Analysis of the carbon stock and carbon neutral potential of wetlands in Guizhou Province
-
摘要:
湿地作为缓解气候变化的关键生态系统, 在碳捕获与碳封存方面发挥着不可替代的作用。湿地碳储量和影响因素的分析以及固碳潜力的预测, 对湿地生态保护与管理、国家"双碳"目标实现具有重要意义。应用ArcGIS10.8对《贵州省湿地保护发展规划》(以下简称规划)的3个时期(分别是: 1999-2009年; 2010-2018年; 2018年至今)湿地分布图采用遥感目视解译的方式进行矢量化并根据贵州省岩溶发育强度进行分区。采用生命带研究法与生物量估算法等对贵州省湿地面积和碳储量变化进行估算分析, 对重要湿地碳储量与单位面积碳储量进行估算并与全省湿地进行对比, 采用固碳潜力计算模型对贵州省重要湿地固碳潜力进行估算, 应用Origin软件对各相关影响因子进行数据分析。结果表明: ①贵州省湿地规划前期的面积为216 526.95 hm2, 规划中期面积为209 726.85 hm2、规划后期面积为255 440.53 hm2, 总体表现为先下降再升高, 总体面积增加38 913.58 hm2; ②贵州省湿地碳储量变化为: 规划前期为5.97×105 t, 规划后期为3.78×106 t, 是规划前期的6倍以上, 碳储量增加明显。其中, 贵州省重要湿地碳储量为3.24×106 t, 占全省湿地碳储量85.71%, 固碳潜力十分显著; ③贵州省重要湿地的固碳潜力为1.14×104 t C/a, 预计到2030和2060年, 湿地总固碳量分别达到7.99×106 t C和8.34×106 t C; ④温度、
DIC 浓度、有机碳含量与面积对贵州省重要湿地的碳储量影响较大, 重要湿地碳储量与DIC 浓度、有机碳含量以及面积呈正相关, 而与温度呈负相关关系。对贵州省的湿地碳储量估算与碳中和潜力分析不仅可以了解贵州省湿地碳封存现状, 还可为区域湿地生态系统在"3060"双碳目标的贡献上提供理论参考。Abstract:As a key ecosystem for climate change mitigation, wetlands play an irreplaceable role in carbon capture and sequestration. The analysis of wetland carbon stocks and their influencing factors, as well as the prediction of carbon sequestration potential, are of great significance to the conservation and management of wetlands and the achievement of the national "double carbon" target.This study employed ArcGIS 10.8 to vectorize the wetland distribution map of the Wetland Protection and Development Plan of Guizhou Province (hereinafter referred to as the Plan) for three periods (1999-2009, 2010-2018, and 2018-present, respectively) by means of remote sensing visual interpretation and zoned them according to the intensity of karst development in Guizhou Province. The changes in wetland area and carbon stock in Guizhou Province were estimated and analyzed using the life belt research method and biomass estimation method, and the total carbon stock and carbon stock per unit area of key wetlands were estimated and compared with those of all wetlands in Guizhou Province. A calculation model was used to estimate the carbon sequestration potential of the key wetlands in Guizhou Province.The Origin software was applied to analyze the data on all relevant impact factors. The results showed that: ①The area of wetlands in Guizhou Province was 216, 526.95 hm2, 209, 726.85 hm2, and 255, 440.53 hm2 in the pre-, mid-, and late-planning periods, respectively, with an overall decrease and then increase, and the total area increased by 38, 913.58 hm2; ② The wetland carbon stock in Guizhou Province was 3.78×106 t in the late stage of planning, increasing significantly to more than 6 times of that in the early stage of planning(5.97×105 t), among which the carbon stock of the key wetlands was 3.24×106 t, accounting for 85.71% of the province's wetland carbon stock; ③ The carbon sequestration potential of the keywetlands in Guizhou Provincewas 1.14×104 t C/a, and the total carbon sequestration of wetlands is expected to reach 7.99×106 t C and 8.34×106 t C by 2030 and 2060, respectively; and ④ The carbon stock of the key wetlands was positively correlated with DIC concentration, organic carbon content and wetland area and negatively correlated with temperature, indicating thattemperature, DIC concentration, organic carbon content and wetland area had a strong influence on the carbon stock of the key wetlands in Guizhou Province.The results of this study will not only facilitate the understanding of the current status of wetland carbon sequestration in Guizhou Province but also provide a theoretical reference for the contribution of regional wetland ecosystems to the "3060" dual carbon target.
-
Key words:
- wetlands /
- carbon stock /
- carbon neutral /
- carbon sequestration potential /
- Guizhou Province /
- wetlands planning
-
表 1 贵州省不同类型湿地面积变化
Table 1. Changes in the area of different types of wetlands in Guizhou Province
湿地类型 时期 面积/hm2 占比/% 河流湿地 规划前期 166 351.16 76.83 规划中期 138 154.76 65.87 规划后期 147 089.20 57.58 湖泊湿地 规划前期 - - 规划中期 2 517.70 1.21 规划后期 3 637.40 1.42 沼泽湿地 规划前期 - - 规划中期 10 978.70 5.23 规划后期 5 213.93 2.04 人工湿地 规划前期 50 175.79 23.17 规划中期 58 075.69 27.69 规划后期 99 500.00 38.95 表 2 贵州省重要湿地面积
Table 2. Area of key wetlands in Guizhou Province
湿地 湿地类型 湿地面积/hm2 占比/% 自然 河流湿地 37 710.21 73.69 湖泊湿地 3 637.40 7.11 沼泽湿地 5 213.93 10.19 人工 人工湿地 4 615.40 9.02 总和 51 176.85 100.00 表 3 计算数据及来源
Table 3. Data used for calculation and their sources
时期 数据名称 数值 数据来源 规划前 湿地面积/hm2 216 526.95 文献[14] HCO3-质量浓度/(mg·L-1) 177.52 文献[17] 湖泊植被碳储量/t C 818.40 文献[18] 土壤碳密度(0~100 cm)/(kg C·m-2) 11.44 文献[16] 河流径流量/亿m3 993.35 文献[37] 规划中 湿地面积/hm2 209 726.85 文献[14] HCO3-质量浓度/(mg·L-1) 168.89 文献[25-29] DOC质量浓度/(mg·L-1) 6.62 文献[19] 湖泊植被生物量/(g·L-1) 107.00 试验数据 沼泽植被碳密度/(kg C·m-3) 3.71 文献[16] 河流径流量/亿m3 977.75 文献[37] 土壤碳密度(0~100 cm)/(kg C·m-2) 5.57 文献[16] 土壤容重/(g·cm-3) 1.42 文献[15] 土壤CO2质量分数/(g·kg-1) 3.08 文献[15] 土壤厚度/cm 94.49 文献[15] 石砾体积分数/% 6.79 文献[15] 规划后 湿地面积/hm2 255 440.53 文献[38-39] HCO3-质量浓度/(mg·L-1) 228.49 文献[22-24] DOC质量浓度/(mg·L-1) 6.62 文献[19] 植被碳密度/(kg C·m-2) 37.33 文献[31] 河流径流量/亿m3 1 141.44 文献[37] 土壤容重/(g·cm-3) 1.19 文献[30] 土壤CO2质量分数/(g·kg-1) 19.42 文献[30] 土壤厚度/cm 37.23 文献[30] 石砾体积分数/% 37.79 文献[30] 植被碳密度/(kg C·m-2) 39.31 文献[31] 表 4 贵州省湿地碳储量变化
Table 4. Changes in wetland carbon stock in Guizhou Province
湿地类型 时期 单位面积碳储量/(g C·m-1) 总碳储量/t 河流湿地 规划前期 10.58 1.76×104 规划中期 11.95 1.65×104 规划后期 17.74 2.61×104 湖泊湿地 规划前期 - - 规划中期 29 530 7.44×105 规划后期 24 080 8.76×105 沼泽湿地 规划前期 - - 规划中期 7 420.00 8.15×105 规划后期 44 640.00 2.33×106 人工湿地 规划前期 1 150.00 5.79×105 规划中期 569.85 3.31×105 规划后期 550.75 5.48×105 表 5 贵州省湿地总碳储量变化
Table 5. Changes in total carbon stock of wetlands in Guizhou Province
时期 单位面积碳储量/(g C·m-2) 总碳储量/t 规划前期 275.72 5.97×105 规划中期 910.71 1.91×106 规划后期 1 480.00 3.78×106 表 6 贵州省重要湿地固碳潜力
Table 6. Carbon sequestration potential of the key wetlands in Guizhou Province
湿地类型 面积/hm2 固碳速率/(g C·m-2a-1) 固碳潜力/(t C·a-1) 河流湿地 37 710.12 22.49 8 480 湖泊湿地 3 637.40 20.08 730 沼泽湿地 5 213.93 24.80 1 293 人工湿地 4 615.40 22.49 1 038 总和 51 176.85 11 541 表 7 贵州省湿地退耕还湖还泽固碳潜力
Table 7. Carbon sequestration potential of wetlands in Guizhou Province after returning farmland to lake and swamp
恢复措施 面积潜力/(hm2·a-1) 固碳潜力/(t C·a-1) 退耕还湖 33.64 6.82 退耕还泽 47.12 11.69 表 8 贵州省湿地保护工程固碳潜力
Table 8. Carbon sequestration potential of wetland protection projects in Guizhou Province
湿地类型 面积潜力/(hm2·a-1) 固碳潜力/(t C·a-1) 河流湿地 626.330 1 140.86 湖泊湿地 60.413 8 12.13 沼泽湿地 86.598 5 21.48 人工湿地 76.657 5 15.58 总和 850.000 0 190.05 -
[1] 申霞, 王鹏, 王为攀, 等. 滨海盐沼净碳汇能力研究方法综述[J]. 生态学杂志, 2022, 41(4): 792-803. doi: 10.13292/j.1000-4890.202203.009Shen X, Wang P, Wang W P, et al. A review of methods for studying the net carbon sink capacity of coastal salt marshes[J]. Journal of Ecology, 2022, 41(4): 792-803(in Chinese with English abstract). doi: 10.13292/j.1000-4890.202203.009 [2] 方精云, 于贵瑞, 任小波, 等. 中国陆地生态系统固碳效应: 中国科学院战略性先导科技专项"应对气候变化的碳收支认证及相关问题"之生态系统固碳任务群研究进展[J]. 中国科学院院刊, 2015, 30(6): 848-857, 875. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201506019.htmFang J Y, Yu G R, Ren X B, et al. Carbon sequestration in Chinese terrestrial ecosystems: Progress of the ecosystem carbon sequestration task force of the strategic pioneer science and technology project of the Chinese Academy of Sciences[J]. Proceedings of the Chinese Academy of Sciences, 2015, 30(6): 848-857, 875(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201506019.htm [3] Ito A, Nishina K, Noda H M. Impacts of future climate change on the carbon budget of northern high-latitude terrestrial ecosystems: An analysis using ISI-MIP data[J]. Polar Science, 2016, 10(3): 346-355. doi: 10.1016/j.polar.2015.11.002 [4] 陈波, 陈文瑾, 陆苹茹, 等. 基于CCM机制的水生碳泵效应协同富营养化缓解研究进展[J]. 贵州师范大学学报: 自然科学版, 2022, 40(2): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR202202003.htmChen B, Chen W J, Lu P R, et al. Research progress on synergistic eutrophication mitigation based on CCM mechanism of aquatic carbon pumping effect[J]. Journal of Guizhou Normal University: Natural Science Edition, 2022, 40(2): 19-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NATR202202003.htm [5] 殷婕, 盛茂银, 王霖娇. 中国陆地生态系统植硅体碳汇潜力估算研究进展[J]. 贵州师范大学学报: 自然科学版, 2022, 40(2): 27-33, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR202202004.htmYin J, Sheng M Y, Wang L J. Progress in estimating the carbon sink potential of terrestrial ecosystem phytosilica in China[J]. Journal of Guizhou Normal University: Natural Science Edition, 2022, 40(2): 27-33, 80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NATR202202004.htm [6] 陈静, 罗明明, 廖春来, 等. 中国岩溶湿地生态水文过程研究进展[J]. 地质科技情报, 2019, 38(6): 221-230. doi: 10.19509/j.cnki.dzkq.2019.0626Chen J, Luo M M, Liao C L, et al. Research progress on ecohydrological processes in karst wetlands in China[J]. Geological Science and Technology Information, 2019, 38(6): 221-230(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2019.0626 [7] 米楠, 卜晓燕, 米文宝. 宁夏旱区湿地生态系统碳汇功能研究[J]. 干旱区资源与环境, 2013, 27(7): 52-55. doi: 10.13448/j.cnki.jalre.2013.07.016Mi N, Bu X Y, Mi W B. Study on the carbon sink function of wetland ecosystems in dry areas of Ningxia[J]. Arid Zone Resources and Environment, 2013, 27(7): 52-55(in Chinese with English abstract). doi: 10.13448/j.cnki.jalre.2013.07.016 [8] Kodaira H. Responding to climate change and expectations for research[J]. Paddy and Water Environment, 2014, 12(2): 211-212. [9] Houghton J T, Jenkins G J, Ephraums J J. IPCC climate change: The IPCC scientific assessment[M]. Cambridge: Cambridge University Press, 1990. [10] Bernal B, Mitsch W J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio[J]. Ecological Engineering, 2008, 34(4): 311-323. doi: 10.1016/j.ecoleng.2008.09.005 [11] McLeod E, Chmura G L, Bouillon S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560. doi: 10.1890/110004 [12] 李博, 刘伟歧, 王军霞, 等. 白洋淀湿地典型植被芦苇储碳固碳功能研究[J]. 农业环境科学学报, 2009, 28(12): 2603-2607. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200912031.htmLi B, Liu W Q, Wang J X, et al. Study on the carbon storage and sequestration function of typical vegetation reeds in Baiyangdian wetland[J]. Journal of Agricultural and Environmental Sciences, 2009, 28(12): 2603-2607(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200912031.htm [13] 梅雪英, 张修峰. 长江口湿地海三棱蔗草的储碳、固碳功能研究: 以崇明东滩为例[J]. 农业环境科学学报, 2007, 26(l): 360-366. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200701075.htmMei X Y, Zhang X F. Study on the carbon storage and sequestration functions of marine trillium cane grass in the wetlands of the Yangtze River estuary: The example of Chongming Dongtan[J]. Journal of Agricultural and Environmental Sciences, 2007, 26(l): 360-366(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200701075.htm [14] 国家林业局. 中国湿地资源贵州篇[M]. 北京: 中国林业出版社, 2015.State Forestry Administration. China's wetland resources Guizhou chapter[M]. Beijing: China Forestry Press, 2015(in Chinese). [15] 卢玲, 刘超. 基于世界土壤数据库(HWSD)的中国土壤数据集(V1.1). 国家冰川冻土沙漠科学数据中心, 2019.Lu L, Liu C. Chinese soil dataset based on World Soil Database (HWSD) (v1.1). National Glaciology and Geocryology and Desert Science and Data Center, 2019(in Chinese with English abstract). [16] 徐丽, 何念鹏, 于贵瑞. 2010s中国陆地生态系统碳密度数据集[J]. 中国科学数据: 中英文网络版, 2019, 4(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ201901009.htmXu L, He N P, Yu G R. 2010s dataset on carbon density of terrestrial ecosystems in China[J]. China Scientific Data: Chinese and English online version, 2019, 4(1): 90-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ201901009.htm [17] 韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究: 碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406. doi: 10.3321/j.issn:1001-8166.2005.04.004Han G L, Liu C Q. Hydrogeochemical characteristics of dissolution-controlled carbonate rocks in a study of rivers in karst areas of Guizhou[J]. Advances in Earth Sciences, 2005, 20(4): 394-406(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2005.04.004 [18] 陈毅凤, 张军, 万国江. 贵州草海湖泊系统碳循环简单模式[J]. 湖泊科学, 2001, 13(1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200101002.htmChen Y F, Zhang J, Wan G J. A simple model of carbon cycle in the Caohai Lake system in Guizhou[J]. Lake Science, 2001, 13(1): 15-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200101002.htm [19] 倪茂飞, 周慧, 马永梅, 等. 典型喀斯特城市湖库溶解性有机质成分特征及来源解析[J]. 环境科学, 2022, 43(7): 3552-3561. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202207017.htmNi M F, Zhou H, Ma Y M, et al. Characterization and source analysis of dissolved organic matter components in a typical karst city lake reservoir[J]. Environmental Science, 2022, 43(7): 3552-3561(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202207017.htm [20] 蒋翼, 周忠发, 薛冰清, 等. 贵州三岔河流域平寨水库水化学特征及控制因素[J]. 环境工程, 2020, 38(2): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202002005.htmJiang Y, Zhou Z F, Xue B Q, et al. Water chemistry characteristics and control factors of Pingzhai Reservoir in Sanji River basin, Guizhou[J]. Environmental Engineering, 2020, 38(2): 41-47(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202002005.htm [21] 左禹政, 安艳玲, 吴起鑫, 等. 贵州省都柳江流域水化学特征研究[J]. 中国环境科学, 2017, 37(7): 2684-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201707037.htmZuo Y Z, An Y L, Wu Q X, et al. Characterization of water chemistry in the Duliu River basin, Guizhou Province[J]. China Environmental Science, 2017, 37(7): 2684-2690(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201707037.htm [22] 曹星星, 吴攀, 杨诗笛, 等. 贵州威宁草海流域地下水水化学特征及无机碳通量估算[J]. 环境科学, 2021, 42(4): 1761-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104019.htmCao X X, Wu P, Yang S D, et al. Characterization of groundwater chemistry and estimation of inorganic carbon fluxes in the Caohai watershed, Weining, Guizhou[J]. Environmental Science, 2021, 42(4): 1761-1771(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202104019.htm [23] 武阳, 刘再华, 于青春, 等. 土地利用变化对喀斯特水体溶解无机碳、总氮和总磷输出的影响: 以贵州普定沙湾模拟试验场为例[J]. 地球与环境, 2022, 50(4): 547-557. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202204012.htmWu Y, Liu Z H, Yu Q C, et al. Effects of land use change on dissolved inorganic carbon, total nitrogen and total phosphorus output in karst water bodies: An example from the Shawan simulation test site in Puding, Guizhou[J]. Earth and Environment, 2022, 50(4): 547-557. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202204012.htm [24] 周忠发, 张结, 殷超, 等. 岩溶洞穴地下水水化学特征及其地球化学敏感性比较: 以贵州双河洞和织金洞为例[J]. 水利水电技术, 2017, 48(6): 98-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201706019.htmZhou Z F, Zhang J, Yin C, et al. Comparison of groundwater chemical characteristics and geochemical sensitivity in karst caves: The case of Shuanghe Cave and Weaving Cave in Guizhou[J]. Water Resources and Hydropower Technology, 2017, 48(6): 98-105(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201706019.htm [25] 肖时珍, 蓝家程, 袁道先, 等. 贵州施秉白云岩喀斯特区水化学和溶解无机碳稳定同位素特征[J]. 环境科学, 2015, 36(6): 2085-2093. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201506027.htmXiao S Z, Lan J C, Yuan D X, et al. Water chemistry and dissolved inorganic carbon stable isotope characteristics in the dolomite karst region of Shiping, Guizhou[J]. Environmental Science, 2015, 36(6): 2085-2093(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201506027.htm [26] 安艳玲, 吕婕梅, 吴起鑫, 等. 赤水河流域上游枯水期水化学特征及其影响因素分析[J]. 环境科学与技术, 2015, 38(8): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201508021.htmAn Y L, Lü J M, Wu Q X, et al. Analysis of water chemistry characteristics and its influencing factors during the dry period in the upper reaches of the Chishui River basin[J]. Environmental Science and Technology, 2015, 38(8): 117-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201508021.htm [27] 王海鹤, 董泽琴, 张帅, 等. 赤水河中段水环境化学特征研究[J]. 安徽农业科学, 2010, 38(19): 10203-10205, 10254. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201019103.htmWang H H, Dong Z Q, Zhang S, et al. Chemical characterization of the water environment in the middle section of the Chishui River[J]. Anhui Agricultural Science, 2010, 38(19): 10203-10205, 10254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201019103.htm [28] 陈生华, 王世杰, 肖德安, 等. 典型喀斯特表层岩溶带地下水化学特征: 以贵州清镇王家寨喀斯特小流域为例[J]. 生态环境学报, 2010, 19(9): 2130-2135. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201009022.htmChen S H, Wang S J, Xiao D A, et al. Characterization of groundwater chemistry in a typical karst surface karst zone: An example from the Wangjiazhai karst sub-basin in Qingzhen, Guizhou[J]. Journal of Ecology and Environment, 2010, 19(9): 2130-2135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201009022.htm [29] 张强. 岩溶地质碳汇的稳定性: 以贵州草海地质碳汇为例[J]. 地球学报, 2012, 33(6): 947-952. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201206018.htmZhang Q. Stability of karst geological carbon sinks: The case of Caohai geological carbon sink in Guizhou[J]. Journal of Earth Sciences, 2012, 33(6): 947-952(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201206018.htm [30] 李颖, 周德全. 基于土壤理化性质的贵州省土壤容重传递函数研究[J]. 贵州科学, 2017, 35(5): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GZKX201705014.htmLi Y, Zhou D Q. Research on soil capacity transfer function of Guizhou Province based on soil physical and chemical properties[J]. Guizhou Science, 2017, 35(5): 64-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GZKX201705014.htm [31] 吴云杰. 草海湿地生态系统植被和土壤的有机碳分布特征和储量研究[D]. 哈尔滨: 东北林业大学, 2017.Wu Y J. Study on the distribution characteristics and storage of organic carbon in vegetation and soil of Caohai wetland ecosystem[D]. Harbin: Northeast Forestry University, 2017(in Chinese with English abstract). [32] Shoch D T, Kaster G, Hohl A, et al. Carbon storage of bottomland hardwood afforestation in the Lower Mississippi Valley, USA[J]. Wetlands, 2009, 29: 535-542. [33] 尚梦佳, 周忠发, 蒋翼, 等. 贵州威远河流域水化学空间特征及影响因素分析[C]//佚名. 中国南方喀斯特间歇泉-长顺"潮井"生态文化高层论坛论文集. 贵州黔南: 中国学术期刊电子出版社, 2018: 52-59.Shang M J, Zhou Z F, Jiang Y, et al. Spatial characteristics of water chemistry in the Weiyuan River basin, Guizhou and analysis of influencing factors[C]//Anon. Proceedings of the high-level forum on karst geyser-Changshun "Chaojing" ecological culture in southern China. Qiannan Guizhou: China Academic Journal Electronic Publishing House, 2018: 52-59(in Chinese with English abstract). [34] 何春, 曾成, 肖时珍, 等. 湿润亚热带典型白云岩流域的水文水化学动态特征初步研究: 以贵州施秉黄洲河流域为例[J]. 地球与环境, 2020, 48(3): 279-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202003001.htmHe C, Zeng C, Xiao S Z, et al. Preliminary study on the hydrological and hydrochemical dynamic characteristics of a typical dolomite watershed in the humid subtropics: An example from the Huangzhou River basin in Shiping, Guizhou[J]. Earth and Environment, 2020, 48(3): 279-293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202003001.htm [35] 叶慧君, 张瑞雪, 吴攀, 等. 基于主成分分析的岩溶水水化学组成及影响因素研究: 以贵州水城盆地为例[J]. 中国岩溶, 2017, 36(2): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201702009.htmYe H J, Zhang R X, Wu P, et al. A study on the chemical composition and influencing factors of karst water based on principal component analysis: A case study of Shuicheng Basin, Guizhou[J]. Carsologica Sinica, 2017, 36(2): 215-225(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201702009.htm [36] 韩翠红, 孙海龙, 魏榆, 等. 喀斯特筑坝河流中生物碳泵效应的碳施肥及对水化学时空变化的影响: 以贵州平寨水库及红枫湖为例[J]. 湖泊科学, 2020, 32(6): 1683-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202006010.htmHan C H, Sun H L, Wei Y, et al. Carbon fertilization and effects on spatial and temporal changes in water chemistry by biocarbon pumping effect in karst dammed rivers: The case of Pingzhai Reservoir and Hongfeng Lake in Guizhou[J]. Lake Science, 2020, 32(6): 1683-1694(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202006010.htm [37] 贵州省水利厅. 贵州水资源公报(1999—2022)[R]. 贵阳: 贵州省水利厅, 2022.Guizhou Provincial Water Resources Department. Guizhou water resources bulletin(1999—2022)[R]. Guiyang: Guizhou Provincial Water Resources Department, 2022(in Chinese). [38] 贵州省人民政府办公厅. 关于公布第一批省重要湿地名录的通知(黔府办函(2018)57号)[Z]. 贵阳: 贵州省人民政府办公厅, 2008.General Office of the People's Government of Guizhou Province. Notice on the publication of the first list of provincial important wetlands(Qianfu Ban Han [2018] No. 57)[Z]. Guiyang: General Office of the People's Government of Guizhou Province, 2018(in Chinese). [39] 贵州省人民政府. 贵州省第三次全国国土调查主要数据公报[R]. 贵阳: 贵州省人民政府, 2021.People's Government of Guizhou Province. Bulletin of the main data of the third national land survey of Guizhou Province[R]. Guiyang: People's Government of Guizhou Province, 2021(in Chinese). [40] 马阔, 吴起鑫, 韩贵琳, 等. 南、北盘江流域枯水期水化学特征及离子来源分析[J]. 中国岩溶, 2018, 37(2): 192-202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201802005.htmMa G, Wu Q X, Han G L, et al. Analysis of water chemistry characteristics and ion sources during the dry period in the South and North Pan River basins[J]. Carsologica Sinica, 2018, 37(2): 192-202(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201802005.htm [41] Mitsch W J, Nahlik A, Wolski P, et al. Tropical wet-lands: Seasonal hydrologic pulsing, carbon sequestration, and methane emissions[J]. Wetlands Ecology and Management, 2010, 18: 573-586. [42] Bai J, Ouyang H, Xiao R, et al. Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China[J]. Soil Research, 2010, 48: 730-736. [43] DeLaune R, White J. Will coastal wetlands continue to sequester carbon in response to an increase in global sea level: A case study of the rapidly subsiding Mississippi River deltaic plain[J]. Climatic Change, 2011, 110: 297-314. [44] 刘苗, 刘国华. 土壤有机碳储量估算的影响因素和不确定性[J]. 生态环境学报, 2014, 23(7): 1222-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201407021.htmLiu M, Liu G H. Influencing factors and uncertainties of soil organic carbon stock estimation[J]. Journal of Ecology and Environment, 2014, 23(7): 1222-1232(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201407021.htm [45] 李静泰, 闫丹丹, 么秀颖, 等. 中国滨海湿地碳储量估算. 土壤学报: 1-18. DOI:10.11766/trxb202106290335.Li J T, Yan D D, Yao X Y, et al. Estimation of carbon stocks in coastal wetlands in China. Journal of Soil Science: 1-18. DOI:10.11766/trxb202106290335(Chinese with English abstract). [46] 崔丽娟, 马琼芳, 宋洪涛, 等. 湿地生态系统碳储量估算方法综述[J]. 生态学杂志, 2012, 31(10): 2673-2680. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201210038.htmCui L J, Ma Q F, Song H T, et al. A review of methods for estimating carbon stocks in wetland ecosystems[J]. Journal of Ecology, 2012, 31(10): 2673-2680(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201210038.htm [47] Lamlom S H, Savidge R A. A reassessment of carbon content in wood: Variation within and between 41 North American species[J]. Biomass and Bioenergy, 2003, 25(4): 381-388. [48] 王绍强, 许珺, 周成虎. 土地覆被变化对陆地碳循环的影响: 以黄河三角洲河口地区为例[J]. 遥感学报, 2001, 5(2): 142-148, 162. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200102012.htmWang S Q, Xu J, Zhou C H. Impact of land cover change on terrestrial carbon cycle in the Yellow River Delta estuary[J]. Journal of Remote Sensing, 2001, 5(2): 142-148, 162(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200102012.htm [49] Buffam I, Turner M G, Desai A, et al. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district[J]. Global Change Biology, 2011, 17: 1193-1211. [50] 罗维均, 杨开萍, 王彦伟, 等. 喀斯特地区不同岩土组构对岩溶碳通量的影响[J]. 地质科技通报, 2022, 41(3): 208-214. doi: 10.19509/j.cnki.dzkq.2022.0088Luo W J, Yang K P, Wang Y W, et al. Influence of different geotechnical configurations on karst carbon fluxes in karst areas[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 208-214(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0088 [51] 史小红, 赵胜男, 李畅游, 等. 呼伦贝尔市湿地碳储量及分配格局研究[J]. 生态科学, 2015, 34(1): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201501017.htmShi S H, Zhao S N, Li C Y, et al. Study on the carbon storage and allocation pattern of wetlands in Hulunbuir City[J]. Ecological Science, 2015, 34(1): 110-118(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201501017.htm [52] 邢伟, 李裴培, 刘明华, 等. 我国东北地区沼泽湿地碳储量估算[J]. 信阳师范学院学报: 自然科学版, 2019, 32(4): 557-562. https://www.cnki.com.cn/Article/CJFDTOTAL-XYSK201904009.htmXing W, Li P P, Liu M H, et al. Estimation of carbon stocks in swampy wetlands in Northeast China[J]. Journal of Xinyang Normal College: Natural Science Edition, 2019, 32(4): 557-562(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XYSK201904009.htm [53] Gorham E, Lehman E, Dyek A, et al. Long-term carbon sequest-ration in North American peatlands[J]. Quaternary Science Reviews, 2012, 58: 77-82. [54] Borren W, Bleuten W, Lapshina E D. Holocence peat and carbon accumulation rates in the southern Taiga of western Siberia[J]. Quaternary Research, 2004, 61(1): 42-51. [55] 刘再华, 曾庆睿, 陈波, 等. 碳酸盐风化碳汇研究[M]. 北京: 科学出版社, 2021.Liu Z H, Zeng Q R, Chen B, et al. Research on carbonate weathering carbon sink[M]. Beijing: Science Press, 2021(in Chinese). [56] Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 1998, 26: 535-538. [57] 段晓男, 王效科, 逯非, 等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 2008(2): 463-469. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200802002.htmDuan X N, Wang X K, Lu F, et al. Current status and potential of carbon sequestration in Chinese wetland ecosystems[J]. Journal of Ecology, 2008(2): 463-469(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200802002.htm [58] Smith D N I, Ortega-Camacho D, Acosta-González G, et al. A multi-approach assessment of land use effects on groundwater quality in a karstic aquifer[J]. Heliyon, 2020, 6(5): 1-11. [59] Lu S S, Chen J F, Zheng X Q, et al. Hydrogeochemical characteristics of karst groundwater in Jinci spring area, north China[J]. Carbonates and Evaporites, 2020, 35: 68. [60] Ming X X, Groves C, Wu X Y, et al. Nitrate migration and transformations in groundwater quantified by dual nitrate isotopes and hydrochemistry in a karst world heritage site[J]. Science of the Total Environment, 2020, 735: 138970.