留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆地地质环境微塑料污染研究现状与展望

朱丽萍 陶雪晴 万愉快 何稼 李明东

朱丽萍, 陶雪晴, 万愉快, 何稼, 李明东. 陆地地质环境微塑料污染研究现状与展望[J]. 地质科技通报, 2023, 42(6): 233-241. doi: 10.19509/j.cnki.dzkq.tb20220353
引用本文: 朱丽萍, 陶雪晴, 万愉快, 何稼, 李明东. 陆地地质环境微塑料污染研究现状与展望[J]. 地质科技通报, 2023, 42(6): 233-241. doi: 10.19509/j.cnki.dzkq.tb20220353
Zhu Liping, Tao Xueqing, Wan Yukuai, He Jia, Li Mingdong. Microplastic contamination in terrestrial geoenvironments: Review and outlook[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 233-241. doi: 10.19509/j.cnki.dzkq.tb20220353
Citation: Zhu Liping, Tao Xueqing, Wan Yukuai, He Jia, Li Mingdong. Microplastic contamination in terrestrial geoenvironments: Review and outlook[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 233-241. doi: 10.19509/j.cnki.dzkq.tb20220353

陆地地质环境微塑料污染研究现状与展望

doi: 10.19509/j.cnki.dzkq.tb20220353
基金项目: 

核资源与环境国家重点实验室开放基金项目 2022NRE29

国家自然科学基金项目 52168043

江西省创新领军人才(李明东) 

详细信息
    作者简介:

    朱丽萍(1981—), 女, 实验师, 主要从事环境地质方面的教学与科研工作。E-mail: zlp1123@ecut.edu.cn

    通讯作者:

    李明东(1981—), 男, 教授, 主要从事岩土工程方面的教学与科研工作。E-mail: ytlimd@163.com

  • 中图分类号: X52

Microplastic contamination in terrestrial geoenvironments: Review and outlook

  • 摘要:

    陆地地质环境中的微塑料污染日渐广泛和严重, 受到科学界的广泛关注, 但研究尚处于起步阶段。对近5年微塑料研究的国际文献进行了综述, 从来源与组成、迁移和环境影响3个方面进行了梳理和总结, 并提出了下一步研究建议。近期研究发现陆地地质环境中的微塑料主要来源于垃圾填埋场、农业面源污染、污水处理系统和交通运输系统, 不同来源的微塑料存在显著差异, 具有时空变异性。微塑料会随土体人为扰动、土内生物活动在土体内迁移, 还可能渗入地下水并借助渗流迁移, 或悬浮到大气中并借助风力迁移, 颗粒越小越容易迁移。微塑料使土体黏聚力增加、孔隙率降低、孔隙尺度减小、空气循环减少、保水能力提高, 微塑料中强水溶性添加剂的渗出会造成地质体次生污染。微塑料对植物生长、动物消化、微生物活性存在不利影响, 会诱发人类能量和脂质代谢紊乱、氧化应激和呼吸系统疾病。微塑料污染地质体修复仍处于起步阶段, 仅在少量室内试验中发现了微生物降解和生物修复的效果。综上, 微塑料污染广泛存在, 且对生物和人类健康带来诸多不利影响。面向未来, 尚需探明微塑料对陆地生态系统中营养传输的影响、微塑料添加剂在地质体中的迁移和降解规律, 研发更高效便捷的微塑料定量检测方法, 制定全球统一的测试和评价标准, 将微塑料检测列入污染土检测项目, 研发高效的微塑料污染地质体修复方法。

     

  • 图 1  陆地地质环境中微塑料的主要来源和路径

    Figure 1.  Main sources and pathways of microplastics in terrestrial geological environments

    图 2  陆地地质环境中微塑料的迁移示意图

    Figure 2.  Schematic represention of CMTG migrations

    图 3  陆地地质环境中微塑料的环境影响示意图

    Figure 3.  Schematic representation of the environmental impact of CMTG

    表  1  典型陆地地质环境中微塑料的组成情况

    Table  1.   Composition of microplastics in typical terrestrial geological environments

    场地 城市 粒径/μm 平均浓度 主要成分 主要形状
    垃圾填埋场垃圾[7] 中国上海 20~5 000 39 000~85 000粒/kg 聚乙烯 碎片状
    长期覆膜农田[37] 中国京津冀 平均2 950 平均29.3粒/kg 主要成分为聚乙烯,占43.7% 碎片状
    施用固废堆肥的农田[38] 法国巴黎 0.45~5 000 0.16~1.2 kg/(ha-1·a-1) 未测定 颗粒状
    垃圾填埋场渗滤液[35] 中国长三角 100~5 000 0.4~24.6粒/L 聚乙烯和聚丙烯 纤维状和薄膜状,纤维状占60%
    地下水[39] 印度佩鲁古迪遗址 0.45~5 000 7~80粒/L 聚苯乙烯和聚丙烯 未观测
    下载: 导出CSV
  • [1] Vaverková M D, Paleologos E K, Dominijanni A, et al. Municipal solid waste management under COVID-19: Challenges and recommendations[J]. Environmental Geotechnics, 2021, 8(3): 217-232. doi: 10.1680/jenge.20.00082
    [2] Qi Y, Ossowicki A, Yang X, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 2020, 387: 121711. doi: 10.1016/j.jhazmat.2019.121711
    [3] Su Y L, Zhang Z J, Zhu J D, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process[J]. Environmental Pollution, 2021, 270: 116278. doi: 10.1016/j.envpol.2020.116278
    [4] Lwanga E H, Gertsen H, Gooren H, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris(Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5): 2685-2691.
    [5] Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190
    [6] 梁晓霏. "净零"排放趋势下塑料循环经济前景分析[J]. 石油化工技术与经济, 2022, 38(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHA202202001.htm

    Liang X F. Analysis of recycling economy prospects of plastics under the trend of "net zero emission"[J]. Petrochemical Technology and Economy, 2022, 38(2): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYHA202202001.htm
    [7] Su Y, Zhang Z, Wu D, et al. Occurrence of microplastics in landfill systems and their fate with landfill age[J]. Water Research, 2019, 164: 114968. doi: 10.1016/j.watres.2019.114968
    [8] Mahon A M, O'Connell B, Healy M G, et al. Microplastics in sewage sludge: Effects of treatment[J]. Environmental Science & Technology, 2017, 51(2): 810-818.
    [9] O'Kelly B C, El-Zein A, Liu X, et al. Microplastics in soils: An environmental geotechnics perspective[J]. Environmental Geotechnics, 2021, 8(8): 586-618. doi: 10.1680/jenge.20.00179
    [10] Chandana N, Goli V S N S, Mohammad A, et al. Characterization and utilization of landfill-mined-soil-like-fractions(LFMSF) for sustainable development: A critical appraisal[J]. Waste and Biomass Valorization, 2021, 12(2): 641-662. doi: 10.1007/s12649-020-01052-y
    [11] Guerranti C, Martellini T, Perra G, et al. Microplastics in cosmetics: Environmental issues and needs for global bans[J]. Environmental Toxicology and Pharmacology, 2019, 68: 75-79. doi: 10.1016/j.etap.2019.03.007
    [12] 马兆嵘, 刘有胜, 张芊芊, 等. 农用塑料薄膜使用现状与环境污染分析[J]. 生态毒理学报, 2020, 15(4): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL202004003.htm

    Ma Z R, Liu Y S, Zhang Q Q, et al. The usage and environmental pollution of agricultural plastic film[J]. Asian Journal of EcoToxicology, 2020, 15(4): 21-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STDL202004003.htm
    [13] Steinmetz Z, Wollmann C, Schaefer M, et al. Plastic mulching in agriculture: Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550: 690-705. doi: 10.1016/j.scitotenv.2016.01.153
    [14] Katsumi N, Kusube T, Nagao S, et al. Accumulation of microcapsules derived from coated fertilizer in paddy fields[J]. Chemosphere, 2021, 267: 129185. doi: 10.1016/j.chemosphere.2020.129185
    [15] 谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. doi: 10.19509/j.cnki.dzkq.2020.0104

    Xie X J, Liu H X, Gao S, et al. Groundwater pollution sources identification and health risk assessment around typical drainage pits[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0104
    [16] Ruffell H, Pantos O, Northcott G, et al. Wastewater treatment plant effluents in New Zealand are a significant source of microplastics to the environment[J]. New Zealand Journal of Marine and Freshwater Research, 2023, 57(3): 336-352. doi: 10.1080/00288330.2021.1988647
    [17] Conley K, Clum A, Deepe J, et al. Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year[J]. Water Research X, 2019, 3: 100030. doi: 10.1016/j.wroa.2019.100030
    [18] Rasmussen L A, Iordachescu L, Tumlin S, et al. A complete mass balance for plastics in a wastewater treatment plant - macroplastics contributes more than microplastics[J]. Water Research, 2021, 201: 117307. doi: 10.1016/j.watres.2021.117307
    [19] Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science and Technology, 2016, 50(20): 10777-10779. doi: 10.1021/acs.est.6b04140
    [20] Ng E L, Lin S Y, Dungan A M, et al. Microplastic pollution alters forest soil microbiome[J]. Journal of Hazardous Materials, 2021, 409: 124606. doi: 10.1016/j.jhazmat.2020.124606
    [21] Evangeliou N, Grythe H, Klimont Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions[J]. Nature Communications, 2020, 11(1): 3381. doi: 10.1038/s41467-020-17201-9
    [22] Schwarz A E, Ligthart T N, Boukris E, et al. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study[J]. Marine Pollution Bulletin, 2019, 143: 92-100. doi: 10.1016/j.marpolbul.2019.04.029
    [23] Kole P J, Löhr A J, van Belleghem F G A J, et al. Wear and tear of tyres: A stealthy source of microplastics in the environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1265. doi: 10.3390/ijerph14101265
    [24] Rødland E S, Samanipour S, Rauert C, et al. A novel method for the quantification of tire and polymer-modified bitumen particles in environmental samples by pyrolysis gas chromatography mass spectroscopy[J]. Journal of Hazardous Materials, 2022, 423: 127092. doi: 10.1016/j.jhazmat.2021.127092
    [25] O'Kelly B C, Soltani A. Discussion of "Behaviour of a foam mixture as a lightweight construction material"[Int. J. of Geosynth. and Ground Eng. (2021) 7(3), 51][J]. International Journal of Geosynthetics and Ground Engineering, 2018, 2022, 8(2): 30.
    [26] Li M, Wen K, Li L, et al. Mechanical properties of expanded polystyrene beads stabilized lightweight soil[J]. Geomechanics and Engineering, 2017, 13(3): 459-474.
    [27] Zhang Y, Gao T, Kang S, et al. Importance of atmospheric transport for microplastics deposited in remote areas[J]. Environmental Pollution, 2019, 254: 112953. doi: 10.1016/j.envpol.2019.07.121
    [28] Zhou Y, Li M, He Q, et al. Deformation and damping characteristics of lightweight clay-EPS soil under cyclic loading[J]. Advances in Civil Engineering, 2018: 8093719.
    [29] Zhou Y, Li M, Wen K, et al. Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading[J]. Geomechanics and Engineering, 2019, 17(6): 507-513.
    [30] Monkul M M, Özhan H O. Microplastic contamination in soils: A review from geotechnical engineering view[J]. Polymers, 2021, 13(23): 4129. doi: 10.3390/polym13234129
    [31] Ji X, Ma Y, Zeng G, et al. Transport and fate of microplastics from riverine sediment dredge piles: Implications for disposal[J]. Journal of Hazardous Materials, 2021, 404: 124132. doi: 10.1016/j.jhazmat.2020.124132
    [32] 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. doi: 10.19509/j.cnki.dzkq.2020.0101

    Wang Y X, Gan Y Q, Deng Y M, et al. Coastal zone sea-land interaction process and its ecological effect research progress[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 1-10(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0101
    [33] Golwala H, Zhang X, Iskander S M, et al. Solid waste: An overlooked source of microplastics to the environment[J]. Science of the Total Environment, 2021, 769: 144581. doi: 10.1016/j.scitotenv.2020.144581
    [34] Goli V S N S, Paleologos E K, Farid A, et al. Extraction, characterisation and remediation of microplastics from organic solid matrices[J]. Environmental Geotechnics, 2022: 2100072.
    [35] He P, Chen L, Shao L, et al. Municipal solid waste(MSW)landfill: A source of microplastics?: Evidence of microplastics in landfill leachate[J]. Water Research, 2019, 159: 38-45. doi: 10.1016/j.watres.2019.04.060
    [36] Ren Z, Gui X, Xu X, et al. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants: A critical review[J]. Journal of Hazardous Materials, 2021, 419: 126455. doi: 10.1016/j.jhazmat.2021.126455
    [37] Li R, Liu Y, Sheng Y, et al. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil[J]. Environmental Pollution, 2020, 260: 113988. doi: 10.1016/j.envpol.2020.113988
    [38] Watteau F, Dignac M F, Bouchard A, et al. Microplastics detection in soil amended with municipal solid waste composts as revealed by transmission electron microscopy and pyrolysis/GC/MS[J]. Frontiers in Sustainable Food Systems, 2018, 2: 81. doi: 10.3389/fsufs.2018.00081
    [39] Manikanda Bharath K, Usha N, Vaikunth R, et al. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater[J]. Chemosphere, 2021, 277: 130263. doi: 10.1016/j.chemosphere.2021.130263
    [40] Rillig M C, Lehmann A, de Souza Machado A A, et al. Microplastic effects on plants[J]. New Phytologist, 2019, 223(3): 1066-1070. doi: 10.1111/nph.15794
    [41] 叶芯瑶, 吴鸣, 胡晓农, 等. 纳米塑料颗粒在饱和多孔介质中的迁移规律[J]. 地质科技通报, 2022, 41(4): 225-233. doi: 10.19509/j.cnki.dzkq.2021.0064

    Ye X Y, Wu M, Hu X N, et al. Nano plastic particles migration patterns in saturated porous media[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 225-233(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0064
    [42] O'Connor D, Pan S, Shen Z, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249: 527-534. doi: 10.1016/j.envpol.2019.03.092
    [43] Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. doi: 10.1016/j.scitotenv.2017.08.086
    [44] Huerta L E, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220: 523-531. doi: 10.1016/j.envpol.2016.09.096
    [45] Zhu D, Bi Q F, Xiang Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution, 2018, 235: 150-154. doi: 10.1016/j.envpol.2017.12.058
    [46] Samandra S, Johnston J M, Jaeger J E, et al. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia[J]. Science of the Total Environment, 2022, 802: 149727. doi: 10.1016/j.scitotenv.2021.149727
    [47] Zhang X, Chen Y, Li X, et al. Size/shape-dependent migration of microplastics in agricultural soil under simulative and natural rainfall[J]. Science of the Total Environment, 2022, 815: 152507. doi: 10.1016/j.scitotenv.2021.152507
    [48] Panno S V, Kelly W R, Scott J, et al. Microplastic contamination in karst groundwater systems[J]. Groundwater, 2019, 57(2): 189-196. doi: 10.1111/gwat.12862
    [49] Goeppert N, Goldscheider N. Experimental field evidence for transport of microplastic tracers over large distances in an alluvial aquifer[J]. Journal of Hazardous Materials, 2021, 408: 124844. doi: 10.1016/j.jhazmat.2020.124844
    [50] Viaroli S, Lancia M, Re V. Microplastics contamination of groundwater: Current evidence and future perspectives. A review[J]. Science of the Total Environment, 2022, 824: 153851. doi: 10.1016/j.scitotenv.2022.153851
    [51] Johnson A C, Ball H, Cross R, et al. Identification and quantification of microplastics in potable water and their sources within water treatment works in England and Wales[J]. Environmental Science and Technology, 2020, 54(19): 12326-12334. doi: 10.1021/acs.est.0c03211
    [52] Selvam S, Jesuraja K, Venkatramanan S, et al. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal South India[J]. Journal of Hazardous Materials, 2021, 402: 123786. doi: 10.1016/j.jhazmat.2020.123786
    [53] Luo Y, Zhang Y, Xu Y, et al. Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties[J]. Science of the Total Environment, 2020, 726: 138389. doi: 10.1016/j.scitotenv.2020.138389
    [54] Koskei K, Munyasya A N, Wang Y B, et al. Effects of increased plastic film residues on soil properties and crop productivity in agro-ecosystem[J]. Journal of Hazardous Materials, 2021, 414: 125521. doi: 10.1016/j.jhazmat.2021.125521
    [55] Machado A A D, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044-6052.
    [56] Cuello J P, Hwang H Y, Gutierrez J, et al. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation[J]. Applied Soil Ecology, 2015, 91: 48-57. doi: 10.1016/j.apsoil.2015.02.007
    [57] Jiang X, Chang Y, Zhang T, et al. Toxicological effects of polystyrene microplastics on earthworm(Eisenia fetida)[J]. Environmental Pollution, 2020, 259: 113896. doi: 10.1016/j.envpol.2019.113896
    [58] Kwak J I, An Y J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability[J]. Journal of Hazardous Materials, 2021, 402: 124034. doi: 10.1016/j.jhazmat.2020.124034
    [59] Lackmann C, Velki M, Šimiĉ A, et al. Two types of microplastics(polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner[J]. Environment International, 2022, 163: 107190. doi: 10.1016/j.envint.2022.107190
    [60] Al-Lihaibi S, Al-Mehmadi A, Alarif W M, et al. Microplastics in sediments and fish from the Red Sea coast at Jeddah(Saudi Arabia)[J]. Environmental Chemistry, 2019, 16(8): 641-650. doi: 10.1071/EN19113
    [61] Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774-781. doi: 10.1016/j.chemosphere.2019.03.163
    [62] Li Z, Li Q, Li R, et al. The distribution and impact of polystyrene nanoplastics on cucumber plants[J]. Environmental Science and Pollution Research, 2021, 28(13): 16042-16053. doi: 10.1007/s11356-020-11702-2
    [63] Loppi S, Roblin B, Paoli L, et al. Accumulation of airborne microplastics in lichens from a landfill dumping site(Italy)[J]. Scientific Reports, 2021, 11: 4564. doi: 10.1038/s41598-021-84251-4
    [64] Azeem I, Adeel M, Ahmad M A, et al. Uptake and accumulation of nano/microplastics in plants: A critical review[J]. Nanomaterials, 2021, 11(11): 2935. doi: 10.3390/nano11112935
    [65] Gao H, Yan C, Liu Q, et al. Effects of plastic mulching and plastic residue on agricultural production: a meta-analysis[J]. Science of the Total Environment, 2019, 651: 484-492. doi: 10.1016/j.scitotenv.2018.09.105
    [66] Luo Y M, Li L Z, Feng Y D, et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer[J]. Nature Nanotechnology, 2022, 17(4): 424-431. doi: 10.1038/s41565-021-01063-3
    [67] Mateos-Cárdenas A, van Pelt F N A M, O'Halloran J, et al. Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes[J]. Environmental Pollution, 2021, 284: 117183. doi: 10.1016/j.envpol.2021.117183
    [68] Ashwood F, Butt K R, Doick K J, et al. Investigating tree foliar preference by the earthworms Aporrectodea longa and Allolobophora chlorotica in reclaimed and loam soil[J]. Applied Soil Ecology, 2017, 110: 109-117. doi: 10.1016/j.apsoil.2016.10.007
    [69] Guo J J, Huang X P, Xiang L, et al. Source, migration and toxicology of microplastics in soil[J]. Environment International, 2020, 137: 105263. doi: 10.1016/j.envint.2019.105263
    [70] Gerhardt A. Plastic additive Bisphenol A: Toxicity in surface- and groundwater crustaceans[J]. Journal of Toxicology and Risk Assessment, 2019, 5(1): 017.
    [71] Kim S W, An Y J. Soil microplastics inhibit the movement of springtail species[J]. Environment International, 2019, 126: 699-706. doi: 10.1016/j.envint.2019.02.067
    [72] Prata J C. Airborne microplastics: Consequences to human health?[J]. Environmental Pollution, 2018, 234: 115-126. doi: 10.1016/j.envpol.2017.11.043
    [73] Zhang M, Zhao Y, Qin X, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil[J]. Science of the Total Environment, 2019, 688: 470-478. doi: 10.1016/j.scitotenv.2019.06.108
    [74] Daniel D B, Ashraf P M, Thomas S N. Microplastics in the edible and inedible tissues of pelagic fishes sold for human consumption in Kerala, India[J]. Environmental Pollution, 2020, 266: 115365. doi: 10.1016/j.envpol.2020.115365
    [75] Kedzierski M, Lechat B, Sire O, et al. Microplastic contamination of packaged meat: Occurrence and associated risks[J]. Food Packaging and Shelf Life, 2020, 24: 100489. doi: 10.1016/j.fpsl.2020.100489
    [76] 刘伟, 段佳文, 赵瑞超, 等. 宜昌长江南岸岩溶地下水中水生动物群落分布特征及其环境响应[J]. 地质科技通报, 2022, 41(5): 273-282. doi: 10.19509/j.cnki.dzkq.2022.0218

    Liu W, Duan J W, Zhao R C, et al. Distribution characteristics and environmental response of aquatic animal communities in karst groundwater on the south bank of Yichang Yangtze River[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 273-282(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0218
    [77] Senathirajah K, Attwood S, Bhagwat G, et al. Estimation of the mass of microplastics ingested: A pivotal first step towards human health risk assessment[J]. Journal of Hazardous Materials, 2021, 404: 124004. doi: 10.1016/j.jhazmat.2020.124004
    [78] Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environmental International, 2022, 163: 107199. doi: 10.1016/j.envint.2022.107199
    [79] Mohamed Nor N H, Kooi M, Diepens N J, et al. Lifetime accumulation of microplastic in children and adults[J]. Environmental Science & Technology, 2021, 55(8): 5084-5096.
    [80] Schwabl P, Köppel S, Königshofer P, et al. Detection of various microplastics in human stool: A prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. doi: 10.7326/M19-0618
    [81] Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: First evidence of microplastics in human placenta[J]. Environment International, 2021, 146: 106274. doi: 10.1016/j.envint.2020.106274
    [82] Deng Y, Zhang Y. Response to Uptake of microplastics and related health effects: A critical discussion of Deng et al., Scientific reports 7: 46687, 2017[J]. Archives of Toxicology, 2019, 93: 213-215.
    [83] Mishra S, Rath C C, Das A P. Marine microfiber pollution: A review on present status and future challenges[J]. Marine Pollution Bulletin, 2019, 140: 188-197. doi: 10.1016/j.marpolbul.2019.01.039
    [84] Ribeiro F, O'Brien J W, Galloway T, et al. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms[J]. TrAC Trends in Analytical Chemistry, 2019, 111: 139-147. doi: 10.1016/j.trac.2018.12.010
    [85] Enyoh C E, Verla A W, Verla E N, et al. Airborne microplastics: a review study on method for analysis, occurrence, movement and risks[J]. Environmental Monitoring and Assessment, 2019, 191: 668. doi: 10.1007/s10661-019-7842-0
    [86] Goli V S N S, Mohammad A, Singh D N. Application of municipal plastic waste as a manmade neo-construction material: Issues & wayforward[J]. Resources, Conservation and Recycling, 2020, 161: 105008. doi: 10.1016/j.resconrec.2020.105008
    [87] Knobloch E, Ruffell H, Aves A, et al. Comparison of deposition sampling methods to collect airborne microplastics in Christchurch, New Zealand[J]. Water, Air, and Soil Pollution, 2021, 232(4): 133. doi: 10.1007/s11270-021-05080-9
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  631
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 录用日期:  2022-08-29
  • 修回日期:  2022-08-21

目录

    /

    返回文章
    返回