留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海西南次海盆V型尖端地壳岩石圈最终裂解的特征及过程

罗盼 高圆圆 王厚金 任建业

罗盼, 高圆圆, 王厚金, 任建业. 南海西南次海盆V型尖端地壳岩石圈最终裂解的特征及过程[J]. 地质科技通报, 2023, 42(2): 234-246. doi: 10.19509/j.cnki.dzkq.tb20220322
引用本文: 罗盼, 高圆圆, 王厚金, 任建业. 南海西南次海盆V型尖端地壳岩石圈最终裂解的特征及过程[J]. 地质科技通报, 2023, 42(2): 234-246. doi: 10.19509/j.cnki.dzkq.tb20220322
Luo Pan, Gao Yuanyuan, Wang Houjin, Ren Jianye. Characteristics and process of the final breakup of the crustal lithosphere at the V-shaped tip of the Southwest Subbasin in South China Sea[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 234-246. doi: 10.19509/j.cnki.dzkq.tb20220322
Citation: Luo Pan, Gao Yuanyuan, Wang Houjin, Ren Jianye. Characteristics and process of the final breakup of the crustal lithosphere at the V-shaped tip of the Southwest Subbasin in South China Sea[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 234-246. doi: 10.19509/j.cnki.dzkq.tb20220322

南海西南次海盆V型尖端地壳岩石圈最终裂解的特征及过程

doi: 10.19509/j.cnki.dzkq.tb20220322
基金项目: 

国家自然科学基金项目 41830537

详细信息
    作者简介:

    罗盼(1991—),女,工程师,主要从事地震资料处理解释方面的研究工作。E-mail: 446114137@qq.com

  • 中图分类号: P542

Characteristics and process of the final breakup of the crustal lithosphere at the V-shaped tip of the Southwest Subbasin in South China Sea

  • 摘要:

    为了明确南海西南次海盆V型尖端地壳岩石圈发生最终裂解的特征及其演化过程,通过精细的构造解释、断层活动性定量分析、不同构造演化阶段盆地原型分析、沉降速率分析、沉降史模拟等方法综合分析表明,南海西南次海盆V型尖端临界破裂区为远端带和洋陆转换带构成的地壳岩石圈强烈伸展区,依据地壳岩石圈几何形态,该区域可进一步划分为箱型域和楔型域。楔型域内盆地原型可划分为断陷盆地(Tb-SD)、拆离盆地(SD-PD)和拗陷盆地(PD-Bi);箱型域在古新世-渐新世(Tb-SD)盆地原型为断陷盆地,之后该区域进入被动沉降期。新生代以来,南海西南次海盆V型尖端在构造演化过程中,盆地沉降中心由陆向洋方向逐渐迁移,岩浆作用在断拗转换幕发育最强烈,致使岩石圈地壳最终发生裂解。区域资料对比分析表明,南海西南次海盆V型尖端在不同构造带内,盆地构造-地层格架具有差异性,且南海西南次海盆V型尖端经历"双拆离作用"后地壳发生破裂,岩浆侵入,形成原洋洋壳。该认识对南海西南部深水盆地内油气勘探具有重大指示意义。

     

  • 图 1  西南次海盆V型尖端陆缘盆地区域地理位置图

    NWSB. 西北次海盆;ESB. 东部次海盆;SWSB. 西南次海盆;PK.中建南盆地;NCS. 万安盆地;DG.南沙地块;RB.礼乐滩; A, B, C. 地震测线(磁异常条带参考文献[30],OCB参考文献[31])

    Figure 1.  Regional geographical location map of the V-shaped tip of the Southwest Subbasin

    图 2  西南次海盆V型尖端陆缘盆地地层对比图(据文献[42, 49, 62-64]修改)

    Figure 2.  Stratigraphic correlation diagram of epicontinental basin at the V-shape tip of the Southwest Subbasin

    图 3  岩石圈非瞬时破裂模式(据文献[13]修改)

    Figure 3.  Non-instantaneous breakup mode of the lithosphere

    图 4  岩石圈临界破裂区的相关概念和构造单元划分方案

    Figure 4.  Related concepts and tectonic domains at the critical breakup zone of the lithosphere

    图 5  横跨西南次海盆V型尖端地震测线A

    a. 时间剖面;b. 素面剖面及解释的一级界面:盆地基底和Moho面;c. 对测线A的地层、构造、基底属性及沉积序列的解释方案;d. 测线A的深度转换剖面及不同构造单元带的一级划分:箱型域、楔形域,原洋洋壳域,以及这些不同构造单元带之间的边界WB

    Figure 5.  Seismic line A at the V-shaped tip of the Southwest Subbasin

    图 6  测线A的部分素剖面、素描图及解释方案(位置见图 5-a)

    Figure 6.  Seismic line, time line drawing and interpretation of part of Line A

    图 7  测线B的时间剖面和素描图及解释方案(位置见图 1)

    Figure 7.  Time profile, time line drawing and interpretation of part of Line B

    图 8  南海西南部Line C沉降史模拟图

    Figure 8.  Simulation map of the subsidence history of Line C in southwestern South China Sea

    图 9  南海西南部测线C在不同构造单元带内的构造演化阶段、断层活动性和沉降速率

    Figure 9.  Tectonic stages, fault activities and subsidence rate of Line C within different domains in southwestern South China Sea

    图 10  横跨南海西南部V型尖端剖面演化过程

    Figure 10.  Evolution process of the profile approaching the V-shaped tip of the SW Subbasin in Southwestern South China Sea

    图 11  双拆离模式下的地壳岩石圈伸展破裂演化过程

    Figure 11.  Evolution process of crustal lithosphere breakup caused by a double detachment fault

  • [1] Peron-Pinvidic G, Gernigon L, Gaina C, et al. Insights from the Jan Mayen system in the Norwegian-Greenland sea-I. Mapping of a microcontinent[J]. Geophysical Journal International, 2012, 191(2): 385-412. doi: 10.1111/j.1365-246X.2012.05639.x
    [2] Luo P, Manatschal G, Ren J, et al. Tectono-magmatic and stratigraphic evolution of final rifting and breakup: Evidence from the tip of the southwestern propagator in the South China Sea[J]. Marine and Petroleum Geology, 2021, 129: 105079. doi: 10.1016/j.marpetgeo.2021.105079
    [3] Peron-Pinvidic G, Manatschal G. From microcontinents to extensional allochthons: Witnesses of how continents rift and break apart?[J]. Petroleum Geoscience, 2010, 16(3): 189-197. doi: 10.1144/1354-079309-903
    [4] Sawyer D S, Coffin M F, Reston T J, et al. COBBOOM: The continental breakup and birth of oceans mission[J]. Scientific Drilling, 2007, 5: 13-25. doi: 10.5194/sd-5-13-2007
    [5] Whitmarsh R B, Beslier M O, Wallace P J. Proceedings of the ocean drilling program, initial reports[M]. [S. l. ]: Ocean Drill. Program, College Station, Tex, 1998.
    [6] Whitmarsh R B, Wallace P J. The rift-to-drift development of the West Iberia non-volcanic continental margin: A review of the contribution of Ocean Drilling Program Leg 173[J]. Small Enterprise Development, 2001, 173: 1-36.
    [7] Peron-Pinvidic G, Manatschal G, Minshull T A, et al. Tectono-sedimentary evolution of the deep Iberia-Newfoundland margins: Evidence for a complex breakup history[J]. Tectonics, 2007, 26(TC20112).
    [8] Sibuet J, Briane E, Tucholke. The geodynamic province of transitional lithosphere adjacent to magma-poor continental margins[J]. Geological Society London Special Publications, 2013, 369(1): 429-452. doi: 10.1144/SP369.15
    [9] Reston T J. Polyphase faulting during the development of the west Galicia rifted margin[J]. Earth and Planetary Science Letters, 2005, 237: 561-576. doi: 10.1016/j.epsl.2005.06.019
    [10] Reston T J. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: A synthesis[J]. Tectonophysics, 2009, 468(1/4): 6-27.
    [11] Lavier L L, Manatschal G. A mechanism to thin the continental lithosphere at magma-poor margins[J]. Nature, 2006, 440: 324-328. doi: 10.1038/nature04608
    [12] Manatschal G. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps[J]. International Journal of Earth Sciences, 2004, 93(3): 432-466.
    [13] Manatschal G, Lavier L, Chenin P. The role of inheritance in structuring hyperextended rift systems: Some considerations based on observations and numerical modeling[J]. Gondwana Research, 2015, 27(1): 140-164. doi: 10.1016/j.gr.2014.08.006
    [14] Manatschal G, Mutener O. A type sequence across an ancient magma-poor ocean-continent transition: The example of the western Alpine Tethys ophiolites[J]. Tectonophysics, 2009, 473(1/2): 4-19.
    [15] Tugend J, Gillard M, Manatschal G, et al. Reappraisal of the magma-rich versus magma-poor rifted margin archetypes[J]. Geological Society, London, Special Publications, 2020, 476(1): 23-47. doi: 10.1144/SP476.9
    [16] Boillot G, Recq M, Winterer R L, et al, Tectonic denudation of the upper mantle along passive margins: A model based on drilling results (ODP leg 103, western Galicia margin, Spain)[J]. Tectonophysics, 1987, 132(4): 335-342. doi: 10.1016/0040-1951(87)90352-0
    [17] Planke S. Geophysical response of flood basalts from analysis of wire line logs: Ocean Drilling Program Site 642, Voring volcanic margin[J]. Journal of Geophysical Research, 1994, 99(B5): 9279-9296. doi: 10.1029/94JB00496
    [18] Lister G, Etheridge M, Symonds P. Detachment models for the formation of passive continental margins[J]. Tectonics, 1991, 10: 1038-1064. doi: 10.1029/90TC01007
    [19] Zhao Y H, Ren J Y, Pang X, et al. Structural style, formation of low angle normal fault and its controls on the evolution of Baiyun Rift, northern margin of the South China Sea[J]. Marine and Petroleum Geology, 2018, 89(3): 687-700.
    [20] Lei C, Alves T M, Ren J, et al. Rift structure and sediment infill of hyperextended continental crust: Insights from 3D seismic and well data (Xisha Trough, South China Sea)[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2019JB018610.
    [21] Lei C, Ren J Y, Pang X, et al. Continental rifting and sediment infill in the distal part of the northern South China Sea in the western Pacific region: Challenge on the present-day models for the passive margins[J]. Marine and Petroleum Geology, 2018, 93: 166-181. doi: 10.1016/j.marpetgeo.2018.02.020
    [22] 任建业, 庞雄, 于鹏, 等. 南海北部陆缘深水-超深水盆地成因机制分析[J]. 地球物理学报, 2018, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm

    Ren J Y, Pang X, Yu P, et al. Characteristics and formation mechanism of deepwater and ultra-deepwater basins in the northern continental margin of the South China Sea[J]. Chinese J. Geophys., 2018, 61(12): 4901-4920(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm
    [23] 任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1): 102-114. doi: 10.13745/j.esf.2015.01.009

    Ren J Y, Pang X, Lei C, et al. Ocean and continental transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 102-114. doi: 10.13745/j.esf.2015.01.009
    [24] Wang P, Huang C Y, Lin J, et al. The South China Sea is not a mini-Atlantic: Plate-edge rifting vs intra-plate rifting[J]. National Science Review, 2019, 6(5): 902-913. doi: 10.1093/nsr/nwz135
    [25] Sun Z, Lin J, Qiu N, et al. The role of magmatism in the thinning and breakup of the South China Sea continental margin: Special Topic: The South China Sea Ocean Drilling[J]. National Science Review, 2019, 6(5): 871-876. doi: 10.1093/nsr/nwz116
    [26] Larsen H C, Mohn G, Nirrengarten M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 2018, 11(10): 782-789. doi: 10.1038/s41561-018-0198-1
    [27] Ding W, Sun Z, Mohn G, et al. Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367 & 368 drilling results[J]. Earth and Planetary Science Letters, 2020, 531: 115932. doi: 10.1016/j.epsl.2019.115932
    [28] Ding W, Li J, Clift P D. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP Expedition 349[J]. Journal of Asian Earth Sciences, 2016, 115: 97-113. doi: 10.1016/j.jseaes.2015.09.013
    [29] Pichot T, Delescluse M, Chamot-Rooke N, et al. Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data[J]. Marine and Petroleum Geology, 2014, 58(Part B): 627-643.
    [30] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. doi: 10.1029/92JB02280
    [31] Song T, Li C F, Wu S, et al, Extensional styles of the conjugate rifted margins of the South China Sea[J]. Journal of Asian Earth Sciences, 2019, 177: 117-128. doi: 10.1016/j.jseaes.2019.03.008
    [32] Xia K, Xia S, Chen Z, et al. Geothermal characteristics of the South China Sea[C]//Gupta M L, Yamano M. Terrestrial heat flow and geothermal energy in Asia. New Delhi: IBH Publishing Co. Pvt. Ltd., 1995: 113-127.
    [33] 龚再升, 李思田, 谢泰俊, 等. 南海北部大陆边缘盆地分析与油气聚集[M]. 北京: 科学出版社, 1997.

    Gong Z S, Li S T, Xie T J, et al. The basin analysis and oil accumulation on the north margin of South China Sea[M]. Beijing: Science Press, 1997(in Chinse).
    [34] Jahn B, Chen P Y, Yen T P. Rb-Sr ages of granitic rocks from southeastern China and their tectonic significance[J]. Geology Society American Bulletin, 1976, 87: 763-776. doi: 10.1130/0016-7606(1976)87<763:RAOGRI>2.0.CO;2
    [35] Chan L S, Shen W, Pubellier M. Polyphase rifting of greater Pearl River delta region south China: Evidence for possible rapid changes in regional stress configuration[J]. Journal of Structure Geology, 2010, 32: 746-754. doi: 10.1016/j.jsg.2010.04.015
    [36] Nanni U, Pubellier M, Chan L S, et al. Rifting and reactivation of a Cretaceous structural belt at the northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2017, 136: 110-123. doi: 10.1016/j.jseaes.2017.01.008
    [37] Ye Q, Mei L, Shi H, et al. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into Late Mesozoic to Early Cenozoic tectonic evolution of the South China Sea area[J]. Tectonophysics, 2018, 731/732: 1-16. doi: 10.1016/j.tecto.2018.03.003
    [38] Zhang G, Shao L, Qiao P, et al. Cretaceous-Palaeogene sedimentary evolution of the South China Sea region: A preliminary synthesis[J]. Geology Journal, 2020, 55(4): 2662-2683.
    [39] Xie X, Müller R D, Li S, et al. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23(7): 745-765. doi: 10.1016/j.marpetgeo.2006.03.004
    [40] Xie X, Ren J, Pang X, et al. Stratigraphic architectures and associated unconformities of Pearl River mouth basin during rifting and lithospheric breakup of the South China Sea[J]. Marine Geophysical Research, 2019, 40: 129-144. doi: 10.1007/s11001-019-09378-6
    [41] Yao Y, Liu H, Yang C, et al. Characteristics and evolution of Cenozoic sediments in the Liyue Basin, SE South China Sea[J]. Journal of Asian Earth Science, 2012, 60: 114-129. doi: 10.1016/j.jseaes.2012.08.003
    [42] Steuer S, Franke D, Meresse F, et al. Oligocene-Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea[J]. Marine and Petroleum Geology, 2014, 58(Part B): 644-657.
    [43] Ding W, Franke D, Li J, et al. Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea[J]. Tectonophysics, 2013, 582: 162-176. doi: 10.1016/j.tecto.2012.09.026
    [44] Franke D, Savva D, Pubellier M, et al. The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 2014, 58: 704-720. doi: 10.1016/j.marpetgeo.2013.11.020
    [45] Nirrengarten M, Mohn G, Kusznir N J, et al. Extension modes and breakup processes of the Southeast China-Northwest Palawan conjugate rifted margins[J]. Marine and Petroleum Geology, 2020, 113: 104123. doi: 10.1016/j.marpetgeo.2019.104123
    [46] Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. G-cubed, 2014, 15(12): 4958-4983. http://darchive.mblwhoilibrary.org/bitstream/handle/1912/7180/Li_et_al-2014-Geochemistry%2c_Geophysics%2c_Geosystems.pdf?sequence=1&isAllowed=y
    [47] Yang L L, Ren J Y, McIntosh K, et al. The structure and evolution of deepwater basins in the distal margin of the northern South China Sea and their implications for the formation of the continental margin[J]. Marine and Petroleum Geology, 2018, 92: 234-254. doi: 10.1016/j.marpetgeo.2018.02.032
    [48] Morley C K. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development[J]. Journal of Asian Earth Sciences, 2016, 120: 62-86. doi: 10.1016/j.jseaes.2016.01.013
    [49] Pubellier M, Chang S P, Delescluse M. The South China Sea: Rifting peculiarities of a marginal basin[C]//Peron-Pinvidic G. Continental rifted margins 2: Case examples. Wiley: ISTE, Ltd., 2022: 107-131.
    [50] Zhao F, Alves T M, Wu S L, et al. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)[J]. Earth and Planetery Science Letters, 2016, 445: 79-91. doi: 10.1016/j.epsl.2016.04.001
    [51] Alves T M, Fetter M, Busby C, et al. A tectono-stratigraphic review of continental breakup on intraplate continental margins and its impact on resultant hydrocarbon systems[J]. Marine and Petroleum Geology, 2020: 104341.
    [52] Deng H, Ren J, Pang X, et al. South China Sea documents the transition from wide continental rift to continental break up[J]. Nature Communications, 2020, 11(1): 4583. doi: 10.1038/s41467-020-18448-y
    [53] Li L, Clift P D, Stephenson R, et al. Non-uniform hyper-extension in advance of seafloor spreading on the vietnam continental margin and the SW South China Sea[J]. Basin Research, 2014, 26(1): 106-134. doi: 10.1111/bre.12045
    [54] Hall R. Australia-SE Asia collision: Plate tectonics and crustal flow[J]. Geological Society London Special Publications, 2011, 355(1): 75-109. doi: 10.1144/SP355.5
    [55] Madon M, Kim C L, Wong R. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 2013, 76: 312-333. doi: 10.1016/j.jseaes.2013.04.040
    [56] Lü C, Hao T, Lin J, et al. The role of rifting in the development of the continental margins of the southwest subbasin, South China Sea: Insights from an OBS experiment[J]. Marine Geophysical Research, 2016: 1-19.
    [57] Dong M, Wu S, Zhang J, et al. Lithospheric structure of the Southwest South China Sea: Implications for rifting and extension[J]. International Geology Review, 2018: 1-14.
    [58] Cameselle A L, Ranero C R, Franke D, et al. The continent-ocean transition on the northwestern South China Sea[J]. Basin Research, 2015, 29: 73-95.
    [59] Cameselle A L, Ranero C R, Barckhausen U. Understanding the 3D formation of a wide rift: The central South China Sea rift system[J]. Tectonics, 2020, 39: 12.
    [60] Chang S P, Pubellier M, Delescluse M, et al. Crustal architecture and evolution of the southwestern South China Sea: Implications to continental breakup[J]. Marine and Petroleum Geology, 2022, 136: 105450. doi: 10.1016/j.marpetgeo.2021.105450
    [61] Peng X, Li C F, Shen C, et al. Anomalous lower crustal structure and origin of magmatism in the southeastern margin of the South China Sea[J]. Marine and Petroleum Geology, 2020, 122: 104711. doi: 10.1016/j.marpetgeo.2020.104711
    [62] Fyhn M, Boldreel L O, Nielsen L H. Geological development of the Central and South Vietnamese margin: Implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism[J]. Tectonophysics, 2009, 478(3): 184-214.
    [63] Barckhausen U, Engels M, Franke D, et al. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58: 299-611.
    [64] 裴健翔, 张成, 王亚辉, 等. 南海南部陆缘盆地裂陷-漂移-前陆期构造演化及沉积响应: 以礼乐盆地为例[J]. 地质科技通报, 2021, 40(2): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0205

    Pei J X, Zhang C, Wang Y H, et al. Tectonic evolution and depositional response in southern continental marginal basins of South China Sea during period of rift-drift-foreland: A case study from the Liyue Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 42-53(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0205
    [65] McKenzie D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40(1): 25-32. doi: 10.1016/0012-821X(78)90071-7
    [66] Boillot G M, Recq M, Winterer E L, et al. Tectonic denudation of the upper mantle along passive margins: A model based on drilling results (ODP Leg 103, western Galicia, Spain)[J]. Tectonophysics, 1987, 132: 335-342. doi: 10.1016/0040-1951(87)90352-0
    [67] Mohriak W, Nemcok M, Enciso G. South Atlantic divergent margin evolution: Rift-border uplift and salt tectonics in the basins of SE Brazil[J]. Geological Society, London, (Special Publications), 2008, 294: 365-398. doi: 10.1144/SP294.19
    [68] Sibuet J C, Yeh Y C, Lee C S. Geodynamics of the South China Sea[J]. Tectonophysics, 2016, 692: 98-119. doi: 10.1016/j.tecto.2016.02.022
    [69] Chenin P, Manatschal G, Picazo S, et al. Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans[J]. Geosphere, 2017, 13(3): 1-18.
    [70] Savva D, Pubellier M, Franke D, et al. Different expressions of rifting on the South China Sea margins[J]. Marine and Petroleum Geology, 2014, 58: 579-598.
    [71] 朱荣伟, 刘海龄, 姚永坚, 等. 南海西南次海盆两侧陆缘新生代构造沉降特征及演化过程[J]. 海洋地质与第四纪地质, 2020, 48(6): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202006008.htm

    Zhu R W, Liu H L, Yao Y J, et al. Cenozoic tectonic subsidence of the continental margins of southwest sub-basin, South China Sea and its evolution[J]. Marine Geology & Quaternary Geology, 2020, 48(6): 82-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202006008.htm
  • 加载中
图(11)
计量
  • 文章访问数:  659
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04

目录

    /

    返回文章
    返回