留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下水封洞库单裂隙花岗岩纵波速度变化规律与预测模型

曹洋兵 吴阳 张朋 江志豪 张思怡 黄真萍

曹洋兵, 吴阳, 张朋, 江志豪, 张思怡, 黄真萍. 地下水封洞库单裂隙花岗岩纵波速度变化规律与预测模型[J]. 地质科技通报, 2023, 42(6): 12-20. doi: 10.19509/j.cnki.dzkq.tb20220279
引用本文: 曹洋兵, 吴阳, 张朋, 江志豪, 张思怡, 黄真萍. 地下水封洞库单裂隙花岗岩纵波速度变化规律与预测模型[J]. 地质科技通报, 2023, 42(6): 12-20. doi: 10.19509/j.cnki.dzkq.tb20220279
Cao Yangbing, Wu Yang, Zhang Peng, Jiang Zhihao, Zhang Siyi, Huang Zhenping. Prediction model and variation law of P-wave velocity of single fracture granite in an underground water-sealed storage cavern[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 12-20. doi: 10.19509/j.cnki.dzkq.tb20220279
Citation: Cao Yangbing, Wu Yang, Zhang Peng, Jiang Zhihao, Zhang Siyi, Huang Zhenping. Prediction model and variation law of P-wave velocity of single fracture granite in an underground water-sealed storage cavern[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 12-20. doi: 10.19509/j.cnki.dzkq.tb20220279

地下水封洞库单裂隙花岗岩纵波速度变化规律与预测模型

doi: 10.19509/j.cnki.dzkq.tb20220279
基金项目: 

福建省自然科学基金项目 2023J01424

岩土钻掘与防护教育部工程研究中心开放基金项目 201702

自然资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)开放基金项目 FJKLGH2022K002

贵州省地质矿产勘查开发局地质科研项目 黔地矿科合[2020]1号

详细信息
    作者简介:

    曹洋兵(1987—), 男, 副教授, 主要从事岩体力学特性与稳定性评价工作。E-mail: ybcao@fzu.edu.cn

  • 中图分类号: TU45

Prediction model and variation law of P-wave velocity of single fracture granite in an underground water-sealed storage cavern

  • 摘要:

    揭示裂隙岩体纵波速度变化规律对工程岩体质量分级与稳定性评价具有重要意义。以某地下水封洞库无充填型单裂隙花岗岩为研究对象, 基于钻孔电视成像、水压致裂法地应力测试与声波全波列测井, 获取了384组单裂隙花岗岩的几何特性、受力状态与纵波速度, 构建起了预测单裂隙花岗岩纵波速度的进化-神经网络模型, 分析了关键指标影响下单裂隙花岗岩纵波速度的变化规律。研究表明: 该水封洞库单裂隙花岗岩纵波速度分布于4 300~5 330 m/s之间, 82.3%的纵波速度在4 700~5 200 m/s之间; 选取裂隙法向应力、平均张开度与倾角作为单裂隙花岗岩纵波速度的预测指标是合理可行的; 将现场测试数据分为训练样本与测试样本, 基于遗传算法优化神经网络权值、阈值的进化-神经网络模型构建出单裂隙花岗岩纵波速度预测模型, 其测试误差最大仅为2.9%, 85%的样本测试误差不超过1.5%, 预测模型精度较高。分析了纵波速度变化规律, 发现单裂隙花岗岩纵波速度随裂隙法向应力增大而增大, 但当法向应力增至5 MPa后的纵波速度增大速率逐渐减小, 纵波速度随裂隙张开度增大而逐渐减小, 纵波速度在裂隙倾角小于40°时无明显变化, 此后纵波速度随倾角增大而增大。

     

  • 图 1  单裂隙花岗岩纵波速度频率分布直方图

    Figure 1.  Frequency histogram of the P-wave velocity in granite with a single fracture

    图 2  单裂隙岩体等效弹性模型示意图

    Fn为法向力(N); t′为裂隙厚度(m);σn为法向应力(Pa); A为裂隙接触面积(m2); Kn为裂隙法向刚度(Pa/m);t1, t2分别为上、下岩块厚度(m);E1E2分别为上、下岩块弹性模量(Pa); k1, k2分别为上、下岩块等效弹簧刚度(N/m);k′为裂隙的等效弹簧刚度(N/m)

    Figure 2.  Schematic diagram of the equivalent elastic model of a single fracture rock mass

    图 3  质点速度沿模型Z轴方向分布图

    Figure 3.  P-wave velocity distribution among the Z-axis of the model

    图 4  纵波速度随法向刚度变化规律

    Figure 4.  P-wave velocity varies with normal stiffness

    图 5  纵波速度随裂隙倾角的变化规律

    Figure 5.  P-wave velocity varies with fracture dip angle

    图 6  现场试验数据统计分析

    a.不同法向应力区间的裂隙数量分布直方图; b.不同张开度区间的裂隙数量分布直方图; c.不同倾角区间的裂隙数量分布直方图

    Figure 6.  Statistical analysis of field test data

    图 7  进化-神经网络模型预测值与实测值对比

    Figure 7.  Comparison between the measured and predicted based on the evolutionary neural network model

    图 8  裂隙法向应力对纵波速度的影响

    Figure 8.  Variation feature related to obtained P-wave velocities derived from different fracture normal stresses

    图 9  裂隙张开度对纵波速度的影响规律

    Figure 9.  Variation feature related to obtained P-wave velocities derived from different fracture opening widths

    图 10  裂隙倾角对纵波速度的影响规律

    Figure 10.  Variation feature related to obtained P-wave velocities derived from different fracture dip anyles

    表  1  岩体物理力学参数

    Table  1.   Physical and mechanical parameters of the rock mass

    材料 参数 取值
    岩块 密度ρ/(kg·m-3) 2 700
    动弹性模量E/GPa 30
    动泊松比μ 0.25
    裂隙 法向刚度Kn/(GPa·m-1) 15
    切向刚度Ks/(GPa·m-1) 6
    下载: 导出CSV
  • [1] 胡成, 陈刚, 曹孟雄, 等. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126. doi: 10.19509/j.cnki.dzkq.2022.0029

    Hu C, Cheng G, Cao M X, et al. A case study on water sealing efficieny of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0029
    [2] Oda M, Yamabe T, Kamemura K. A crack tensor and its relation to wave velocity anisotropy in jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(6): 387-397.
    [3] Kahraman S. The effects of fracture roughness on P-wave velocity[J]. Engineering Geology, 2002, 63(3): 347-350.
    [4] 韩嵩, 蔡美峰. 节理岩体物理模拟与超声波试验研究[J]. 岩石力学与工程学报, 2007, 26(5): 1026-1033.

    Han S, Cai M F. Study on physical simulation of jointed rock mass and ultrasonic experiments[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 1026-1033 (in Chinese with English abstract).
    [5] 茹忠亮, 蒋宇静. 弹性纵波入射粗糙节理面透射性能研究[J]. 岩石力学与工程学报, 2008, 27(12): 2535-2539. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812025.htm

    Ru Z L, Jiang Y J. Research on transmission behaviors of rough joint surfaces with elastic P-wave incidence[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2535-2539 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812025.htm
    [6] King M S, Myer L R, Rezowalli J J. Experimental studies of elastic-wave propagation in a columnar-jointed rock mass[J]. Geophysical Prospecting, 2010, 34(8): 1185-1199.
    [7] Kurtulu C, Vckardes M, Sar U, et al. Experimental studies in wave propagation across a jointed rock mass[J]. Bulletin of Engineering Geology & the Environment, 2012, 71(2): 231-234.
    [8] Miranda L, Cantini L, Guedes J, et al. Applications of sonic tests to masonry elements: Influence of joints on the propagation velocity of elastic waves[J]. Journal of Materials in Civil Engineering, 2013, 25(6): 667-682. doi: 10.1061/(ASCE)MT.1943-5533.0000547
    [9] Li J C, Li N N, Li H B, et al. An SHPB test study on wave propagation across rock masses with different contact area ratios of joint[J]. International Journal of Impact Engineering, 2017, 105(7): 109-116.
    [10] Chen X, Li J C, Cai M F, et al. A further study on wave propagation across a single joint with different roughness[J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2701-2709. doi: 10.1007/s00603-016-0934-z
    [11] Chen X, Li J C, Cai M F, et al. Experimental study on wave propagation across a rock joint with rough surface[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2225-2234. doi: 10.1007/s00603-015-0716-z
    [12] Sebastian R, Sitharam T G. Transmission of elastic waves through a frictional boundary[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 84-90. doi: 10.1016/j.ijrmms.2013.12.011
    [13] 王瑞红, 李万文, 刘杰, 等. 节理倾角对砂岩强度及物理特征的影响[J]. 长江科学院院报, 2018, 35(6): 70-74, 80.

    Wang R H, Li W W, Liu J, et al. Influence of joint dip angle on strength and physical characteristics of sandstone[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(6): 70-74, 80 (in Chinese with English abstract).
    [14] Li N N, Zhou Y Q, Li H B. Experimental study for the effect of joint surface characteristics on stress wave propagation[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(3): 50. doi: 10.1007/s40948-021-00235-8
    [15] Wang S W, Li J C, Li X, et al. Dynamic photoelastic experimental study on the influence of joint surface geometrical property on wave propagation and stress disturbance[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104985. doi: 10.1016/j.ijrmms.2021.104985
    [16] 解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302

    Xie J Y, Lu H Z, Chen L, et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0302
    [17] Amos N. Effects of stress on velocity anisotropy in rocks with cracks[J]. Journal of Geophysical Research Atmospheres, 1971, 76(8): 2022-2034. doi: 10.1029/JB076i008p02022
    [18] 赵明阶. 二维应力场作用下岩体弹性波速与衰减特性研究[J]. 岩石力学与工程学报, 2007, 26(1): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200701017.htm

    Zhao M J. Study on wave velocity and attenuation of rock mass in 2D stresses field[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 123-130 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200701017.htm
    [19] Chong S H, Kim J W, Cho G C, et al. Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass[J]. Geomechanics and Engineering, 2020, 21(3): 227-236.
    [20] Kern H. Laboratory seismic measurements: An aid in the interpretation of seismic field data[J]. Terra Nova, 2010, 2(6): 617-628.
    [21] 伍法权. 岩体工程地质动力学基本原理[J]. 工程地质学报, 2011, 19(3): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201103003.htm

    Wu F Q. Principles of engineering geological dynamics of rock mass[J]. Journal of Engineering Geology, 2011, 19(3): 304-316 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201103003.htm
    [22] Li X Y, Lei X L, Li Q, et al. Experimental investigation of Sinian shale rock under triaxial stress monitored by ultrasonic transmission and acoustic emission[J]. Journal of Natural Gas Science and Engineering, 2017, 43: 110-123. doi: 10.1016/j.jngse.2017.03.035
    [23] Shen H M, Li X Y, Li Q, et al. A method to model the effect of pre-existing cracks on P-wave velocity in rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 493-506. doi: 10.1016/j.jrmge.2019.10.001
    [24] Tao M, Chen Z H, Li X B, et al. Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations[J]. Geomechanics & Engineering, 2016, 10(3): 285-296.
    [25] Mohd N M M, Song K I, Cho G C, et al. Long-wavelength elastic wave propagation across naturally fractured rock masses[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 561-573. doi: 10.1007/s00603-013-0448-x
    [26] 赵航, 李新平, 罗忆, 等. 裂隙岩体中弹性波传播特性试验及宏细观损伤本构模型研究[J]. 岩土力学, 2017, 38(10): 2939-2948.

    Zhao H, Li X P, Luo Y, et al. Characteristics of elastic wave propagation in jointed rock mass and development of constitutive model by coupling macroscopic and mesoscopic damage[J]. Rock and Soil Mechanics, 2017, 38(10): 2939-2948 (in Chinese with English abstract).
    [27] Dobróka M, Szabó N P, Dobróka T E, et al. Multi-exponential model to describe pressure-dependent P- and S-wave velocities and its use to estimate the crack aspect ratio[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 385-395.
    [28] 曹洋兵, 陈玉华, 张朋, 等. 单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制[J]. 地质科技通报, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308

    Cao Y B, Chen Y H, Zhang P, et al. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0308
    [29] ASTM. Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock: D2845-2008[S]. West Conshohocken: US-ASTM, 2000.
    [30] 王卫华, 李夕兵, 胡盛斌. 模型参数对3DEC动态建模的影响[J]. 岩石力学与工程学报, 2005, 24(1): 4790-4797. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508001033.htm

    Wang W H, Li X B, Hu S B. Effect of model parameters on 3DEC dynamic modeling[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 4790-4797 (in Chinese with English abstract). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508001033.htm
    [31] Kuhlemeyer R L, Lysmer J. Finite element method accuracy for wave propagation problems[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(5): 421-427.
    [32] 黄真萍, 曾焕接, 曹洋兵, 等. 结构面刚度对岩体弹性纵波传播特性影响的数值模拟[J]. 福州大学学报: 自然科学版, 2019, 47(1): 107-112.

    Huang Z P, Zeng H J, Cao Y B, et al. Numerical simulation on influence of discontinuity stiffness on the elastic P-waves propagation properties of rock mass[J]. Journal of Fuzhou University: Natural Science Edition, 2019, 47(1): 107-112 (in Chinese with English abstract).
    [33] 毕贵权, 李宁, 李国玉. 非贯通裂隙介质中波传播特性试验研究[J]. 岩石力学与工程学报, 2009, 28(1): 3116-3123. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1080.htm

    Bi G Q, Li N, Li G Y. Experimental study on characteristics of wave propagation in media containing intermittent cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 3116-3123 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1080.htm
    [34] Zhang X, Wang Z, Yang Z. Distinguishing oil and water layers in a porous cracked medium by interpreting acoustic logging data on the basis of Hudson theory[J]. Journal of Earth Science, 2017, 28(3): 500-506.
    [35] Bandis S C, Lumsden A C, Barton N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences, 1983, 20(6): 249-268.
    [36] 曹洋兵, 晏鄂川, 谢良甫. 考虑环境变量作用的滑坡变形动态灰色-进化神经网络预测研究[J]. 岩土力学, 2012, 33(3): 848-852.

    Cao Y B, Yan E C, Xie L F. Study of landslide deformation prediction based on gray model-evolutionary neural network model considering function of environmental variables[J]. Rock and Soil Mechanics, 2012, 33(3): 848-852 (in Chinese with English abstract).
    [37] Cao Y B, Feng X T, Yan E C, et al. Calculation method and distribution characteristics of fracture hydraulic aperture from field experiments in fractured granite area[J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1629-1647.
    [38] 符文熹, 尚岳全, 孙红月, 等. 岩体变形参数渐变取值模型及工程应用[J]. 工程地质学报, 2002, 10(2): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200202019.htm

    Fu W X, Shang Y Q, Sun H Y, et al. Application of progressively changing rock mass deformation parameters to rock mass engineering[J]. Journal of Engineering Geology, 2002, 10(2): 198-203 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200202019.htm
    [39] 魏建新, 狄帮让. 裂隙张开度对地震波特性影响的模型研究[J]. 中国科学: 地球科学, 2008, 38(增刊1): 211-218.

    Wei J X, Di B R. Model study on influence of fracture opening on seismic wave characteristics[J]. Science Chinese: Earth Science, 2008, 38(S1): 211-218 (in Chinese with English abstract).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  507
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 录用日期:  2022-07-27
  • 修回日期:  2022-07-23

目录

    /

    返回文章
    返回