留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深时源-汇系统要素的常用定量分析方法

陈星渝 张志杰 万力 袁选俊 周川闽 成大伟 刘银河

陈星渝, 张志杰, 万力, 袁选俊, 周川闽, 成大伟, 刘银河. 深时源-汇系统要素的常用定量分析方法[J]. 地质科技通报, 2024, 43(1): 89-107. doi: 10.19509/j.cnki.dzkq.tb20220277
引用本文: 陈星渝, 张志杰, 万力, 袁选俊, 周川闽, 成大伟, 刘银河. 深时源-汇系统要素的常用定量分析方法[J]. 地质科技通报, 2024, 43(1): 89-107. doi: 10.19509/j.cnki.dzkq.tb20220277
CHEN Xingyu, ZHANG Zhijie, WAN Li, YUAN Xuanjun, ZHOU Chuanmin, CHENG Dawei, LIU Yinhe. Quantitative analysis methods of source-to-sink systems in deep-time and their progress[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 89-107. doi: 10.19509/j.cnki.dzkq.tb20220277
Citation: CHEN Xingyu, ZHANG Zhijie, WAN Li, YUAN Xuanjun, ZHOU Chuanmin, CHENG Dawei, LIU Yinhe. Quantitative analysis methods of source-to-sink systems in deep-time and their progress[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 89-107. doi: 10.19509/j.cnki.dzkq.tb20220277

深时源-汇系统要素的常用定量分析方法

doi: 10.19509/j.cnki.dzkq.tb20220277
基金项目: 

国家油气重大专项 2017ZX05001

中国石油天然气股份有限公司科学研究与技术开发项目 2019B-0307

中国石油天然气股份有限公司科学研究与技术开发项目 2021DJ0401

详细信息
    作者简介:

    陈星渝, E-mail: xingyuchen@pku.edu.cn

    通讯作者:

    张志杰, E-mail: zhzhijie@petrochina.com.cn

  • 中图分类号: P512.2

Quantitative analysis methods of source-to-sink systems in deep-time and their progress

More Information
  • 摘要:

    源-汇系统研究是构造地质学、沉积学和层序地层学的综合,因其整体性、动态化和半定量-定量的特点受到了广泛关注。首先阐述了目前深时(前第四纪)源-汇系统的关键问题是物质平衡的定量表征及搬运过程对沉积物的控制,由于地层记录缺失和参数获取困难等原因,研究仍极具挑战。随后综述了深时源-汇系统定量分析方法,可分为地质年代学法、将今论古法和沉积学法。各方法通过获取地貌要素、水力学参数、侵蚀速率、沉积通量等信息,建立"源""汇"之间的定量关系,进而重建盆地沉积充填演化史。通过系统介绍不同方法的基本原理、相关参数,对比其优越性及局限性,认为地质年代学法应用较广,核心在于物源示踪;将今论古法关键是地质背景的类比及地质参数的选择;沉积学法受多变量控制,需兼顾构造-气候背景及研究尺度。最后对深时源-汇系统定量分析的发展进行了展望,在"将今论古"这一重要思想指导下,需着眼于物源体系、沉积物搬运路径、沉积物分配关系、系统内的各要素及其耦合作用,需注重多时间尺度的定量表征、多学科交叉的动态研究。而相较于大陆边缘源-汇系统,陆相湖盆源-汇系统模式与预测模型有待进一步完善。

     

  • 图 1  源-汇系统主控因素的时间尺度与空间范围的关系(改自文献[14-15])

    Figure 1.  Timescales of forcing factors in source-to-sink systems relative to their spatial extent

    图 2  准噶尔盆地西北缘玛湖-中拐地区中二叠统下乌尔禾组沉积区与潜在物源区的锆石U-Pb年代学特征对比

    a.利用碎屑锆石U-Pb年龄进行物源分析的方法示意图(改自文献[15])。其中,沉积区沉积岩的碎屑锆石年龄分布可与潜在物源区的结晶基底年龄对比,从而确定物源区,同时还可大致判断物源区C的供给影响更大; b.西准噶尔地区潜在物源区岩浆锆石年龄分布特征; c.准噶尔盆地沉积区碎屑锆石年龄分布特征(改自文献[34])

    Figure 2.  Comparison of zircon U-Pb geochronological characteristics between the sink area and potential source area of the Middle Permian Lower Wuerhe Formation in the Mahu-Zhongguai area, northwestern margin of the Junggar Basin

    图 3  碎屑锆石(U-Th)-He和U-Pb双重测年法进行物源分析的原理示意图(改自文献[42])

    图a表示沉积区的碎屑矿物来自1个火山A和4个冷却年龄不同的地形BCDE,每个物源区可能具有相似的U /Pb或(U-Th)-He年龄,但是它们的组合却截然不同。由于地形B和C的U/Pb年龄是无法区分的,因此仅通过结晶年龄无法确定碎屑矿物的来源(相同的结晶年龄,不同的冷却年龄)。类似地,由于地形A和B,D和E的(U-Th)-He年龄相似,因此仅靠冷却年龄无法将A与B、D与E区分。根据图b的双重测年结果可区分所有的碎屑物源来源

    Figure 3.  Illustration of one of the principal motivations behind the development of He-Pb double dating of detrital zircon

    图 4  使用冷却年龄和沉积年龄计算2种不同类型时滞的概念图(改自文献[15])

    a.矿物颗粒“冷却-剥露-侵蚀-搬运-沉积”的轨迹;b.时滞tlagA是高温冷却年龄(如结晶年龄)和低温冷却年龄之差,代表单个矿物颗粒(如碎屑锆石)从深处结晶后冷却剥露至更浅深度的低温封闭温度等温面;c.时滞tlagB是冷却年龄和沉积年龄之差,表示矿物颗粒从有效封闭温度等温面深度剥露至地表,随后经侵蚀在源-汇系统中搬运并临时储存

    Figure 4.  Conceptual diagrams of two different types of lag times to be calculated with combinations of cooling ages and depositional ages

    图 5  流域、陆架、盆底等地貌要素与陆坡长度的比例关系(改自文献[65])

    图中源-汇系统为活动大陆边缘或被动大陆边缘系统。从左至右随着空间规模变大,河流系统在整个系统中所占的比例增大,而陆架与陆坡之比则保持相对稳定。垂直虚线代表地貌单元的边界

    Figure 5.  Geomorphological scaling relationships for catchment, shelf, and basin-floor segments relative to slope length

    图 6  源-汇系统不同构成要素之间的比例关系(改自文献[79])

    Figure 6.  Scaling relationships in modern fluvial systems

    图 7  支点法误差因子和不确定性因素的旋风图(改自文献[87],误差因子是极值与均值的比值)

    Figure 7.  Tornado chart indicates the magnitude of errors and uncertainties in the fulcrum approach

    图 8  地层沉积通量法估算陆坡沉积通量的流程图(改自文献[99])

    P为进积速率;A为沉积速率;公式内T为沉积时间;L为陆坡沉积的总长度;T0为陆坡远端尖灭处的陆坡厚度;图表中T为陆坡厚度;xd为陆坡远端尖灭处的距离;qs为沉积通量;η为陆坡的高度

    Figure 8.  Calculation steps during the sediment flux estimation of the shelf-edge

    图 9  深时源-汇系统定量分析流程图

    Figure 9.  Quantitation steps of the deep-time source-to-sink system

    表  1  深时源-汇系统要素的定量分析方法总结

    Table  1.   Quantitation methods of source-to-sink system parameters in deep time

  • [1] MEADE R H. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United-States[J]. Journal of Geology, 1982, 90(3): 235-252. doi: 10.1086/628677
    [2] MARGINS OFFICE. Source-to-sink(S2S)[C]//Margins Office. NSF MARGINS Program Science Plans 2004. New York: Columbia University, 2003: 131-159.
    [3] ALLEN P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276. doi: 10.1038/nature06586
    [4] ALLEN P A, ALLEN J R. Basin analysis: Principles and application to petroleum play assessment[M]. New York: John Wiley & Sons, 2013.
    [5] ALLEN P A. Sediment routing systems: The fate of sediment from source to sink[M]. Cambridge: Cambridge University Press, 2017.
    [6] WELTJE G J. Quantitative models of sediment generation and provenance: State of the art and future developments[J]. Sedimentary Geology, 2012, 280: 4-20. doi: 10.1016/j.sedgeo.2012.03.010
    [7] PAOLA C, MARTIN J M. Mass-balance effects in depositional systems[J]. Journal of Sedimentary Research, 2012, 82(5/6): 435-450.
    [8] ALLEN P A, ARMITAGE J J, CARTER A, et al. The Qs problem: Sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130. doi: 10.1111/sed.12015
    [9] BHATTACHARYA J P, COPELAND P, LAWTON T F, et al. Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential[J]. Earth-Science Reviews, 2016, 153: 77-110. doi: 10.1016/j.earscirev.2015.10.013
    [10] BREWER C J, HAMPSON G J, WHITTAKER A C, et al. Comparison of methods to estimate sediment flux in ancient sediment routing systems[J]. Earth-Science Reviews, 2020, 207: 103217. doi: 10.1016/j.earscirev.2020.103217
    [11] 徐长贵. 陆相断陷盆地源-汇时空耦合控砂原理: 基本思想、概念体系及控砂模式[J]. 中国海上油气, 2013, 25(4): 1-11.

    XU C G. Controlling sand principle of source-sink coupling in time and space in continental rift basins: Basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4): 1-11. (in Chinese with English abstract)
    [12] 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20.

    LIN C S, XIA Q L, SHI H S, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. (in Chinese with English abstract)
    [13] 龚承林, 齐昆, 徐杰, 等. 深水源-汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报, 2021, 39(1): 231-252.

    GONG C L, QI K, XU J, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252. (in Chinese with English abstract)
    [14] HELLAND-HANSEN W, SOMME T O, MARTINSEN O J, et al. Deciphering earth's natural hourglasses: Perspectives on source-to-sink analysis[J]. Journal of Sedimentary Research, 2016, 86(9): 1008-1033. doi: 10.2110/jsr.2016.56
    [15] ROMANS B W, CASTELLTORT S, COVAULT J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29. doi: 10.1016/j.earscirev.2015.07.012
    [16] BLUM M D, HATTIER-WOMACK J, KNELLER B, et al. Climate change, sea-level change, and fluvial sediment supply to deepwater depositional systems[C]. Anon. External Controls on Deep Water Depositional Systems. SEPM, Special Publication. 2009: 15-39.
    [17] ROMANS B W, GRAHAM S A. A deep-time perspective of land-ocean linkages in the sedimentary record[J]. Annual Review of Marine Science 2013, 5(1): 69-94. doi: 10.1146/annurev-marine-121211-172426
    [18] ARMITAGE J J, DULLER R A, Whittaker A C, et al. Transformation of tectonic and climatic signals from source to sedimentary archive[J]. Nature Geoscience, 2011, 4(4): 231-235. doi: 10.1038/ngeo1087
    [19] GONG C L, BLUM M D, WANG Y M, et al. Can climatic signals be discerned in a deep-water sink?: An answer from the Pearl River source-to-sink sediment-routing system[J]. GSA Bulletin, 2017, 130(3/4): 661-677.
    [20] SCHUMM S A. The fluvial system[M]. New York: John Wiley & Sons, 1977.
    [21] 徐长贵, 杜晓峰, 徐伟, 等. 沉积盆地"源-汇"系统研究新进展[J]. 石油与天然气地质, 2017, 38(1): 1-11.

    XU C G, DU X F, XU W, et al. New advances of the "source-to-sink" system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38(1): 1-11. (in Chinese with English abstract)
    [22] 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源-汇系统要素耦合研究进展[J]. 地球科学, 2017, 42(11): 5-24.

    ZHU H T, XU C G, ZHU X M, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 5-24. (in Chinese with English abstract)
    [23] 操应长, 徐琦松, 王健. 沉积盆地"源-汇"系统研究进展[J]. 地学前缘, 2018, 25(4): 116-131.

    CAO Y C, XU Q S, WANG J. Progress in "source-to-sink" system research[J]. Earth Science Frontiers, 2018, 25(4): 116-131. (in Chinese with English abstract)
    [24] 邵龙义, 王学天, 李雅楠, 等. 深时源-汇系统古地理重建方法评述[J]. 古地理学报, 2019, 21(1): 73-87.

    SHAO L Y, WANG X T, LI Y N, et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 73-87. (in Chinese with English abstract)
    [25] 谈明轩, 朱筱敏, 张自力, 等. 古"源-汇"系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质, 2020, 41(5): 1107-1118.

    TAN M X, ZHU X M, ZHANG Z L, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient "source-to-sink" systems[J]. Oil & Gas Geology, 2020, 41(5): 1107-1118. (in Chinese with English abstract)
    [26] 朱红涛, 朱筱敏, 刘强虎, 等. 层序地层学与源-汇系统理论内在关联性与差异性[J]. 石油与天然气地质, 2022, 43(4): 763-776.

    ZHU H T, ZHU X M, LIU Q H, et al. Sequence stratigraphy and source-to-sink system: Connections and distinctions[J]. Oil & Gas Geology, 2022, 43(4): 763-776. (in Chinese with English abstract)
    [27] CATUNEANU O. Principles of sequence stratigraphy[M]. [S. l. ]: Elsevier, 2006.
    [28] SNEDDEN J W, GALLOWAY W E, MILLIKEN K T, et al. Validation of empirical source-to-sink scaling relationships in a continental-scale system: The Gulf of Mexico Basin Cenozoic record[J]. Geosphere, 2018, 14(2): 768-784. doi: 10.1130/GES01452.1
    [29] CARLSON R W. Absolute age determinations: Radiometric[C]//Gupta H K. Encyclopedia of solid earth geophysics. Dordrecht, Netherlands: Springer, 2011: 1-8.
    [30] CARRAPA B, WIJBRANS J, BERTOTTI G. Episodic exhumation in the western Alps[J]. Geology, 2003, 31(7): 601-604. doi: 10.1130/0091-7613(2003)031<0601:EEITWA>2.0.CO;2
    [31] RAHL J M, EHLERS T A, VAN DER PLUIJM B A. Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits[J]. Earth and Planetary Science Letters, 2007, 256(1/2): 147-161.
    [32] DICKINSON W R, GEHRELS G E. U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic implications[J]. Sedimentary Geology, 2003, 163(1/2): 29-66.
    [33] CARRAPA B. Resolving tectonic problems by dating detrital minerals[J]. Geology, 2010, 38(2): 191-192. doi: 10.1130/focus022010.1
    [34] CHEN X Y, ZHANG Z J, YUAN X J, et al. The evolution of permian source-to-sink systems and tectonics implications in the NW Junggar Basin, China: Evidence from detrital zircon geochronology[J]. Minerals, 2022, 12(9): 1-32.
    [35] LAWTON T F. Small grains, big rivers, continental concepts[J]. Geology, 2014, 42(7): 639-640. doi: 10.1130/focus072014.1
    [36] SAYLOR J E, STOCKLI D F, HORTON B K, et al. Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the eastern Cordillera, Colombia[J]. Geological Society of America Bulletin, 2012, 124(5/6): 762-779.
    [37] RAHL R M, REINERS P W, CAMPBELL I H, et al. Combined single-grain(U-Th)/He and U/Pb dating of detrital zircons from the Navajo sandstone, Utah[J]. Geology, 2003, 31(9): 761-764. doi: 10.1130/G19653.1
    [38] FOSDICK J C, GROVE M, GRAHAM S A, et al. Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes[J]. Basin Research, 2015, 27(4): 546-572. doi: 10.1111/bre.12088
    [39] XU J, SNEDDEN J W, STOCKLI D F, et al. Early Miocene continental-scale sediment supply to the Gulf of Mexico Basin based on detrital zircon analysis[J]. Geological Society of America Bulletin, 2017, 129(1/2): 3-22.
    [40] XU J, STOCKLI D F, SNEDDEN J W. Enhanced provenance interpretation using combined U-Pb and(U-Th)/He double dating of detrital zircon grains from Lower Miocene strata, proximal Gulf of Mexico Basin, North America[J]. Earth and Planetary Science Letters, 2017, 475: 44-57. doi: 10.1016/j.epsl.2017.07.024
    [41] CAMPBELL I H, REINERS P W, ALLEN C M, et al. He-Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 402-432.
    [42] REINERS P W, CAMPBELL I H, NICOLESCU S, et al. (U-Th)/(HE-Pb) double dating of detrital zircons[J]. American Journal of Science, 2005, 305(4): 259-311. doi: 10.2475/ajs.305.4.259
    [43] ZHU W, WU C D, WANG J L, et al. Provenance analysis of detrital monazite, zircon and Cr-spinel in the northern Tibetan Plateau: Implications for the Paleozoic tectonothermal history of the Altyn Tagh and Qimen Tagh Ranges[J]. Basin Research, 2019, 31(3): 539-561. doi: 10.1111/bre.12333
    [44] REINERS P W, BRANDON M T. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 419-466. doi: 10.1146/annurev.earth.34.031405.125202
    [45] 张沛, 周祖翼. 碎屑矿物热年代学研究进展[J]. 地球科学进展, 2008, 23(11): 1130-1140.

    ZHANG P, ZHOU Z Y. Geological applications of detrital thermochronology[J]. Advances in Earth Science, 2008, 23(11): 1130-1140. (in Chinese with English abstract)
    [46] MICHAEL N A, CARTER A, WHITAKER A C, et al. Erosion rates in the source region of an ancient sediment routing system: Comparison of depositional volumes with thermochronometric estimates[J]. Journal of the Geological Society, 2014, 171(3): 401-412. doi: 10.1144/jgs2013-108
    [47] 徐杰, 姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报, 2019, 21(3): 379-396.

    XU J, JIANG Z X. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 2019, 21(3): 379-396. (in Chinese with English abstract)
    [48] 林春明, 张霞, 赵雪培, 等. 沉积岩石学的室内研究方法综述[J]. 古地理学报, 2021, 23(2): 223-244.

    LIN C M, ZHANG X, ZHAO X P, et al. Review of laboratory research methods for sedimentary petrology[J]. Journal of Palaeogeography, 2021, 23(2): 223-244. (in Chinese with English abstract)
    [49] VERMEESCH P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341: 140-146. doi: 10.1016/j.chemgeo.2013.01.010
    [50] SAYLOR J E, SUNDELL K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220. doi: 10.1130/GES01237.1
    [51] 张凌, 王平, 陈玺赟, 等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.

    ZHANG L, WANG P, CHEN X Y, et al. Review in detrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430. (in Chinese with English abstract)
    [52] AMIDON W H, BURBANK D W, GEHRELS G E. U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 244-260.
    [53] AMIDON W H, BURBANK D W, GEHRELS G E. Construction of detrital mineral populations: Insights from mixing of U-Pb zircon ages in Himalayan rivers[J]. Basin Research, 2005, 17(4): 463-485. doi: 10.1111/j.1365-2117.2005.00279.x
    [54] MASON C C, FILDANI A, GERBER T, et al. Climatic and anthropogenic influences on sediment mixing in the Mississippi source-to-sink system using detrital zircons: Late Pleistocene to recent[J]. Earth and Planetary Science Letters, 2017, 466: 70-79. doi: 10.1016/j.epsl.2017.03.001
    [55] SHARMAN G R, JOHNSTONE S A. Sediment unmixing using detrital geochronology[J]. Earth and Planetary Science Letters, 2017, 477: 183-194. doi: 10.1016/j.epsl.2017.07.044
    [56] SUNDELL K E, SAYLOR J E. Unmixing detrital geochronology age distributions[J]. Geochemistry Geophysics Geosystems, 2017, 18(8): 2872-2886. doi: 10.1002/2016GC006774
    [57] SAYLOR J E, KNOWLES J N, HORTON B K, et al. Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands[J]. The Journal of Geology, 2013, 121(1): 17-33. doi: 10.1086/668683
    [58] HACK J T. Studies of longitudinal stream profiles in Virginia and Maryland[M]. US Government Printing Office, 1957.
    [59] ANDREAS W. The transfer of river load to deep-sea fans: A quantitative approach[J]. AAPG Bulletin, 1993, 77(10): 1679-1692.
    [60] SCHUMM S A, WINKLEY B R. The variability of large alluvial rivers[M]. New York: American Society of Civil Engineers, 1994.
    [61] WANG X T, SHAO L Y, ERIKSSON K A, et al. Evolution of a plume-influenced source-to-sink system: An example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian, SW China[J]. Earth-Science Reviews, 2020, 207: 103224. doi: 10.1016/j.earscirev.2020.103224
    [62] 王学天, 邵龙义, Eriksson K A, 等. 基于定量古地理的BQART模型深时古地势重建方法: 以晚二叠世峨眉山大火成岩省内带为例[J]. 沉积学报, 2022, 1-26.

    WANG X T, SHAO L Y, ERIKSSON K A, et al. Using BQART model to reconstruct paleo-relief in deep time based on quantitative paleogeography: A case study from the Late Permian central Emeishan large igneous province[J]. Acta Sedimentologica Sinica, 2022, 1-26. (in Chinese with English abstract)
    [63] HOVIUS N. Regular spacing of drainage outlets from linear mountain belts[J]. Basin Research, 1996, 8(1): 29-44. doi: 10.1111/j.1365-2117.1996.tb00113.x
    [64] WALCOTT R C, SUMMERFIELD M A. Universality and variability in basin outlet spacing: Implications for the two-dimensional form of drainage basins[J]. Basin Research, 2009, 21(2): 147-155. doi: 10.1111/j.1365-2117.2008.00379.x
    [65] SØMME T O, HELLAND-HANSEN W, MARTINSEN O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. doi: 10.1111/j.1365-2117.2009.00397.x
    [66] NYBERG B, HELLAND-HANSEN W, GAWTHORPE R L, et al. Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems[J]. Sedimentary Geology, 2018, 373: 111-133. doi: 10.1016/j.sedgeo.2018.06.007
    [67] MILLIMAN J D, SYVITSKI J P M. Geomorphic tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. Journal of Geology, 1992, 100(5): 525-544. doi: 10.1086/629606
    [68] HOVIUS N. Controls on sediment supply by large rivers[C]//Anon. Relative role of eustasy, climate, and tectonism in continental rocks. SEPM(Society for Sedimentary Geology), 1998: 2-16.
    [69] SYVITSKI J P, MOREHEAD M D. Estimating river-sediment discharge to the ocean: Application to the Eel margin, northern California[J]. Marine Geology, 1999, 154(1/4): 13-28.
    [70] NYBERG B, HELLAND-HANSEN W, GAWTHORPE R, et al. Assessing first-order BQART estimates for ancient source-to-sink mass budget calculations[J]. Basin Research, 2021, 33(4): 2435-2452. doi: 10.1111/bre.12563
    [71] SYVITSKI J P M, MILLIMAN J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. Journal of Geology, 2007, 115(1): 1-19. doi: 10.1086/509246
    [72] ZHANG J Y, COVAULT J, PYRCZ M, et al. Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, Gulf of Mexico[J]. AAPG Bulletin, 2018, 102(9): 1685-1702. doi: 10.1306/01081817308
    [73] TAN M X, SCHOLZ C A, LIU Z F. Source-to-sink response to high-amplitude lake level rise driven by orbital-scale climate change: An example from the Pleistocene Lake Malawi(Nyasa) Rift, East Africa[J]. Sedimentology, 2021, 68(7): 3494-3522. doi: 10.1111/sed.12909
    [74] 王新航, 汪银奎, 旦增平措, 等. 陆相流域盆地沉积通量模拟及古地貌意义: 以西藏尼玛地区为例[J]. 沉积学报, 2022, 40(4): 912-923.

    WANG X H, WANG Y K, DANZENG P C, et al. Sediment flux simulation in the terrestrial source-to-sink system, Nima area, Central Tibet, and its paleogeomorphological implications[J]. Acta Sedimentologica Sinica, 2022, 40(4): 912-923. (in Chinese with English abstract)
    [75] KORUP O. Earth's portfolio of extreme sediment transport events[J]. Earth-Science Reviews, 2012, 112(3/4): 115-125.
    [76] COVAULT J A, CRADDOCK W H, ROMANS B W, et al. Spatial and temporal variations in landscape evolution: Historic and longer-term sediment flux through global catchments[J]. The Journal of Geology, 2013, 121(1): 35-56. doi: 10.1086/668680
    [77] CASTELLTORT S, VAN DEN DRIESSCHE J. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record?[J]. Sedimentary Geology, 2003, 157(1/2): 3-13.
    [78] HAMPSON G J, DULLER R A, PETTER A L, et al. Mass-balance constraints on stratigraphic interpretation of linked alluvial-coastal-shelfal deposits from source to sink: Example from Cretaceous western Interior Basin, Utah and Colorado, U.S.A. [J]. Journal of Sedimentary Research, 2014, 84(11): 935-960. doi: 10.2110/jsr.2014.78
    [79] BLUM M, MARTIN J, MILLIKEN K, et al. Paleovalley systems: Insights from Quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116: 128-169. doi: 10.1016/j.earscirev.2012.09.003
    [80] LIN W, BHATTACHARYA J P. Estimation of source-to-sink mass balance by a Fulcrum approach using channel paleohydrologic parameters of the Cretaceous Dunvegan Formation, Canada[J]. Journal of Sedimentary Research, 2017, 87(1): 97-116. doi: 10.2110/jsr.2017.1
    [81] 张自力, 朱筱敏, 陈贺贺, 等. 断陷湖盆缓坡带古河道定量恢复方法及油气地质意义: 以霸县凹陷文安斜坡东营组为例[J]. 高校地质学报, 2021, 27(5): 501-514.

    ZHANG Z L, ZHU X M, CHEN H H, et al. Restoration and characteristics analysis of paleochannels in gentle slopes of a rift basin: Dongying Formation of Baxian Sag, Bohai Bay Basin[J]. Geological Journal of China Universities, 2021, 27(5): 501-514. (in Chinese with English abstract)
    [82] DAVIDSON S K, HARTLEY A J. Towards a quantitative method for estimating paleohydrology from clast size and comparison with modern rivers[J]. Journal of Sedimentary Research, 2010, 80(7/8): 688-702.
    [83] XU J, SNEDDEN J W, GALLOWAY W E, et al. Channel-belt scaling relationship and application to Early Miocene source-to-sink systems in the Gulf of Mexico Basin[J]. Geosphere, 2017, 13(1): 179-200. doi: 10.1130/GES01376.1
    [84] MILLIKEN K T, BLUM M D, SNEDDEN J W, et al. Application of fluvial scaling relationships to reconstruct drainage-basin evolution and sediment routing for the Cretaceous and Paleocene of the Gulf of Mexico[J]. Geosphere, 2018, 14(2): 749-767. doi: 10.1130/GES01374.1
    [85] LIU B Q, SHAO L Y, WANG X T, et al. Application of channel-belt scaling relationship to Middle Jurassic source-to-sink system in the Saishiteng area of the northern Qaidam Basin, NW China[J]. Journal of Palaeogeography, 2019, 8(1): 16. doi: 10.1186/s42501-019-0031-9
    [86] DAVIDSON S K, NORTH C P. Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the rock record[J]. Journal of Sedimentary Research, 2009, 79(10): 773-792. doi: 10.2110/jsr.2009.080
    [87] HOLBROOK J, WANAS H. A fulcrum approach to assessing source-to-sink mass balance using channel paleohydrologic paramaters derivable from common fluvial data sets with an example from the Cretaceous of Egypt[J]. Journal of Sedimentary Research, 2014, 84(5): 349-372. doi: 10.2110/jsr.2014.29
    [88] SHARMA S, BHATTACHARYA J P, RICHARDS B. Source-to-sink sediment budget analysis of the Cretaceous Ferron Sandstone, Utah, U.S.A., using the fulcrum approach[J]. Journal of Sedimentary Research, 2017, 87(6): 594-608. doi: 10.2110/jsr.2017.23
    [89] 刘炳强, 王伟超, 张文龙, 等. 陆相盆地河-湖沉积源-汇系统收支分析: 以柴北缘中侏罗统石门沟组为例[J]. 沉积学报, 2022, 1-25.

    LIU B Q, WANG W C, ZHANG W L, et al. Source-to-sink system budget analysis of continental fluvial-lacustrine sedimentary association: A case study from the Middle Jurassic in the northern Qaidam Basin[J]. Acta Sedimentologica Sinica, 2022, 1-25. (in Chinese with English abstract)
    [90] SADLER P M. The influence of hiatuses on sediment accumulation rates[M]. Switzerland: GeoResearch Forum. Trans. Tech. Publications, 1999.
    [91] MIALL A D. Fluvial depositional systems[M]. [S. l. ]: Springer, 2014.
    [92] ALLEN P A. Provenance research: Torridonian and Wealden[C]//Morton A C, Todd S P, Haughton P D W. Developments in sedimentary provenance studies. London: Geological Society of London. 1991: 13-21.
    [93] WELTJE G J, VON EYNATTEN H. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 2004, 171(1/4): 1-11.
    [94] NIE J S, HORTON B K, SAYLOR J E, et al. Integrated provenance analysis of a convergent retroarc foreland system: U-Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley Basin, northern Andes, Colombia[J]. Earth-Science Reviews, 2012, 110(1/4): 111-126.
    [95] 许苗苗, 魏晓椿, 杨蓉, 等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.

    XU M M, WEI X C, YANG R, et al. Research progress of provenance tracing method for heavy mineral analysis[J]. Advances in Earth Science, 2021, 36(2): 154-171. (in Chinese with English abstract)
    [96] 简星, 关平, 张巍. 碎屑金红石: 沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.

    JIAN X, GUAN P, ZHANG W. Detrital rutile: A sediment provenance indicator[J]. Advances in Earth Science, 2012, 27(8): 828-846. (in Chinese with English abstract)
    [97] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示[J]. 地球科学进展, 2018, 33(11): 1142-1153.

    ZHANG S, JIAN X, ZHANG W. Sedimentary provenance analysis using detrital apatite: A review[J]. Advances in Earth Science, 2018, 33(11): 1142-1153. (in Chinese with English abstract)
    [98] 杨仁超, 李进步, 樊爱萍, 等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报, 2013, 31(1): 99-107.

    YANG R C, LI J B, FAN A P, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica, 2013, 31(1): 99-107. (in Chinese with English abstract)
    [99] PETTER A L, STEEL R J, MOHRIG D, et al. Estimation of the paleoflux of terrestrial-derived solids across ancient basin margins using the stratigraphic record[J]. Geological Society of America Bulletin, 2012, 125(3/4): 578-593.
    [100] SADLER P M, JEROLMACK D J. Scaling laws for aggradation, denudation and progradation rates: The case for time-scale invariance at sediment sources and sinks[J]. Strata and Time: Probing the Gaps in Our Understanding, 2015, 404(1): 69-88.
    [101] GUILLOCHEAU F, ROUBY D, ROBIN C, et al. Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia-South Africa margin[J]. Basin Research, 2012, 24(1): 3-30. doi: 10.1111/j.1365-2117.2011.00511.x
    [102] SADLER P M. Sediment accumulation rates and the completeness of stratigraphic sections[J]. Journal of Geology, 1981, 89(5): 569-584. doi: 10.1086/628623
    [103] GALLOWAY W E, WHITEAKER T L, GANEY-CURRY P. History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico Basin[J]. Geosphere, 2011, 7(4): 938-973. doi: 10.1130/GES00647.1
    [104] 何文军, 郑孟林, 费李莹, 等. 陆相坳陷盆地边缘沉积区古地貌恢复: 以准噶尔盆地玛湖地区三叠系百口泉组为例[J]. 古地理学报, 2019, 21(5): 803-816.

    HE W J, ZHENG M L, FEI L Y, et al. Ancient landform restoration of marginal sedimentary area in the continental depression basin: A case study of the Triassic Baikouquan Formation in Mahu area of Junggar Basin[J]. Journal of Palaeogeography, 2019, 21(5): 803-816. (in Chinese with English abstract)
    [105] SØMME T O, MARTINSEN O J, THURMOND J B. Reconstructing morphological and depositional characteristics in subsurface sedimentary systems: An example from the Maastrichtian-Danian Ormen Lange system, Møre Basin, Norwegian Sea[J]. AAPG Bulletin, 2009, 93(10): 1347-1377. doi: 10.1306/06010909038
    [106] BRIDGE J S, TYE R S. Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores[J]. AAPG Bulletin, 2000, 84(8): 1205-1228.
    [107] 万力, 黄秀, 张志杰, 等. 碎屑岩系不同沉积体系的沉积正演方法简述[J]. 地质科技通报, 2023, 42(3): 153-162. doi: 10.19509/j.cnki.dzkq.2022.0105

    WAN L, HUANG X, ZHANG Z J, et al. A review of stratigraphic forward simulation for diferent clastic systems[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 153-162. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0105
    [108] GUO R H, HU X M, GARZANTI E, et al. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events: A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 2020, 201: 103082. doi: 10.1016/j.earscirev.2020.103082
    [109] WAN L, BIANCHI V, HURTER S, et al. Evolution of a delta-canyon-fan system on a typical passive margin using stratigraphic forward modelling[J]. Marine Geology, 2020, 429: 106310. doi: 10.1016/j.margeo.2020.106310
    [110] WAN L, BIANCHI V, HURTER S, et al. Morphological controls on delta-canyon-fan systems: Insights from stratigraphic forward models[J]. Sedimentology, 2021, 69(2): 864-890.
    [111] WAN L, HURTER S, BIANCHI V, et al. Combining stratigraphic forward modeling and susceptibility mapping to investigate the origin and evolution of submarine canyons[J]. Geomorphology, 2022, 398: 108047. doi: 10.1016/j.geomorph.2021.108047
    [112] WAN L, HURTER S, BIANCHI V, et al. The roles and seismic expressions of turbidites and mass transport deposits using stratigraphic forward modeling and seismic forward modeling[J]. Journal of Asian Earth Sciences, 2022, 232: 105110. doi: 10.1016/j.jseaes.2022.105110
    [113] 陆威延, 朱红涛, 徐长贵, 等. 源-汇系统级次划分方法及应用[J]. 地球科学, 2020, 45(4): 1327-1336.

    LU W Y, ZHU H T, XU C G, et al. Methods and applications of level subdivision of source-to-sink system[J]. Earth Science, 2020, 45(4): 1327-1336. (in Chinese with English abstract)
    [114] XU Q S, WANG J, CAO Y C, et al. Characteristics and evolution of the Late Permian "source-to-sink" system of the Beisantai area in the eastern Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2019, 181: 103907. doi: 10.1016/j.jseaes.2019.103907
    [115] LI Y N, SHAO L Y, XU J, et al. Application of channel-belt scaling relationships to early Middle Jurassic source-to-sink system evolution in the southern Junggar Basin[J]. Marine and Petroleum Geology, 2020, 117: 104356. doi: 10.1016/j.marpetgeo.2020.104356
    [116] LIU H, MENG J, BANERJEE S. Estimation of palaeo-slope and sediment volume of a lacustrine rift basin: A semi-quantitative study on the southern steep slope of the Shijiutuo Uplift, Bohai Offshore Basin, China[J]. Journal of Asian Earth Sciences, 2017, 147: 148-163. doi: 10.1016/j.jseaes.2017.07.028
    [117] LIU H, LOON A J, XU J, et al. Relationships between tectonic activity and sedimentary source-to-sink system parameters in a lacustrine rift basin: A quantitative case study of the Huanghekou Depression(Bohai Bay Basin, E China)[J]. Basin Research, 2019, 32(4): 587-612.
    [118] 谈明轩, 朱筱敏, 张自力, 等. 构造掀斜主导的断陷湖盆缓坡层序"源-汇"正演模拟定量研究[J]. 沉积学报, 2022, 1-17.

    TAN M X, ZHU X M, ZHANG Z L, et al. Source-to-sink quantitative stratigraphic forward modeling on the tilted hanging-wall sequence architecture of a tectonically-driven lacustrine rift basin[J]. Acta Sedimentologica Sinica, 2022, 1-17. (in Chinese with English abstract)
    [119] LIU Q H, ZHU X M, ZENG H L L, S.L. Source-to-sink analysis in an Eocene rifted lacustrine basin margin of western Shaleitian Uplift area, offshore Bohai Bay Basin, eastern China[J]. Marine and Petroleum Geology, 2019, 107: 41-58. doi: 10.1016/j.marpetgeo.2019.05.013
    [120] LIU Q H, ZHU H T, ZHU X M, et al. Proportional relationship between the flux of catchment-fluvial segment and their sedimentary response to diverse bedrock types in subtropical lacustrine rift basins[J]. Marine and Petroleum Geology, 2019, 107: 351-364. doi: 10.1016/j.marpetgeo.2019.05.031
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  610
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 录用日期:  2022-09-22
  • 修回日期:  2022-09-19

目录

    /

    返回文章
    返回