留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喀斯特地区水生光合生物群落结构组成及其对微量元素的影响

郎蕤 赵敏 李栋 鲍乾 蔡冠霞 陈波 杨海全

郎蕤, 赵敏, 李栋, 鲍乾, 蔡冠霞, 陈波, 杨海全. 喀斯特地区水生光合生物群落结构组成及其对微量元素的影响[J]. 地质科技通报, 2024, 43(1): 315-325. doi: 10.19509/j.cnki.dzkq.tb20220347
引用本文: 郎蕤, 赵敏, 李栋, 鲍乾, 蔡冠霞, 陈波, 杨海全. 喀斯特地区水生光合生物群落结构组成及其对微量元素的影响[J]. 地质科技通报, 2024, 43(1): 315-325. doi: 10.19509/j.cnki.dzkq.tb20220347
LANG Rui, ZHAO Min, LI Dong, BAO Qian, CAI Guanxia, CHEN Bo, YANG Haiquan. Composition of the aquatic photosynthetic organism community and its effect on trace elements in karst areas[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 315-325. doi: 10.19509/j.cnki.dzkq.tb20220347
Citation: LANG Rui, ZHAO Min, LI Dong, BAO Qian, CAI Guanxia, CHEN Bo, YANG Haiquan. Composition of the aquatic photosynthetic organism community and its effect on trace elements in karst areas[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 315-325. doi: 10.19509/j.cnki.dzkq.tb20220347

喀斯特地区水生光合生物群落结构组成及其对微量元素的影响

doi: 10.19509/j.cnki.dzkq.tb20220347
基金项目: 

国家自然科学基金项目 42177248

国家自然科学基金项目 41673136

国家自然科学基金项目 41807366

贵州省省级科技计划项目 2023-254

中央引导地方科技发展资金项目 黔科中引地[2021]4028

详细信息
    作者简介:

    郎蕤, E-mail: langrui@mail.gyig.ac.cn

    通讯作者:

    赵敏, E-mail: zhaomin@vip.gyig.ac.cn

  • 中图分类号: X172

Composition of the aquatic photosynthetic organism community and its effect on trace elements in karst areas

More Information
  • 摘要:

    微量元素是影响喀斯特地表水体水质的重要因素,水生光合生物在光合代谢过程中能够吸收并去除部分有害元素,然而关于不同水生光合生物群落结构组成对微量元素的吸收效果和去除潜力如何目前则少有研究。基于普定喀斯特生态系统国家野外观测站的野外监测、系统采样和实验测定以及统计分析,构建了由裸岩地、裸土地、耕地、草地和灌丛地5种土地利用组成的植被-土壤-地下水-地表水模拟生态系统,并以其中的地表水生生态系统为研究对象,开展了水生光合生物群落结构组成对微量元素去除潜力及控制机制的研究。结果表明:①地表水水化学和水生光合生物量受季节变化与土地利用类型影响显著;②Cr,Mn,Co,Ni,Fe和Zn 6种微量元素浓度在不同喀斯特水生光合生物系统中存在显著差异,浮游-沉水共存系统对Mn,Co,Ni,Fe和Zn的吸收和去除能力优于单一浮游系统;③喀斯特地区的自然植被恢复(灌丛地和草地)促使地表水体形成的高溶解性无机碳(DIC)环境,有利于沉水植物生长,从而提高了对地表水体中Mn,Co,Ni,Fe和Zn等微量元素的去除潜力。这些认识将有助于岩溶区地表水体水生光合生物群落结构对地表水体微量元素调控机制的研究。

     

  • 图 1  普定沙湾模拟试验场[34]

    a.试验场示意图(S和P分别代表泉水和水池);b.试验场全景图;c.1P~5P分别代表了裸岩地、裸土地、耕地、草地和灌丛地5种不同的土地利用类型所对应的池水

    Figure 1.  Puding Shawan Simulation Test Site

    图 2  池水水质参数的时空分布

    Figure 2.  Spatial and temporal distribution of water quality in the pond

    图 3  池水中浮游藻类生物量的时空变化

    Figure 3.  Temporal and spatial variation in planktonic algal biomass in the pond

    图 4  池水中沉水植物生物量的时空变化

    Figure 4.  Temporal and spatial variation in submerged plant biomass in the pond

    图 5  池水中微量元素平均质量浓度的时空变化

    Figure 5.  Temporal and spatial variation in the average concentration of trace elements in the pond

    表  1  池水中水质参数与叶绿素之间相关关系

    Table  1.   Correlations between water quality parameters and chlorophyll in the pond

    相关性系数 系统 水温 pH 电导率 溶解氧 叶绿素
    水温 浮游系统 1
    浮游-沉水系统 1
    pH 浮游系统 0.082 1
    浮游-沉水系统 0.533** 1
    电导率 浮游系统 -0.037 -0.691** 1
    浮游-沉水系统 -0.250 -0.759** 1
    溶解氧 浮游系统 0.389* 0.580** -0.459** 1
    浮游-沉水系统 0.371** 0.677** -0.318* 1
    叶绿素 浮游系统 0.430** 0.386* -0.019 0.580** 1
    浮游-沉水系统 0.755** 0.516** -0.169 0.475** 1
    注:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关
    下载: 导出CSV

    表  2  2种水生系统中微量元素的平均浓度与显著性

    Table  2.   Average concentrations and significance of trace elements in two aquatic systems

    微量元素 系统 N ρB均值/(μg·L-1) |变率| t检验 显著性
    V 浮游 40 0.78 0.06 -0.500 0.618
    浮游-沉水 50 0.82 0.06
    Cr 浮游 40 0.36 0.63 -3.946 0.000**
    浮游-沉水 50 0.59 0.39
    Mn 浮游 40 8.10 0.71 2.120 0.040*
    浮游-沉水 50 2.35 2.44
    Co 浮游 40 0.07 0.38 3.050 0.004**
    浮游-沉水 50 0.04 0.62
    Ni 浮游 40 0.34 0.40 3.863 0.000**
    浮游-沉水 50 0.20 0.67
    Cu 浮游 40 0.60 0.14 -1.182 0.240
    浮游-沉水 50 0.69 0.13
    Fe 浮游 40 20.33 0.72 7.371 0.000**
    浮游-沉水 50 5.73 2.55
    Zn 浮游 40 7.15 0.55 3.750 0.000**
    浮游-沉水 50 3.25 1.20
    Ba 浮游 40 40.63 0.00 0.006 0.995
    浮游-沉水 50 40.61 0.00
    注:*表示显著性水平0.05下(双侧)呈现差异; **表示显著性水平0.01下(双侧)呈现差异
    下载: 导出CSV
  • [1] 张军以, 王腊春, 马小雪, 等. 西南岩溶地区地下水污染及防治途径[J]. 水土保持通报, 2014, 34(2): 245-249.

    ZHANG J Y, WANG L C, MA X X, et al. Groundwater pollution in karst areas of Southwest China and its control methods[J]. Bulletin of Soil and Water Conservation, 2014, 34(2): 245-249. (in Chinese with English abstract)
    [2] 鄢贵权, 丁坚平, 王伍军, 等. 贵州典型岩溶区岩溶地下水污染评价[J]. 中国地质灾害与防治学报, 1999, 10(1): 82-88.

    YAN G Q, DING J P, WANG W J, et al. Karst groundwater pollution assessment in typical karst areas in Guizhou[J]. Chinese Journal of Geological Hazards and Prevention, 1999, 10(1): 82-88. (in Chinese with English abstract)
    [3] HARGUINTEGUY C A, CIRELLI A F, PIGNATA M L. Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía River(Argentina)[J]. Microchemical Journal, 2014, 114: 111-118. doi: 10.1016/j.microc.2013.12.010
    [4] MD S I, MASARU T. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis[J]. Marine Pollution Bulletin, 2004, 48(7/8): 624-649.
    [5] 杨伟利. 日本水俣病[J]. 环境, 2006(3): 96-97.

    YANG W L. Minamata disease in Japan[J]. Environment, 2006(3): 96-97. (in Chinese with English abstract)
    [6] 黄吉厚. 镉对环境的污染及其对策研究[J]. 辽宁教育学院学报, 2000, 17(5): 29-31.

    HUANG J H. Research on the pollution of cadmium to the environment and its countermeasures[J]. Journal of Liaoning Institute of Education, 2000, 17(5): 29-31. (in Chinese with English abstract)
    [7] 何刚, 耿晨光, 罗睿. 重金属污染的治理及重金属对水生植物的影响[J]. 贵州农业科学, 2008, 36(3): 147-150, 153.

    HE G, GENG C G, LUO R. Treatment of heavy metal pollution and effects of heavy metals on aquatic plants[J]. Guizhou Agricultural Science, 2008, 36(3): 147-150, 153. (in Chinese with English abstract)
    [8] 常晋娜, 瞿建国. 水体重金属污染的生态效应及生物监测[J]. 四川环境, 2005, 24(4): 29-33.

    CHANG J N, QU J G. Ecological effects and biological monitoring of heavy metal pollution in water[J]. Sichuan Environment, 2005, 24(4): 29-33. (in Chinese with English abstract)
    [9] 王海东, 方凤满, 谢宏芳. 中国水体重金属污染研究现状与展望[J]. 广东微量元素科学, 2010, 17(1): 14-18.

    WANG H D, FANG F M, XIE H F. Research status and prospect of heavy metal pollution in water in China[J]. Guangdong Science of Trace Elements, 2010, 17(1): 14-18. (in Chinese with English abstract)
    [10] 黄永杰, 刘登义, 王友保, 等. 八种水生植物对重金属富集能力的比较研究[J]. 生态学杂志, 2006, 25(5): 541-545.

    HUANG Y J, LIU D Y, WANG Y B, et al. A comparative study on the accumulation capacity of heavy metals in eight aquatic plants[J]. Journal of Ecology, 2006, 25(5): 541-545. (in Chinese with English abstract)
    [11] MOHAMED Z A. Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium Gloeothece magna[J]. Water Research, 2001, 35(18): 4405-4409. doi: 10.1016/S0043-1354(01)00160-9
    [12] 江用彬, 季宏兵. 藻类对重金属污染水体的生物修复[J]. 地理科学进展, 2007, 26(1): 56-67.

    JIANG Y B, JI H B. Bioremediation of heavy metal polluted water by algae[J]. Advances in Geography, 2007, 26(1): 56-67. (in Chinese with English abstract)
    [13] 陈国梁. 沉水植物对砷的富集特征及机理研究[D]. 杭州: 浙江大学, 2014.

    CHEN G L. Characteristics and mechanism of arsenic accumulation in submerged plants[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract)
    [14] 晏丽蓉. 几种沉水植物对底泥中镉、铜、铅、锌修复作用的研究[D]. 杭州: 浙江师范大学, 2013.

    YAN L R. Remediation effect of several submerged plants on cadmium, copper, lead and zinc in sediment[D]. Hangzhou: Zhejiang Normal University, 2013. (in Chinese with English abstract)
    [15] SR R A P. Land use and climate change[J]. Science, 2005, 310: 1625-1626. doi: 10.1126/science.1120529
    [16] XU S, LANG Y, ZHONG J, et al. Coupled controls of climate, lithology and land use on dissolved trace elements in a karst river system[J]. Journal of Hydrology, 2020, 591: 125328. doi: 10.1016/j.jhydrol.2020.125328
    [17] BAO Q, LIU Z, ZHAO M, et al. Primary productivity and seasonal dynamics of planktonic algae species composition in karst surface waters under different land uses[J]. Journal of Hydrology, 2020, 591: 125295. doi: 10.1016/j.jhydrol.2020.125295
    [18] 陈波, 陈文瑾, 陆苹茹, 等. 基于CCM机制的水生碳泵效应协同富营养化缓解研究进展[J]. 贵州师范大学学报(自然科学版), 2022, 40(2): 19-26.

    CHEN B, CHEN W J, LU P R, et al. Research progress of aquatic carbon pump effect synergistic eutrophication mitigation based on CCM mechanism[J]. Journal of Guizhou Normal University(Natural Science Edition), 2022, 40(2): 19-26. (in Chinese with English abstract)
    [19] 韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究: 碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.

    HAN G L, LIU C Q. Research on rivers in karst areas of Guizhou: Hydrogeochemical characteristics controlled by carbonate dissolution[J]. Advances in Earth Science, 2005, 20(4): 394-406. (in Chinese with English abstract)
    [20] MICHEL M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428. doi: 10.2475/ajs.287.5.401
    [21] WU W, QU S, NEL W, et al. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China[J]. Science of the Total Environment, 2020, 734: 139480. doi: 10.1016/j.scitotenv.2020.139480
    [22] JIANG Y, ZHANG C, YUAN D, et al. Impact of land use change on groundwater quality in a typical karst watershed of southwest China: A case study of the Xiaojiang watershed, Yunnan Province[J]. Hydrogeology Journal, 2008, 16(4): 727-735. doi: 10.1007/s10040-007-0259-9
    [23] YUE F J, WALDRON S, LI S L, et al. Land use interacts with changes in catchment hydrology to generate chronic nitrate pollution in karst waters and strong seasonality in excess nitrate export[J]. Science of the Total Environment, 2019, 696: 134062. doi: 10.1016/j.scitotenv.2019.134062
    [24] 魏星宇, 杨永琼, 王敬富, 等. 贵州草海流域下不同土地类型重金属污染空间分布特征及评价[J]. 贵州师范大学学报(自然科学版), 2021, 39(4): 39-45.

    WEI X Y, YANG Y Q, WANG J F, et al. Spatial distribution characteristics and evaluation of heavy metal pollution in different land types in the Caohai watershed of Guizhou[J]. Journal of Guizhou Normal University(Natural Science Edition), 2021, 39(4): 39-45. (in Chinese with English abstract)
    [25] COOPER S R. Chesapeake bay watershed historical land use: Impact on water quality and diatom communities[J]. Ecological Applications, 1995, 5(3): 703-723. doi: 10.2307/1941979
    [26] ARBUCKLE K E, DOWNING J A. The influence of watershed land use on lake N∶P in a predominantly agricultural landscape[J]. Limnology and Oceanography, 2001, 46(4): 970-975. doi: 10.4319/lo.2001.46.4.0970
    [27] NGOYE E, MACHIWA J F. The influence of land-use patterns in the Ruvu River watershed on water quality in the river system[J]. Physics and Chemistry of the Earth, 2004, 29: 15a18.
    [28] WANG B, LIU C Q, WANG F, et al. The distributions of autumn picoplankton in relation to environmental factors in the reservoirs along the Wujiang River in Guizhou Province, SW China[J]. Hydrobiologia, 2008, 598(1): 35-45. doi: 10.1007/s10750-007-9138-6
    [29] WANG F S, WANG B L, LIU C Q, et al. Changes in nutrient ratios and phytoplankton community structure caused by hydropower development in the Maotiao River, China[J]. Environmental Geochemistry and Health, 2014, 36(3): 595-603. doi: 10.1007/s10653-013-9583-2
    [30] QU S, WU W, NEL W, et al. The behavior of metals/metalloids during natural weathering: A systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China[J]. Science of the Total Environment, 2020, 708(C): 134572.
    [31] 龚杰, 孙紫童, 冯璐, 等. 武汉市东西湖区主要湖泊表层沉积物重金属污染特征与生态风险评价[J]. 地质科技通报, 2021, 40(3): 204-210. doi: 10.19509/j.cnki.dzkq.2021.0313

    GONG J, SUN Z T, FENG L, et al. Characteristics and ecological risk assessment of heavy metal pollution in surface sediments of main lakes in Dongxihu District, Wuhan City[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 204-210. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0313
    [32] 夏敏. 必需微量元素的生理功能[J]. 微量元素与健康研究, 2003, 20(3): 41-44.

    XIA M. Physiological functions of essential trace elements[J]. Trace Elements and Health Research, 2003, 20(3): 41-44. (in Chinese with English abstract)
    [33] 武阳, 刘再华, 于青春, 等. 土地利用变化对喀斯特水体溶解无机碳、总氮和总磷输出的影响: 以贵州普定沙湾模拟试验场为例[J]. 地球与环境, 2022, 50(4): 547-557.

    WU Y, LIU Z H, YU Q C, et al. Effects of land use change on the output of dissolved inorganic carbon, total nitrogen and total phosphorus in karst waters: Taking the Puding Shawan simulation test site in Guizhou as an example[J]. Earth and Environment, 2022, 50(4): 547-557. (in Chinese with English abstract)
    [34] XIA F, LIU Z H, ZHAO M, et al. High stability of autochthonous dissolved organic matter in karst aquatic ecosystems: Evidence from fluorescence[J]. Water Research, 2022, 220: 118723. doi: 10.1016/j.watres.2022.118723
    [35] LI L, LIU H, LI H X. Distribution and migration of antimony and other trace elements in Akarstic River system, Southwest China[J]. Environmental Science and Pollution Research International, 2018, 25(28): 28061-28074. doi: 10.1007/s11356-018-2837-x
    [36] 陈宇炜, 陈开宁, 胡耀辉. 浮游植物叶绿素a测定的"热乙醇法"及其测定误差的探讨[J]. 湖泊科学, 2006, 18(5): 550-552.

    CHEN Y W, CHEN K N, HU Y H. "Hot ethanol method" for the determination of phytoplankton chlorophyll a and its measurement error[J]. Lake Science, 2006, 18(5): 550-552. (in Chinese with English abstract)
    [37] 张澎浪, 孙承军. 地表水体中藻类的生长对pH值及溶解氧含量的影响[J]. 中国环境监测, 2004, 20(4): 49-50.

    ZHANG P L, SUN C J. Effects of algal growth on pH and dissolved oxygen content in surface water[J]. China Environmental Monitoring, 2004, 20(4): 49-50. (in Chinese with English abstract)
    [38] 杨清心. 富营养水体中沉水植物与浮游藻类相互竞争的研究[J]. 湖泊科学, 1996, 8(增刊1): 17-24.

    YANG Q X. Study on the competition between submerged plants and planktonic algae in eutrophic waters[J]. Journal of Lake Sciences, 1996, 8(S1): 17-24. (in Chinese with English abstract)
    [39] LI H, LI Q, LUO X, et al. Responses of the submerged macrophyte Vallisneria natans to a water depth gradient[J]. Science of the Total Environment, 2020, 701(C): 134944.
    [40] ZHU J, LIU B, WANG J, et al. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte(Myriophyllum spicatum) and its secretion[J]. Aquatic Toxicology, 2010, 98(2): 196-203. doi: 10.1016/j.aquatox.2010.02.011
    [41] JONES J I, YOUNG J O, EATON J W, et al. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton[J]. Journal of Ecology, 2002, 90(1): 12-24. doi: 10.1046/j.0022-0477.2001.00620.x
    [42] 秦伯强. 浅水湖泊湖沼学与太湖富营养化控制研究[J]. 湖泊科学, 2020, 32(5): 1229-1243.

    QIN B Q. Limnology of shallow lakes and eutrophication control of Taihu Lake[J]. Journal of Lake Sciences, 2020, 32(5): 1229-1243. (in Chinese with English abstract)
    [43] 李梦. 巢湖西半湖浮游藻类群落及体内微量元素的研究[D]. 合肥: 合肥工业大学, 2015.

    LI M. Study on the phytoplankton community and trace elements in the west half of Chaohu Lake[D]. Hefei: Hefei University of Technology, 2015. (in Chinese with English abstract)
    [44] 鲍乾. 喀斯特地表水水生光合作用的碳限制及其环境效应: 以普定沙湾模拟试验场为例[D]. 贵阳: 中国科学院地球化学研究所, 2021.

    BAO Q. Carbon limitation of aquatic photosynthesis in karst surface waters and its environmental effects: A case study of Puding Shawan simulation test site[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 2021. (in Chinese with English abstract)
    [45] ERIK J, MARTIN S, MORTEN S, et al. The structuring role of submerged macrophytes in lakes[M]. New York: Springer, 1998.
    [46] SCHEFFER M, HOSPER S H, MEIJER M L, et al. Alternative equilibria in shallow lakes[J]. Trends in Ecology & Evolution, 1993, 8(8): 275-279.
    [47] BORNETTE G, PUIJALON S. Response of aquatic plants to abiotic factors: A review[J]. Aquatic Sciences, 2011, 73(1): 1-14. doi: 10.1007/s00027-010-0162-7
    [48] 熊飞, 刘红艳, 董元火, 等. 抚仙湖轮藻植物的时空格局[J]. 江汉大学学报(自然科学版), 2011, 39(3): 102-107.

    XIONG F, LIU H Y, DONG Y H, et al. The spatiotemporal pattern of charophytes in Fuxian Lake[J]. Journal of Jianghan University(Natural Science Edition), 2011, 39(3): 102-107. (in Chinese with English abstract)
    [49] 李栋, 赵敏, 刘再华, 等. 普定岩溶水-碳循环模拟试验场水体双碳同位素特征(δ13C-Δ14C)与碳足迹[J]. 地学前缘, 2022, 29(3): 155-166.

    LI D, ZHAO M, LIU Z H, et al. Double carbon isotopic characteristics(δ13C-Δ14C) and carbon footprint of water in Puding karst water-carbon cycle simulation test site[J]. Earth Science Frontier, 2022, 29(3): 155-166. (in Chinese with English abstract)
    [50] 王和云, 于丹, 倪乐意. 浅析轮藻植物与水体富营养化的关系[J]. 长江流域资源与环境, 2014, 23(5): 693-699.

    WANG H Y, YU D, NI L Y. Analysis on the relationship between charophytes and water eutrophication[J]. Resources and Environment in the Yangtze River Basin, 2014, 23(5): 693-699. (in Chinese with English abstract)
    [51] 王爱丽, 王芳, 商书波, 等. 沉水植物菹草对含铬废水的修复实验设计[J]. 实验技术与管理, 2018, 35(12): 62-64.

    WANG A L, WANG F, SHANG S B, et al. Experimental design of the remediation of chromium-containing wastewater by the submerged plant S. japonica[J]. Experimental Technology and Management, 2018, 35(12): 62-64. (in Chinese with English abstract)
    [52] 张饮江, 刘晓培, 金晶, 等. 沉水植物对水体净化的研究进展[J]. 科技导报, 2012, 30(27): 72-79.

    ZHANG Y J, LIU X P, JIN J, et al. Research progress on water purification by submerged plants[J]. Science and Technology Review, 2012, 30(27): 72-79. (in Chinese with English abstract)
    [53] AYSEL S, EMIRE E, FATIH G, et al. Removal of cadmium by Myriophyllum heterophyllum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds[J]. Archives of Environmental Contamination and Toxicology, 2008, 54(4): 612-618. doi: 10.1007/s00244-007-9070-9
    [54] BUNLUESIN S, POKETHITIYOOK P, LANZA G R, et al. Influences of cadmium and zinc interaction and humic acid on metal accumulation in ceratophyllum demersum[J]. Water, Air, and Soil Pollution, 2007, 180(1/4): 225-235.
    [55] 周婕, 曾诚. 水生植物对湖泊生态系统的影响[J]. 人民长江, 2008, 39(6): 88-91.

    ZHOU J, ZENG C. Effects of aquatic plants on lake ecosystems[J]. People's Yangtze River, 2008, 39(6): 88-91. (in Chinese with English abstract)
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  416
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 录用日期:  2022-10-06
  • 修回日期:  2022-09-27

目录

    /

    返回文章
    返回