-4
    GTP 1.1~36.5
    运移参数
    水力梯度 0.01
    孔隙度/% 30
    纵向弥散度/m 0.5
    横向弥散度/m 0.05
    分子扩散系数/(cm2·s-1) 1.6×10-5
    下载: 导出CSV

    表  2  模型参数范围设置

    Table  2.   Setting of the range of model parameters

    参数 参数范围 概率分布 参数选取依据
    lg(C0/Ceq) -3.70~0 均匀分布 《地下水质量标准》Ⅳ类水标准[35]、三氯乙烯在水中的溶解度
    fg 0.01~0.99 均匀分布 参数的物理意义[15]
    GF0 0.01~0.99 均匀分布 参数的物理意义[15]
    lg(q)/(m·d-1) -2~1 均匀分布 常见的场地地下水流速范围[36]
    lg(β1) -1~0.48 均匀分布 Parker等的相关研究[15, 18, 37]
    β2 0.1~0.5 均匀分布 Parker等的相关研究[15, 18, 37]
    下载: 导出CSV
  • [1] 邓亚平, 郑菲, 施小清, 等. 多孔介质中DNAPLs运移行为研究进展[J]. 南京大学学报: 自然科学版, 2016, 52(3): 409-420. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201603001.htm

    Deng Y P, Zheng F, Shi X Q, et al. Review on the transport of dense non-aqueous phase liquids in porous media[J]. Journal of Nanjing University : Natural Science Edition, 2016, 52(3): 409-420(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201603001.htm
    [2] 郑菲, 高燕维, 孙媛媛, 等. 污染源区结构特征对Tween 80去除DNAPL效果的影响[J]. 中国环境科学, 2016, 36(7): 2035-2042. doi: 10.3969/j.issn.1000-6923.2016.07.019

    Zheng F, Gao Y W, Sun Y Y, et al. The influence of source-zone architecture on DNAPL removal by Tween 80 flushing[J]. China Environmental Science, 2016, 36(7): 2035-2042(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2016.07.019
    [3] 郭琼泽, 张烨, 姜蓓蕾, 等. 表面活性剂增强修复地下水中PCE的砂箱实验及模拟[J]. 中国环境科学, 2018, 38(9): 3398-3405. doi: 10.3969/j.issn.1000-6923.2018.09.025

    Guo Q Z, Zhang Y, Jiang B L, et al. Experiment and numerical simulation of surfactant-enhanced aquifer remediation in PCE contaminated laboratory sandbox[J]. China Environmental Science, 2018, 38(9): 3398-3405(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2018.09.025
    [4] Stewart L D, Chambon J C, Widdowson M A, et al. Upscaled modeling of complex DNAPL dissolution[J]. Journal of Contaminant Hydrology, 2022, 244: 103920. doi: 10.1016/j.jconhyd.2021.103920
    [5] Koch J, Nowak W. Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high-resolution stochastic simulation[J]. Water Resources Research, 2015, 51(2): 806-831. doi: 10.1002/2014WR015478
    [6] Zhang S, Mao G, Crittenden J, et al. Groundwater remediation from the past to the future: A bibliometric analysis[J]. WaterResearch, 2017, 119: 114-125.
    [7] Zhu J, Sykes J F. Simple screening models of NAPL dissolution in the subsurface[J]. Journal of Contaminant Hydrology, 2004, 72(1/4): 245-258.
    [8] Parker J C, Park E. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers[J]. Water Resources Research, 2004, 40(5): 147-158.
    [9] Falta R W, Rao P S, Basu N. Assessing the impacts of partial mass depletion in DNAPL source zones: I. Analytical modeling of source strength functions and plume response[J]. Journal of Contaminant Hydrology, 2005, 78(4): 259-280. doi: 10.1016/j.jconhyd.2005.05.010
    [10] Zhang Z, Brusseau M L. Nonideal transport of reactive solutes in heterogeneous porous media: 5. Simulating regional-scale behavior of a trichloroethene plume during pump-and-treat remediation[J]. Water Resources Research, 1999, 35(10): 2921-2935. doi: 10.1029/1999WR900162
    [11] Karaoglu A G, Copty N K, Akyol N H, et al. Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution[J]. Journal of Contaminant Hydrology, 2019, 225: 103515. doi: 10.1016/j.jconhyd.2019.103515
    [12] Kueper B H, Frind E O. Two-phase flow in heterogeneous porous media: 1. Model development[J]. Water Resources Research, 1991, 27(6): 1049-1057. doi: 10.1029/91WR00266
    [13] 郭芷琳, 马瑞, 张勇, 等. 地下水污染物在高度非均质介质中的迁移过程: 机理与数值模拟综述[J]. 中国科学: 地球科学, 2021, 51(11): 1817-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202111001.htm

    Guo Z L, Ma R, Zhang Y, et al. Contaminant transport in heterogeneous aquifers: A critical review of mechanisms and numerical methods of non-Fickian dispersion[J]. Science China: Earth Sciences, 2021, 51(11): 1817-1836(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202111001.htm
    [14] 薛佩佩, 文章, 梁杏. 地质统计学在含水层参数空间变异研究中的应用进展与发展趋势[J]. 地质科技通报, 2022, 41(1): 209-222. doi: 10.19509/j.cnki.dzkq.2022.0015

    Xue P P, Wen Z, Liang X. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 209-222(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0015
    [15] Christ J A, Ramsburg C A, Pennell K D, et al. Predicting DNAPL mass discharge from pool-dominated source zones[J]. Journal of contaminant hydrology, 2010, 114(1/4): 18-34.
    [16] Kokkinaki A, Werth C J, Sleep B E. Comparison of upscaled models for multistage mass discharge from DNAPL source zones[J]. Water Resources Research, 2014, 50(4): 3187-3205. doi: 10.1002/2013WR014663
    [17] Guo Z, Russo A E, DiFilippo E L, et al. Mathematical modeling of organic liquid dissolution in heterogeneous source zones[J]. Journal of Contaminant Hydrology, 2020, 235: 103716. doi: 10.1016/j.jconhyd.2020.103716
    [18] 宋美钰, 施小清, 马春龙, 等. 复杂DNAPL污染源区溶解相污染通量的升尺度计算[J]. 中国环境科学, 2022, 42(5): 2095-2104. doi: 10.3969/j.issn.1000-6923.2022.05.013

    Song M Y, Shi X Q, Ma C L, et al. Upscaling dissolved phase mass flux for complex DNAPL source zones[J]. China Environmental Science, 2022, 42(5): 2095-2104(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2022.05.013
    [19] Li K B, Abriola L M. A multistage multicriteria spatial sampling strategy for estimating contaminant mass discharge and its uncertainty[J]. Water Resources Research, 2009, 45: W06407.
    [20] Kang X, Shi X, Deng Y, et al. Coupled hydrogeophysical inversion of DNAPL source zone architecture and permeability fieldin a 3D heterogeneous sandbox by assimilation time-lapse cross-borehole electrical resistivity data via ensemble Kalman filtering[J]. Journal of Hydrology, 2018, 567: 149-164. doi: 10.1016/j.jhydrol.2018.10.019
    [21] Kang X, Kokkinaki A, Kitanidis P K, et al. Improved characterization of DNAPL source zones via sequential hydrogeophysical inversion of hydraulic-head, self-potential and partitioning tracer data[J]. Water Resources Research, 2020, 56(8): e2020WR027627.
    [22] 束龙仓, 王茂枚, 刘瑞国, 等. 地下水数值模拟中的参数灵敏度分析[J]. 河海大学学报: 自然科学版, 2007, 35(5): 491-494. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200705002.htm

    Shu L C, Wang M M, Liu R G, et al. Sensitivity analysis of parameters in numerical simulation of groundwater[J]. Journal of Hohai University: Natural Science Edition, 2007, 35(5): 491-494(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200705002.htm
    [23] 郑菲, 施小清, 吴吉春, 等. 苏北盆地盐城组咸水层CO2地质封存泄漏风险的全局敏感性分析[J]. 高校地质学报, 2012, 18(2): 232-238. doi: 10.3969/j.issn.1006-7493.2012.02.005

    Zheng F, Shi X Q, Wu J C, et al. Global sensitivity analysis of leakage risk for CO2 geological sequestration in the saline aquifer of Yancheng Formation in Subei Basin[J]. Geological Journal of China Universities, 2012, 18(2): 232-238(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2012.02.005
    [24] Welter D E, White J T, Hunt R J, et al. Approaches in highly parameterized inversion: PEST++ Version 3, a Parameter ESTimation and uncertainty analysis software suite optimized for large environmental models[R]. : US Geological Survey, 2015.
    [25] Bea S A, Wainwright H, Spycher N, et al. Identifying key controls on the behavior of an acidic-U (Ⅵ) plume in the Savannah River Site using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151: 34-54. doi: 10.1016/j.jconhyd.2013.04.005
    [26] Wainwright H M, Finsterlr S. Global sensitivity and data-worth analyses in iTOUGH2: User's guide[R]. : Office of Scientific and Technical Information (OSTI), 2016.
    [27] 杜建雯, 施小清, 徐红霞, 等. 基于iTOUGH2的生物降解模型全局敏感性时变分析[J]. 水文地质工程地质, 2020, 47(2): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002006.htm

    Du J W, Shi X Q, Xu H X, et al. Temporal variation of global sensitivity analysis for biodegradation model using iTOUGH2[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 35-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002006.htm
    [28] Saltelli A, Ratto M, Tarantola S, et al. Sensitivity analysis for chemical models[J]. Chemical Reviews, 2005, 105(7): 2811-2828. doi: 10.1021/cr040659d
    [29] Valsala R, Govindarajan S K. Co-colloidal BTEX and microbial transport in a saturated porous system: Numerical modeling and sensitivity analysis[J]. Transport in Porous Media, 2019, 127(2): 269-294. doi: 10.1007/s11242-018-1191-2
    [30] 孙飞飞, 许钦, 任立良, 等. 水文模型参数敏感性分析概述[J]. 中国农村水利水电, 2014(3): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201403027.htm

    Sun F F, Xu Q, Ren L L, et al. An analysis of the parameters sensitivity of hydrological model[J]. China Academic Journal Electronic Publishing House, 2014(3): 92-95(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201403027.htm
    [31] 王上上, 陈富, 李东贤, 等. 锚杆不确定性对加固边坡失稳概率的影响[J]. 地质科技通报, 2022, 41(2): 282-289. doi: 10.19509/j.cnki.dzkq.2022.0055

    Wang S S, Chen F, Li D X, et al. Influence of anchor uncertainty on the failure probability of reinforced slope[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 282-289(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0055
    [32] Hill M C, Tiedeman C R. Effective groundwater model calibration: With analysis of data, sensitivities, predictions, and uncertainty[M]. New York: John Wiley & Sons, 2006.
    [33] McKay M D. Evaluating prediction uncertainty[R]. : Nuclear Regulatory Commission, 1995.
    [34] Rajabi M M, Ataie-Ashtiani B, Janssen H. Efficiency enhancement of optimized Latin hypercube sampling strategies: Application to Monte Carlo uncertainty analysis and meta-modeling[J]. Advances in Water Resources, 2015, 76: 127-139. doi: 10.1016/j.advwatres.2014.12.008
    [35] 地下水质量标准: GB14848-2017[S]. 北京: 中国标准出版社, 2017.

    Quality standard in groundwater: GB14848-2017[S]. Beijing: Standards Press of China, 2017.
    [36] 于青春, 万力, 靳孟贵, 等. 水文地质学基础[M]. 北京: 地质出版社, 2011.

    Yu Q C, Wan L, Jin M G, et al. Foundation of hydrogeology[M]. Beijing: Geological Publishing House, 2011(in Chinese).
    [37] Park E, Parker J C. Evaluation of an upscaled model for DNAPL dissolution kinetics in heterogeneous aquifers[J]. Advances in Water Resources, 2005, 28(12): 1280-1291.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  861
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07

目录

    /

    返回文章
    返回