留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧洞突涌水指示西南岩溶大泉成因关系及水环境效应分析

段天宇 成建梅 段勇 李仲夏 陈亮 黄盛财 谷芝

段天宇, 成建梅, 段勇, 李仲夏, 陈亮, 黄盛财, 谷芝. 隧洞突涌水指示西南岩溶大泉成因关系及水环境效应分析[J]. 地质科技通报, 2023, 42(4): 183-193. doi: 10.19509/j.cnki.dzkq.tb20220316
引用本文: 段天宇, 成建梅, 段勇, 李仲夏, 陈亮, 黄盛财, 谷芝. 隧洞突涌水指示西南岩溶大泉成因关系及水环境效应分析[J]. 地质科技通报, 2023, 42(4): 183-193. doi: 10.19509/j.cnki.dzkq.tb20220316
Duan Tianyu, Cheng Jianmei, Duan Yong, Li Zhongxia, Chen Liang, Huang Shengcai, Gu Zhi. Indications of tunnel water inrush to the origin of large karst springs in Southwest China and water environmental effects[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 183-193. doi: 10.19509/j.cnki.dzkq.tb20220316
Citation: Duan Tianyu, Cheng Jianmei, Duan Yong, Li Zhongxia, Chen Liang, Huang Shengcai, Gu Zhi. Indications of tunnel water inrush to the origin of large karst springs in Southwest China and water environmental effects[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 183-193. doi: 10.19509/j.cnki.dzkq.tb20220316

隧洞突涌水指示西南岩溶大泉成因关系及水环境效应分析

doi: 10.19509/j.cnki.dzkq.tb20220316
基金项目: 

国家自然科学基金项目 42172278

国家自然科学基金项目 U1911205

云南省滇中引水工程建设管理局招标项目"云南省滇中引水工程昆明玉溪红河段地下水监测" 

详细信息
    作者简介:

    段天宇(1998—),男,现正攻读水利工程专业硕士学位,主要从事水文水资源与地下水数值模拟方面的研究工作。E-mail: Dsky09@163.com

    通讯作者:

    成建梅(1971—), 女, 教授, 博士生导师, 主要从事地下水流-污染数值模拟方面的研究工作。E-mail: jmcheng@cug.edu.cn

  • 中图分类号: P642.25

Indications of tunnel water inrush to the origin of large karst springs in Southwest China and water environmental effects

  • 摘要:

    滇中引水工程昆呈隧洞横穿昆明市呈贡区主要的水源地——黑龙潭、白龙潭地区, 隧洞涌水可能严重威胁城市供水安全。综合隧洞施工水文动态数据和水化学数据, 分析岩溶水系统特征和隧洞施工的影响, 论证两泉的成因关系; 构建了昆呈隧洞黑龙潭—白龙潭段三维地下水流模型, 经模型识别验证后, 开展隧洞施工条件岩溶水系统的流场和泉流量变化的模拟预测, 分析评价其水环境效应。研究表明: 黑龙潭与白龙潭分别属于相对独立的2套岩溶水系统, 补给区均为P1q+m组强岩溶含水层, 但在三家村洼地下游, 两泉分别受P1d组隔水地层和浑水塘断层的控制而形成稳定的岩溶通道; 昆呈隧洞掘进改变了区域地下水流场, 并袭夺白龙潭泉流量使其断流, 且泉流量恢复困难; 但隧洞掘进对黑龙潭影响较小。本研究对岩溶泉的成因关系进行探讨, 并定量分析隧道掘进的水环境影响, 对防止岩溶地区隧道建设中的突涌水等问题具有参考借鉴意义。

     

  • 图 1  黑龙潭-白龙潭地区地质简图

    Q.第四系;E.古近系-新近系;P2β.二叠系峨眉组;P1q+m.二叠系栖霞组和茅口组;P1d.二叠系倒石头组;C2w.石炭系威宁组;C1d.石炭系大塘组;D3zB.泥盆系宰格组;∈1l.寒武系龙王庙组;∈1c.寒武系沧浪铺组

    Figure 1.  Schematic geological map in the Heilongtan-Bailongtan area

    图 2  研究区域水样中微量元素质量浓度对比

    Figure 2.  Comparison of trace element contents of water samples in the study area

    图 3  研究区水样氢氧同位素关系图

    Figure 3.  Relationship of hydrogen isotope with oxygen isotope in collected water samples in the study area

    图 4  黑龙潭泉流量与隧洞涌水变化曲线图

    Figure 4.  Variation curve of the Heilongtan spring flow with tunnel water inrush

    图 5  白龙潭泉流量与隧洞涌水变化曲线图

    Figure 5.  Variation curve of the Bailongtan spring flow with tunnel water inrush

    图 6  模型边界与剖分图

    Figure 6.  Diagram showing the model boundary and discrete grid

    图 7  昆呈隧洞黑龙潭—白龙潭段三维模型示意图

    Figure 7.  Schematic diagram of the three-dimensional model of the Heilongtan-Bailongtan section of the Kuncheng Tunnel

    图 8  P1q+m含水层初始水位与水位观察孔分布图

    Figure 8.  Initial groundwater level in the P1q+m aquifer and distribution of water level observation points

    图 9  模型识别时钻孔水位拟合情况图

    Figure 9.  Measured and calculated values of groundwater level in observation holes

    图 10  白龙潭模拟泉流量与实际泉流量对比图

    Figure 10.  Simulated and measured spring flows in the Bailongtan spring

    图 11  黑龙潭模拟泉流量与实际泉流量对比图

    Figure 11.  Simulated and measured spring flows in the Heilongtan spring

    图 12  昆呈隧洞黑龙潭—白龙潭段模型1#、2#、3#观察点水位对比图

    Figure 12.  Groundwater levels at observation points 1#, 2#, 3# of the model for the Heilongtan-Bailongtan Section of the Kuncheng Tunnel

    图 13  白龙潭模拟泉流量变化图

    Figure 13.  Variation in the simulated spring flow in the Bailongtan spring

    图 14  昆呈隧洞黑龙潭—白龙潭段模型P1q+m含水层模拟水位图

    Figure 14.  Simulated groundwater level of the P1q+m aquifer in the Heilongtan-Bailongtan Section of the Kuncheng Tunnel

    图 15  黑龙潭-白龙潭成因示意图

    Figure 15.  Schematic diagram indicaitng the genesis of the Heilongtan spring and Bailongtan spring

    表  1  黑龙潭-白龙潭岩溶水系统主要水化学数据

    Table  1.   Water chemistry data in the Heilongtan-Bailongtan karst water system

    编号 位置 采样点 地层 宏量组分ρB/(mg·L-1) 微量组分ρB/(mg·L-1) δ18O/‰ δD/‰
    TDS Na++K+ Ca2+ Mg2+ HCO3- Cl- SO42- Al3+ Sr2+ Ba2+
    J10 补给区 头甸村水井 P2β 49.8 12.08 16.00 1.46 7.02 1.70 8.89 0.009 1 0.098 4 0.007 7 -11.59 -90.96
    J11 一朵云村水井 P2β+ P1q+m 59.0 3.10 12.96 7.44 5.49 0.28 12.73 0.053 3 0.080 9 0.018 3 -10.93 -80.89
    D04 宝象河水库 102.6 37.25 26.80 12.00 12.81 2.94 35.21 < 0.000 0.150 8 0.025 2 -8.12 -66.11
    J01 果林水库排泄区 撒梅大道水井 1l 289.0 13.27 71.20 39.90 34.16 17.30 33.09 0.148 6 0.078 6 0.045 5 -11.01 -82.75
    J02 白水塘市场水井 1l 289.0 15.90 74.88 37.13 39.04 16.24 29.63 < 0.000 0.082 5 0.057 8 -10.79 -81.51
    J04 职业学院水井 1l 328.0 24.10 77.60 40.24 39.89 34.49 31.94 < 0.000 0.051 4 0.133 8 -9.58 -73.74
    D01 果林水库 167.2 22.04 28.00 18.86 13.91 30.42 47.89 0.030 2 0.162 0 0.118 2 -6.95 -57.45
    S03 6#支洞 1l 515.0 34.22 71.20 30.62 40.50 37.15 29.25 0.000 7 0.026 0 0.019 0 -11.65 -83.39
    S05 7#支洞 D3zB 275.0 27.51 62.80 42.77 46.05 0.28 64.73 < 0.000 0.061 6 0.045 1 -10.99 -80.87
    S06 黑龙潭排泄区 8#支洞 P2β 130.3 1.12 2.48 2.38 5.49 1.52 39.24 0.310 9 0.168 0 0.001 1 -12.10 -92.18
    Q03 黑龙潭 P1q+m 298.1 15.51 70.24 10.55 25.62 11.45 23.10 0.161 1 0.129 7 0.037 3 -11.12 -83.09
    J06 小新册社区水井 表层Q 207.4 8.03 35.84 22.21 20.37 0.82 30.02 0.003 9 0.281 5 0.368 8 -11.79 -91.70
    D02 石龙坝水库 182.1 39.17 31.20 10.21 14.34 33.43 29.63 0.012 9 0.114 8 0.021 3 -7.43 -58.56
    S07 白龙潭排泄区 9#支洞 P1q+m 175.9 34.20 61.76 13.32 23.91 4.71 73.44 0.067 3 0.078 0 0.008 1 -11.10 -84.12
    Q01 白龙潭 P1q+m 248.3 8.88 60.80 10.69 22.26 6.66 21.95 0.009 9 0.083 2 0.003 7 -11.20 -84.60
    J08 刘家营村机井 P1q+m 231.1 18.01 40.32 12.68 18.30 15.35 15.99 < 0.000 0.349 5 0.014 5 -10.84 -82.64
    D03 白龙潭水库 211.6 8.06 49.76 9.23 18.91 7.37 12.92 < 0.000 0.064 2 0.025 6 -10.49 -80.70
    下载: 导出CSV
  • [1] 杜宇本, 蒋良文, 胡卸文, 等. 高速铁路复杂岩溶地质勘察及灾害防治[J]. 铁道工程学报, 2021, 38(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202104004.htm

    Du Y B, Jiang L W, Hu X W, et al. Geological investigation and disaster prevention of complex karst on high-speed railway[J]. Journal of Railway Engineering Society, 2021, 38(4): 16-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202104004.htm
    [2] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054

    Luo M M, Zhou H, Guo X L, et al. Process and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054
    [3] 王宇. 断陷盆地岩溶水赋存规律[M]. 昆明: 云南科技出版社, 2003.

    Wang Y. Karst water storage law in fault basin[M]. Kunming: Yunnan Science and Technology Press, 2003(in Chinese).
    [4] 颜慧明, 常威, 郭绪磊, 等. 岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用[J]. 地质科技通报, 2022, 41(1): 127-136. doi: 10.19509/j.cnki.dzkq.2022.0008

    Yan H M, Chang W, Guo X L, et al. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 127-136(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0008
    [5] Li B, Li X. Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area[J]. Journal of Groundwater Science and Engineering, 2018, 6(4): 261-269.
    [6] Rusjan S, Sapaĉ K, Petriĉ M, et al. Identifying the hydrological behavior of a complex karst system using stable isotopes[J]. Journal of Hydrology, 2019, 577: 123956. doi: 10.1016/j.jhydrol.2019.123956
    [7] Luo M M, Chen Z H, Criss R E, et al. Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area of South China[J]. Hydrogeology Journal, 2016, 24(8): 1993-2002. doi: 10.1007/s10040-016-1462-3
    [8] Vojtechovska A, Bruthans J, Krejca A F. Comparison of conduit volumes obtained from direct measurements and artificial tracer tests[J]. Journal of Cave & Karst Studies, 2011, 72(3): 156-160.
    [9] 彭红明, 袁有靖, 李铜邦, 等. 青海天峻新关角隧道涌排水水源识别与量化分析[J]. 地质科技通报, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026

    Peng H M, Yuan Y J, Li T B, et al. Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 60-70(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0026
    [10] 常威, 谭家华, 黄琨, 等. 地下水多元示踪试验在岩溶隧道水害预测中的应用: 以张吉怀高铁兰花隧道为例[J]. 中国岩溶, 2020, 39(3): 400-408. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm

    Chang W, Tan J H, Huang K, et al. Application of groundwater multielement tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua Tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway[J]. Carsologica Sinica, 2020, 39(3): 400-408(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm
    [11] Li D S, Cui B L, Wang Y, et al. Source and quality of groundwater surrounding the Qinghai Lake, NE Qinghai-Tibet Plateau[J]. Groundwater, 2021, 59(2): 245-255. doi: 10.1111/gwat.13042
    [12] 林云, 曹飞龙, 武亚遵, 等. 北方典型岩溶泉域地下水水文地球化学特征分析: 以鹤壁许家沟泉域为例[J]. 地球与环境, 2020, 48(3): 294-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202003002.htm

    Lin Y, Cao F L, Wu Y Z, et al. Hydrogeochemical characteristics of groundwater in typical karst spring areas of North China: A case study in the Xujiagou Spring area, Hebei[J]. Earth and Environment, 2020, 48(3): 294-306(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202003002.htm
    [13] Nerantzaki S D, Nikolaidis N P. The response of three Mediterranean karst springs to drought and the impact of climate change[J]. Journal of Hydrology, 2020, 591(3): 125296.
    [14] Fiorillo F, Leone G, Pagnozzi M, et al. Long-term trends in karst spring discharge and relation to climate factors and changes[J]. Hydrogeology Journal, 2021, 29(1): 347-377.
    [15] Leone G, Pagnozzi M, Catani V, et al. A hundred years of Caposele spring discharge measurements: Trends and statistics for understanding water resource availability under climate change[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(2): 345-370.
    [16] 施佳会, 王锦国, 陈舟. 其宗岩溶泉成因简析[J]. 水电能源科学, 2014, 32(11): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201411014.htm

    Shi J H, Wang J G, Chen Z. A brief analysis of the origin of Qizong karst spring[J]. Hydropower Energy Science, 2014, 32(11): 58-62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201411014.htm
    [17] 黄会, 张恺翔. 昆明呈贡黑、白龙潭地下水系统独立性研究[J]. 地下水, 2017, 39(4): 51-53, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201704016.htm

    Huang H, Zhang K X. Study on the Independence of groundwater system of Heilongtan and Bailongtan at Chenggong in Kunming[J]. Groundwater, 2017, 39(4): 51-53, 56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201704016.htm
    [18] 王梅, 许模. 滇池盆地东侧黑龙潭与白龙潭水力关系研究[J]. 地下水, 2018, 40(2): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201802005.htm

    Wang M, Xu M. On the hydraulic connection between Heilongtan and Bailongtan in the eastern part of Dianchi Basin[J]. Groundwater, 2018, 40(2): 15-17(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201802005.htm
    [19] 宁霞, 王增银, 杨建成. 桂林地区岩溶水中Ba元素的水文地球化学特征[J]. 中国岩溶, 2004, 23(4): 317-321. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200404010.htm

    Ning X, Wang Z Y, Yang J C. Hydrogeochemical characteristics of Ba in karst water in Guilin area[J]. Carsologica Sinica, 2004, 23(4): 317-321 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200404010.htm
    [20] 陈余道, 程亚平, 王恒, 等. 岩溶地下河管道流和管道结构及参数的定量示踪: 以桂林寨底地下河为例[J]. 水文地质工程地质, 2013, 40(5): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201305006.htm

    Chen Y D, Cheng Y P, Wang H, et al. Quantitative tracing study of hydraulic and geometric parameters of a karst underground river: Exemplified by the Zhaidi underground river in Guilin[J]. Hydrogeology and Engineering Geology, 2013, 40(5): 11-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201305006.htm
    [21] 刘英俊. 元素地球化学[M]. 北京: 科学出版社, 1984.

    Liu Y J. Elemental geochemistry[M]. Beijing: Science Press, 1984(in Chinese).
    [22] 谈树成, 周家喜, 罗开, 等. 云南毛坪大型铅锌矿床成矿物质来源: 原位S和Pb同位素制约[J]. 岩石学报, 2019, 35(11): 3461-3476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201911013.htm

    Tan S C, Zhou J X, Luo K, et al. The sources of ore-forming elements of the Maoping large-scale Pb-Zn deposit, Yunnan Province: Constrains from in-situ S and Pb isotopes[J]. Acta Petrologica Sinica, 2019, 35(11): 3461-3476(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201911013.htm
    [23] 陈永权, 周新源, 赵葵东, 等. 塔里木盆地塔中19井奥陶系蓬莱坝组云灰互层段的岩性旋回特征与"顶侵型"埋藏云化模式的建立[J]. 沉积学报, 2009, 27(2): 202-211. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902002.htm

    Chen Y Q, Zhou X Y, Zhao K D, et al. The petrologic rhythm of Lower Ordovician Penglaiba Formation encountered by Well Tazhong 19 and new dolomitization model Tarin Basin[J]. Acta Sedimentary Sinica, 2009, 27(2): 202-211(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902002.htm
    [24] 孙超, 黄春阳, 梁爽. 广西崇左市江州区碳酸盐岩地层地下水锶富集规律及成因分析[J]. 南方国土资源, 2021(5): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ202105009.htm

    Sun C, Huang C Y, Liang S. Analysis of strontium enrichment law and genesis of groundwater strontium in carbonate formation in Jiangzhou District, Chongzuo City, Guangxi Province[J]. Southern Land and Resources, 2021(5): 33-38(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ202105009.htm
    [25] 孙厚云, 卫晓锋, 甘凤伟, 等. 滦河流域中上游富锶地下水成因类型与形成机制[J]. 地球学报, 2020, 41(1): 65-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202001006.htm

    Sun H Y, Wei X F, Gan F W, et al. Genetic type and formation mechanism of strontium-rich groundwater in the upper and middle reaches of Luanhe River basin[J]. Acta Geologica Sinica, 2020, 41(1): 65-79(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202001006.htm
    [26] Pu J, Yuan D, Zhang C, et al. Tracing the sources of strontium in karst groundwater in Chongqing, China: A combined hydrogeochemical approach and strontium isotope[J]. Environmental Earth Sciences, 2012, 67(8): 2371-2381. doi: 10.1007%2Fs12665-012-1683-2.pdf
    [27] Keulegan G H. Laws of turbulent flow in open channels[M]. Gaithersburg, MD, USA: National Bureau of Standards, 1938.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  302
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 录用日期:  2022-09-20
  • 修回日期:  2022-08-06

目录

    /

    返回文章
    返回