留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干湿循环作用下嵊州-新昌地区红层软岩崩解及强度弱化特性

杜志祥 白丁伟 时步炯 徐锐 黄生根

杜志祥, 白丁伟, 时步炯, 徐锐, 黄生根. 干湿循环作用下嵊州-新昌地区红层软岩崩解及强度弱化特性[J]. 地质科技通报, 2024, 43(1): 253-261. doi: 10.19509/j.cnki.dzkq.tb20220314
引用本文: 杜志祥, 白丁伟, 时步炯, 徐锐, 黄生根. 干湿循环作用下嵊州-新昌地区红层软岩崩解及强度弱化特性[J]. 地质科技通报, 2024, 43(1): 253-261. doi: 10.19509/j.cnki.dzkq.tb20220314
DU Zhixiang, BAI Dingwei, SHI Bujiong, XU Rui, HUANG Shenggen. Disintegration and strength weakening characteristics of red-bed soft rock in the Shengzhou-Xinchang area under dry-wet cycles[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 253-261. doi: 10.19509/j.cnki.dzkq.tb20220314
Citation: DU Zhixiang, BAI Dingwei, SHI Bujiong, XU Rui, HUANG Shenggen. Disintegration and strength weakening characteristics of red-bed soft rock in the Shengzhou-Xinchang area under dry-wet cycles[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 253-261. doi: 10.19509/j.cnki.dzkq.tb20220314

干湿循环作用下嵊州-新昌地区红层软岩崩解及强度弱化特性

doi: 10.19509/j.cnki.dzkq.tb20220314
详细信息
    作者简介:

    杜志祥, E-mail: HZFJGW@163.com

    通讯作者:

    徐锐, E-mail: cugxurui@cug.edu.cn

  • 中图分类号: U213.1+3

Disintegration and strength weakening characteristics of red-bed soft rock in the Shengzhou-Xinchang area under dry-wet cycles

More Information
  • 摘要:

    红层软岩遇水易崩解并造成其强度弱化,在边坡工程建设中易造成其稳定性弱,导致经济损失,甚至人员伤亡。揭示红层软岩干湿循环作用下黏聚力与内摩擦角的变化特征对于针对性设计边坡处理措施具有重要意义。以浙江嵊州-新昌地区下白垩统朝川组3组红层软岩为研究对象,通过干湿循环试验、崩解岩块点荷载强度试验和崩解颗粒直剪试验研究了红层软岩崩解及强度弱化特性。结果表明:试样在干湿循环作用下呈碎块状-粒渣状-泥糊状依次崩解的形态,其主要崩解过程可分为初始崩解、快速崩解、细微再崩解和崩解稳定4个阶段;试样的点荷载强度Is(50)随干湿循环次数的增加而降低,耐崩解指数Idn与点荷载强度Is(50)呈正指数关系,试样的点荷载强度Is(50)在耐崩解指数Idn为80%~100%之间急速弱化,在耐崩解指数Idn为50%~80%之间表现缓慢弱化特性;试样的峰值抗剪强度介于0.567~1.219 MPa之间,其多发生在剪切位移3 mm前后,同组试样在相同轴压下,峰值抗剪强度随循环次数的增加而减小,试样崩解颗粒内摩擦角在22.28°~33.03°之间,黏聚力在0.46~0.74 MPa之间。试样的摩擦角和黏聚力随着干湿循环次数增加,都呈负指数关系。试验结果表明砂质比泥质胶结的耐崩解性更好,黏土矿物高的岩石更容易崩解,而"白色矿物"钠长石的吸水膨胀能力远不及黏土矿物,其含量差异对耐崩解性的影响不及黏土矿物。

     

  • 图 1  红层软岩取样位置

    Figure 1.  Sampling location of red-bed soft rock

    图 2  红层软岩崩解形态图

    Figure 2.  Disintegration morphology of red-bed soft rock

    图 3  3组崩解物各粒径百分比随干湿循环次数的变化曲线

    Figure 3.  Variation curve of the percentage content of each particle size of disintegration with the number of dry-wet cycles

    图 4  耐崩解指数随干湿循环次数的变化曲线

    Figure 4.  Variation curve of disintegration resistance index with the number of dry-wet cycles

    图 5  点荷载强度指数随干湿循环次数的变化曲线

    Figure 5.  Change curve of the modified point load strength index with the number of dry-wet cycles

    图 6  点荷载强度指数与耐崩解指数的关系曲线

    Figure 6.  Relation curve between point load strength and disintegration resistance index

    图 7  试样在不同轴压下第8,12,16,20次干湿循环后试样剪切应力-位移曲线

    Figure 7.  Shear stress displacement curves of the sample after the 8, 12, 16, 20 th dry-wet cycles under different axial pressures

    图 8  试样在不同干湿循环条件下试样抗剪强度随轴向压力变化的关系曲线

    Figure 8.  Relationship curves of shear strength with axial pressure under different dry-wet cycles

    图 9  试样内摩擦角(a)和黏聚力(b)随干湿循环次数的变化曲线

    Figure 9.  Variation curve of the internal friction angle (a) and cohesion (b) of the sample with the number of dry-wet cycles

    表  1  岩样矿物成分

    Table  1.   Mineral composition of the rock samples

    岩样编号 蒙脱石 伊利石 石英 钠长石 方解石 微斜长石 赤铁矿 绿泥石 胶结物
    φB/%
    A组 21.98 22.05 21.73 10.7 14.08 8.5 0.96 泥质为主,少量砂质
    B组 18.52 15.81 22.32 24.31 8.71 10.33 泥质为主,少量砂质
    C组 9.98 14.4 51.28 10.57 11.58 2.2 砂质为主,泥质次之
    下载: 导出CSV

    表  2  拟合曲线参数

    Table  2.   Fitting curve parameters

    回归方程 $ y=y_0+A\left[\frac{p}{1+e^{\left(x-x_{01}\right) / k_1}}+\frac{1-p}{1+e^{\left(x-x_{02}\right) / k_2}}\right]$
    岩样分组 A B C
    y0 0.111 4 6.521 7 10.439 6
    A 107.652 1 94.419 0 92.480 3
    P 0.631 5 0.908 5 0.792 1
    x01 7.006 1 8.221 1 8.588 4
    x02 5.644 9 2.506 3 9.185 1
    k1 1.023 5 1.400 8 2.641 2
    k2 3.920 7 1.022 8 0.930 1
    R2 0.999 9 0.999 5 0.999 9
    下载: 导出CSV
  • [1] 张子涵, 魏文, 张杰, 等. 基于CT扫描红层砂岩孔隙多标度分形维数的确定方法[J]. 地质科技通报, 2022, 41(3): 254-263. doi: 10.19509/j.cnki.dzkq.2021.0066

    ZHANG Z H, WEI W, ZHANG J, et al. Determining method of multiscale fractal dimension of red bed sandstone pores based on CT scanning[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 254-263. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0066
    [2] 谢妮, 王丁浩, 吕阳, 等. 酸腐蚀作用下川渝红层砂岩蠕变特性试验研究[J]. 地质科技通报, 2022, 42(1): 1-9. doi: 10.19509/j.cnki.dzkq.2022.0142

    XIE N, WANG D H, LÜ Y, et al. Experimental study on creep behavior of red sandstone in Sichuan and Chongqing under acid corrosion[J]. Bulletin of Geological Science and Technology, 2022, 42(1): 1-9. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0142
    [3] LÜ L L, LIAO H J, FU Y P, et al. Experimental study on mechanical properties of red bed soft rock from Humaling Tunnel in confining and triaxial compression tests[J]. Journal of Central South University(Science and Technology), 2022, 53(4): 1362-1370.
    [4] 王腾飞, 李远耀, 徐勇, 等. 基于声发射试验的红层砂岩损伤演化特性分析[J]. 地质科技情报, 2019, 38(4): 247-254.

    WANG T F, LI Y Y, XU Y, et al. Damage evolution analysis of red sandstone based on acoustic emission test[J]. Geological Science and Technology Information, 2019, 38(4): 247-254. (in Chinese with English abstract)
    [5] HUANG K, KANG B, ZHA F S, et al. Disintegration characteristics and mechanism of red-bed argillaceous siltstone under drying-wetting cycle[J]. Environmental Earth Sciences, 2022, 81(12): 1-14.
    [6] LI A R, DENG H, ZHANG H J, et al. The shear-creep behavior of the weak interlayer mudstone in a red-bed soft rock in acidic environments and its modeling with an improved Burgers model[J]. Mechanics of Time-Dependent Materials, 2023, 27(1): 1-18. doi: 10.1007/s11043-021-09523-y
    [7] 彭华. 中国南方湿润区红层地貌及相关问题探讨[J]. 地理研究, 2011, 30(10): 1739-1752.

    PENG H. Discussion on red bed landform and related problems in humid areas of southern China[J]Geographical Research, 2011, 30 (10): 1739-1752. (in Chinese with English abstract)
    [8] 原鹏博, 杨烜宇, 赵天宇. 水-盐作用下红层砂岩声波特性劣化试验[J]. 岩土力学, 2019, 40(1): 227-234.

    YUAN P B, YANG J Y, ZHAO T Y. Deterioration characteristics of red-bed sandstone acoustic wave properties due to water and salt solution[J]. Rock and Soil Mechanics, 2019, 40(1): 227-234. (in Chinese with English abstract)
    [9] 邓涛, 詹金武, 黄明, 等. 酸碱环境下红层软岩-泥质页岩的崩解特性试验研究[J]. 工程地质学报, 2014, 22(2): 238-243.

    DENG T, ZHAN J W, HUANG M, et al. Disintegration characteristics test of red-bed soft rock argillaceous shale in acid and alkali environment[J]Journal of Engineering Geology, 2014, 22 (2): 238-243. (in Chinese with English abstract)
    [10] 杨峰峰, 张巨峰, 郑超, 等. 湘潭地区红层软岩在淋雨条件下崩解的分形维数研究[J]. 水资源与水工程学报, 2020, 31(5): 213-217.

    YANG F F, ZHANG J F, ZHENG C, et al. Study on the fractal dimension of red-bed soft rock disintegration in Xiangtan, Hunan Province under rain conditions[J]. Journal of Water Resources & Water Engineering, 2020, 31(5): 213-217. (in Chinese with English abstract)
    [11] 陈康, 刘先峰, 袁胜洋, 等. 饱和红层泥岩填料累积变形特性及安定界限研究[J]. 岩土力学, 2022, 43(5): 1261-1268.

    CHEN K, LIU X F, YUAN S Y, et al. Experimental investigation on accumulative deformation behaviour and shakedown limit of saturated red mudstone fill material[J]. Rock and Soil Mechanics, 2022, 43 (5): 1261-1268. (in Chinese with English abstract)
    [12] 谭玉芳, 李丽慧, 杨志法, 等. 红层砂岩与砾岩差异风化的湿度应力效应研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3481-3492.

    TAN Y F, LI L H, YANG Z F, et al. Moisture stress effect and its control on differential weathering of red-bed sandstone and conglomerate[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (S2): 3481-3492. (in Chinese with English abstract)
    [13] 纪宇, 梁庆国, 郭俊彦, 等. 红层软岩地区高速铁路深路堑基底变形规律研究[J]. 铁道科学与工程学报, 2021, 18(3): 572-580.

    JI Y, LIANG Q G, GUO J Y, et al. Study on deformation law of deep foundation of high speed railway in red layer soft rock area[J]. Journal of Railway Science and Engineering, 2021, 18 (3): 572-580. (in Chinese with English abstract)
    [14] 潘艺, 刘镇, 周翠英. 红层软岩遇水崩解特性试验及其界面模型[J]. 岩土力学, 2017, 38(11): 3231-3239.

    PAN Y, LIU Z, ZHOU C Y. Experimental study of disintegration characteristics of red-bed soft rock within water and its interface model[J]. Rock and Soil Mechanics, 2017, 38 (11): 3231-3239. (in Chinese with English abstract)
    [15] ZHOU M, LI J, LUO Z, et al. Impact of water-rock interaction on the pore structures of red-bed soft rock[J]. Scientific Reports, 2021, 11(1): 1-15. doi: 10.1038/s41598-020-79139-8
    [16] XIE X S, CHEN H S, XIAO X H, et al. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology, 2019, 27(5): 966-972.
    [17] LI A R, DENG H, WANG X X, et al. Research on creep characteristics and constitutive model of red bed mudstone under saturated-dehydrated cycle[J]. Journal of Engineering Geology, 2021, 29(3): 843-850.
    [18] ZHANG Z T, GAO W H. Effect of different test methods on the disintegration behaviour of soft rock and the evolution model of disintegration breakage under cyclic wetting and drying[J]. Engineering Geology, 2020, 279: 105888. doi: 10.1016/j.enggeo.2020.105888
    [19] YU F, TONG K W, DAI Z J, et al. Macro-and microresearch on swelling characteristics and deformation mechanism of red-bed mudstone in Central Sichuan, China[J]. Geofluids, 2022, 2022.
    [20] LIAO H C, LI Z H, DIAO K, et al. Red-bed soft rock slope reinforcement effect under construction based on FLAC3D[J]. Journal of Changsha University of Science & Technology, 2012: 9(4): 25-31.
    [21] ZHANG L M, ZHAO H Y, LU L F. Engineering geologic characteristics and mechanical property of red-bed soft rock in water diversion project in Yunnan Province[J]. Water Resources and Power, 2016, 34(8): 75-78.
    [22] 谌文武, 原鹏博, 刘小伟. 分级加载条件下红层软岩蠕变特性试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3076-3081.

    CHEN W W, YUAN P B, LIU X W. Study on creep properties of red-bed soft rock under step load[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (S1): 3076-3081. (in Chinese with English abstract)
    [23] DENG H F, FANG J C, LI J L, et al. Mechanical properties of red-bed soft rock on saturated state[J]. Journal of China Coal Society, 2017, 42(8): 1994-2002.
    [24] 岩石物理力学性质试验规程: DZ/T 0276.23-2015[S]. 北京: 中国标准出版社, 2015.

    Regulation for testing the physical and mechanical properties of rock: DZ/T 0276.23-2015[S]. Beijing: China Standards Press, 2015. (in Chinese with English abstract)
    [25] 邬爱清, 赵文, 周火明, 等. 工程岩体分级标准: GB 50218-2014[S]. 北京: 中国计划出版社, 2014.

    WU A Q, ZHAO W, ZHOU H M, et al. Standard for engineering classification of rock mass: GB50218-2014[S]. Beijing: China Planning Press, 2014. (in Chinese with English abstract)
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  135
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 录用日期:  2022-07-26
  • 修回日期:  2022-07-22

目录

    /

    返回文章
    返回