Prediction model and variation law of P-wave velocity of single fracture granite in an underground water-sealed storage cavern
-
摘要:
揭示裂隙岩体纵波速度变化规律对工程岩体质量分级与稳定性评价具有重要意义。以某地下水封洞库无充填型单裂隙花岗岩为研究对象, 基于钻孔电视成像、水压致裂法地应力测试与声波全波列测井, 获取了384组单裂隙花岗岩的几何特性、受力状态与纵波速度, 构建起了预测单裂隙花岗岩纵波速度的进化-神经网络模型, 分析了关键指标影响下单裂隙花岗岩纵波速度的变化规律。研究表明: 该水封洞库单裂隙花岗岩纵波速度分布于4 300~5 330 m/s之间, 82.3%的纵波速度在4 700~5 200 m/s之间; 选取裂隙法向应力、平均张开度与倾角作为单裂隙花岗岩纵波速度的预测指标是合理可行的; 将现场测试数据分为训练样本与测试样本, 基于遗传算法优化神经网络权值、阈值的进化-神经网络模型构建出单裂隙花岗岩纵波速度预测模型, 其测试误差最大仅为2.9%, 85%的样本测试误差不超过1.5%, 预测模型精度较高。分析了纵波速度变化规律, 发现单裂隙花岗岩纵波速度随裂隙法向应力增大而增大, 但当法向应力增至5 MPa后的纵波速度增大速率逐渐减小, 纵波速度随裂隙张开度增大而逐渐减小, 纵波速度在裂隙倾角小于40°时无明显变化, 此后纵波速度随倾角增大而增大。
Abstract:Objective Revealing the variation behavior of P-wave velocity in fractured rock masses is of great significance for the quality grading and stability evaluation of rock masses for engineering purposes.
Methods The nonfilling single fracture granite of an under ground water sealed storage cavern was taken as the research object. Based on borehole television images, hydraulic fracturing geostress tests, and ultrasonic full waveform logging, the geometric characteristics, stress state, and P-wave velocity of 384 groups of single fracture granites were obtained. An evolutionary neural network model for the prediction of the P-wave velocity of granite with a single fracture was constructed, and the variation behavior of the key indexes affecting the P-wave velocity of granite with a single fracture was analyzed.
Results The study shows that the P-wave velocity of a single fracture granite in the water-sealed storage cavern is distributed around 4 300-5 330 m/s, and 82.3% of the P-wave velocity varies within 4 700-5 200 m/s. It is reasonable and feasible to select the fracture normal stress, average aperture, and dip angle as prediction indexes of the P-wave velocity of granite with a single fracture. The field test data sets are divided into training samples and test samples. The P-wave velocity prediction model of granite with a single fracture, based on the evolutionary neural network model, is constructed. The neural network weight and threshold are optimized by the genetic algorithm.The maximum test error of the prediction model is only 2.9%, and the test error of 85% of the samples is less than 1.5%.The prediction model thus yields high accuracy.
Conclusion The variation feature of the P-wave velocity revealed that the P-wave velocity of granite with a single fracture increases with increasing normal stress on the fracture. However, the increase in the P-wave velocity decreases gradually when the normal stress increases to 5 MPa. The P-wave velocity decreases with an increasing fracture aperture. The P-wave velocity increases with an increasing dip angle. However, no difference occurred considering that the fracture dip angle is less than 40°.
-
表 1 岩体物理力学参数
Table 1. Physical and mechanical parameters of the rock mass
材料 参数 取值 岩块 密度ρ/(kg·m-3) 2 700 动弹性模量E/GPa 30 动泊松比μ 0.25 裂隙 法向刚度Kn/(GPa·m-1) 15 切向刚度Ks/(GPa·m-1) 6 -
[1] 胡成, 陈刚, 曹孟雄, 等. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126. doi: 10.19509/j.cnki.dzkq.2022.0029Hu C, Cheng G, Cao M X, et al. A case study on water sealing efficieny of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0029 [2] Oda M, Yamabe T, Kamemura K. A crack tensor and its relation to wave velocity anisotropy in jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(6): 387-397. [3] Kahraman S. The effects of fracture roughness on P-wave velocity[J]. Engineering Geology, 2002, 63(3): 347-350. [4] 韩嵩, 蔡美峰. 节理岩体物理模拟与超声波试验研究[J]. 岩石力学与工程学报, 2007, 26(5): 1026-1033.Han S, Cai M F. Study on physical simulation of jointed rock mass and ultrasonic experiments[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 1026-1033 (in Chinese with English abstract). [5] 茹忠亮, 蒋宇静. 弹性纵波入射粗糙节理面透射性能研究[J]. 岩石力学与工程学报, 2008, 27(12): 2535-2539. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812025.htmRu Z L, Jiang Y J. Research on transmission behaviors of rough joint surfaces with elastic P-wave incidence[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2535-2539 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812025.htm [6] King M S, Myer L R, Rezowalli J J. Experimental studies of elastic-wave propagation in a columnar-jointed rock mass[J]. Geophysical Prospecting, 2010, 34(8): 1185-1199. [7] Kurtulu C, Vckardes M, Sar U, et al. Experimental studies in wave propagation across a jointed rock mass[J]. Bulletin of Engineering Geology & the Environment, 2012, 71(2): 231-234. [8] Miranda L, Cantini L, Guedes J, et al. Applications of sonic tests to masonry elements: Influence of joints on the propagation velocity of elastic waves[J]. Journal of Materials in Civil Engineering, 2013, 25(6): 667-682. doi: 10.1061/(ASCE)MT.1943-5533.0000547 [9] Li J C, Li N N, Li H B, et al. An SHPB test study on wave propagation across rock masses with different contact area ratios of joint[J]. International Journal of Impact Engineering, 2017, 105(7): 109-116. [10] Chen X, Li J C, Cai M F, et al. A further study on wave propagation across a single joint with different roughness[J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2701-2709. doi: 10.1007/s00603-016-0934-z [11] Chen X, Li J C, Cai M F, et al. Experimental study on wave propagation across a rock joint with rough surface[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2225-2234. doi: 10.1007/s00603-015-0716-z [12] Sebastian R, Sitharam T G. Transmission of elastic waves through a frictional boundary[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 84-90. doi: 10.1016/j.ijrmms.2013.12.011 [13] 王瑞红, 李万文, 刘杰, 等. 节理倾角对砂岩强度及物理特征的影响[J]. 长江科学院院报, 2018, 35(6): 70-74, 80.Wang R H, Li W W, Liu J, et al. Influence of joint dip angle on strength and physical characteristics of sandstone[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(6): 70-74, 80 (in Chinese with English abstract). [14] Li N N, Zhou Y Q, Li H B. Experimental study for the effect of joint surface characteristics on stress wave propagation[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(3): 50. doi: 10.1007/s40948-021-00235-8 [15] Wang S W, Li J C, Li X, et al. Dynamic photoelastic experimental study on the influence of joint surface geometrical property on wave propagation and stress disturbance[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104985. doi: 10.1016/j.ijrmms.2021.104985 [16] 解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302Xie J Y, Lu H Z, Chen L, et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0302 [17] Amos N. Effects of stress on velocity anisotropy in rocks with cracks[J]. Journal of Geophysical Research Atmospheres, 1971, 76(8): 2022-2034. doi: 10.1029/JB076i008p02022 [18] 赵明阶. 二维应力场作用下岩体弹性波速与衰减特性研究[J]. 岩石力学与工程学报, 2007, 26(1): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200701017.htmZhao M J. Study on wave velocity and attenuation of rock mass in 2D stresses field[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 123-130 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200701017.htm [19] Chong S H, Kim J W, Cho G C, et al. Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass[J]. Geomechanics and Engineering, 2020, 21(3): 227-236. [20] Kern H. Laboratory seismic measurements: An aid in the interpretation of seismic field data[J]. Terra Nova, 2010, 2(6): 617-628. [21] 伍法权. 岩体工程地质动力学基本原理[J]. 工程地质学报, 2011, 19(3): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201103003.htmWu F Q. Principles of engineering geological dynamics of rock mass[J]. Journal of Engineering Geology, 2011, 19(3): 304-316 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201103003.htm [22] Li X Y, Lei X L, Li Q, et al. Experimental investigation of Sinian shale rock under triaxial stress monitored by ultrasonic transmission and acoustic emission[J]. Journal of Natural Gas Science and Engineering, 2017, 43: 110-123. doi: 10.1016/j.jngse.2017.03.035 [23] Shen H M, Li X Y, Li Q, et al. A method to model the effect of pre-existing cracks on P-wave velocity in rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 493-506. doi: 10.1016/j.jrmge.2019.10.001 [24] Tao M, Chen Z H, Li X B, et al. Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations[J]. Geomechanics & Engineering, 2016, 10(3): 285-296. [25] Mohd N M M, Song K I, Cho G C, et al. Long-wavelength elastic wave propagation across naturally fractured rock masses[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 561-573. doi: 10.1007/s00603-013-0448-x [26] 赵航, 李新平, 罗忆, 等. 裂隙岩体中弹性波传播特性试验及宏细观损伤本构模型研究[J]. 岩土力学, 2017, 38(10): 2939-2948.Zhao H, Li X P, Luo Y, et al. Characteristics of elastic wave propagation in jointed rock mass and development of constitutive model by coupling macroscopic and mesoscopic damage[J]. Rock and Soil Mechanics, 2017, 38(10): 2939-2948 (in Chinese with English abstract). [27] Dobróka M, Szabó N P, Dobróka T E, et al. Multi-exponential model to describe pressure-dependent P- and S-wave velocities and its use to estimate the crack aspect ratio[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 385-395. [28] 曹洋兵, 陈玉华, 张朋, 等. 单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制[J]. 地质科技通报, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308Cao Y B, Chen Y H, Zhang P, et al. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0308 [29] ASTM. Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock: D2845-2008[S]. West Conshohocken: US-ASTM, 2000. [30] 王卫华, 李夕兵, 胡盛斌. 模型参数对3DEC动态建模的影响[J]. 岩石力学与工程学报, 2005, 24(1): 4790-4797. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508001033.htmWang W H, Li X B, Hu S B. Effect of model parameters on 3DEC dynamic modeling[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 4790-4797 (in Chinese with English abstract). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508001033.htm [31] Kuhlemeyer R L, Lysmer J. Finite element method accuracy for wave propagation problems[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(5): 421-427. [32] 黄真萍, 曾焕接, 曹洋兵, 等. 结构面刚度对岩体弹性纵波传播特性影响的数值模拟[J]. 福州大学学报: 自然科学版, 2019, 47(1): 107-112.Huang Z P, Zeng H J, Cao Y B, et al. Numerical simulation on influence of discontinuity stiffness on the elastic P-waves propagation properties of rock mass[J]. Journal of Fuzhou University: Natural Science Edition, 2019, 47(1): 107-112 (in Chinese with English abstract). [33] 毕贵权, 李宁, 李国玉. 非贯通裂隙介质中波传播特性试验研究[J]. 岩石力学与工程学报, 2009, 28(1): 3116-3123. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1080.htmBi G Q, Li N, Li G Y. Experimental study on characteristics of wave propagation in media containing intermittent cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 3116-3123 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1080.htm [34] Zhang X, Wang Z, Yang Z. Distinguishing oil and water layers in a porous cracked medium by interpreting acoustic logging data on the basis of Hudson theory[J]. Journal of Earth Science, 2017, 28(3): 500-506. [35] Bandis S C, Lumsden A C, Barton N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences, 1983, 20(6): 249-268. [36] 曹洋兵, 晏鄂川, 谢良甫. 考虑环境变量作用的滑坡变形动态灰色-进化神经网络预测研究[J]. 岩土力学, 2012, 33(3): 848-852.Cao Y B, Yan E C, Xie L F. Study of landslide deformation prediction based on gray model-evolutionary neural network model considering function of environmental variables[J]. Rock and Soil Mechanics, 2012, 33(3): 848-852 (in Chinese with English abstract). [37] Cao Y B, Feng X T, Yan E C, et al. Calculation method and distribution characteristics of fracture hydraulic aperture from field experiments in fractured granite area[J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1629-1647. [38] 符文熹, 尚岳全, 孙红月, 等. 岩体变形参数渐变取值模型及工程应用[J]. 工程地质学报, 2002, 10(2): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200202019.htmFu W X, Shang Y Q, Sun H Y, et al. Application of progressively changing rock mass deformation parameters to rock mass engineering[J]. Journal of Engineering Geology, 2002, 10(2): 198-203 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200202019.htm [39] 魏建新, 狄帮让. 裂隙张开度对地震波特性影响的模型研究[J]. 中国科学: 地球科学, 2008, 38(增刊1): 211-218.Wei J X, Di B R. Model study on influence of fracture opening on seismic wave characteristics[J]. Science Chinese: Earth Science, 2008, 38(S1): 211-218 (in Chinese with English abstract).