留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型喀斯特白云岩小流域土壤-表层岩溶带厚度空间异质性特征

王发 聂云鹏 陈洪松 付智勇 连晋姣

王发, 聂云鹏, 陈洪松, 付智勇, 连晋姣. 典型喀斯特白云岩小流域土壤-表层岩溶带厚度空间异质性特征[J]. 地质科技通报, 2024, 43(1): 306-314. doi: 10.19509/j.cnki.dzkq.tb20220399
引用本文: 王发, 聂云鹏, 陈洪松, 付智勇, 连晋姣. 典型喀斯特白云岩小流域土壤-表层岩溶带厚度空间异质性特征[J]. 地质科技通报, 2024, 43(1): 306-314. doi: 10.19509/j.cnki.dzkq.tb20220399
WANG Fa, NIE Yunpeng, CHEN Hongsong, FU Zhiyong, LIAN Jinjiao. Spatial heterogeneity characteristics of soil-epikarst thickness in a typical karst dolomite small watershed[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 306-314. doi: 10.19509/j.cnki.dzkq.tb20220399
Citation: WANG Fa, NIE Yunpeng, CHEN Hongsong, FU Zhiyong, LIAN Jinjiao. Spatial heterogeneity characteristics of soil-epikarst thickness in a typical karst dolomite small watershed[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 306-314. doi: 10.19509/j.cnki.dzkq.tb20220399

典型喀斯特白云岩小流域土壤-表层岩溶带厚度空间异质性特征

doi: 10.19509/j.cnki.dzkq.tb20220399
基金项目: 

广西自然科学基金创新研究团队项目 2018GXNSFGA281003

国家自然科学基金项目 41971048

国家自然科学基金项目 42077077

中国博士后科学基金项目 2022M713349

详细信息
    作者简介:

    王发, E-mail: wangfa110@126.com

    通讯作者:

    连晋姣, E-mail: lianjinjiao@isa.ac.cn

  • 中图分类号: P642.25

Spatial heterogeneity characteristics of soil-epikarst thickness in a typical karst dolomite small watershed

More Information
  • 摘要:

    土壤-表层岩溶带厚度是喀斯特地球关键带的关键指标,明确其空间异质性特征对于理解地球关键带结构演化机理以及评估水源涵养功能具有重要意义。在广西环江木连小流域1.4 km2范围内,通过高密度电法(ERT)探测45条样线,共获取1 731个样点的土壤-表层岩溶带厚度及环境因子数据资料,研究了土壤和表层岩溶带厚度的空间分布格局及其影响因素。结果表明,土壤和表层岩溶带厚度平均值分别为1.15 m和6.44 m,且分别呈现强变异程度和中等变异程度。地统计分析结果表明球状模型和指数模型分别可以反映土壤和表层岩溶带的空间结构特征。土壤厚度呈现中等空间自相关性,变程长,空间连续性好;而表层岩溶带呈现强烈的空间自相关性,变程短,空间依赖性强。土壤厚度受到环境因子(地形湿度指数、垂直曲率、曲率、坡向、坡度、高程、覆盖度、出露基岩率和植被归一化指数)的多重影响,而表层岩溶带厚度受部分环境因子影响的同时,与土壤厚度和植被类型的相关性更高。研究结果有助于喀斯特区土壤-表层岩溶带演化机理认识,并为土壤-表层岩溶带厚度的空间预测提供科学依据。

     

  • 图 1  研究区水文地质概况

    Figure 1.  Hydrogeology of the study area

    图 2  研究区内采样点布设

    Figure 2.  Sampling points and lines in the study area

    图 3  研究区土壤-表层岩溶带厚度空间分布图

    Figure 3.  Distribution of soil and epikarst thickness in the study area

    图 4  不同植被类型下的土壤-表层岩溶带厚度

    注:差异显著性检验方法为最小显著性差异法(least significant difference, 简称LSD);A,B表示不同植被类型下的土壤厚度差异;a, b, c表示不同植被类型下的表层岩溶带厚度差异

    Figure 4.  Soil-epikarst thickness under different land cover types

    图 5  土壤-表层岩溶带厚度的相互关系

    Figure 5.  Relationship between soil and epikarst thickness

    表  1  基岩化学成分组成

    Table  1.   Chemical composition of bedrock

    样点 灼烧减量 SiO2 Al2O3 TFe2O3 CaO MgO K2O Na2O TiO2 P2O5 MnO
    wB/%
    东南坡 46.57 0.67 0.16 0.09 30.91 21.54 0.009 8 0.03 0.02 0.008 3 0.003 2
    洼地 46.59 0.48 0.32 0.06 31.15 21.54 0.006 9 0.02 0.06 0.006 5 0.004 7
    西北坡 46.49 0.36 0.26 0.04 32.19 20.45 0.005 3 0.03 0.03 0.006 6 0.002 7
    下载: 导出CSV

    表  2  土壤和表层岩溶带厚度的描述性统计

    Table  2.   Descriptive analysis and normal distribution test of the epikarst thickness

    样本数 最小值/m 最大值/m 平均值/m 标准差 变异系数 偏度 峰度
    土壤厚度 1 731 0 6.4 1.15 1.3 1.13 1.04 0.36
    表层岩溶带厚度 1 731 0.5 26.8 6.44 4.37 0.68 1.36 2.33
    下载: 导出CSV

    表  3  土壤和表层岩溶带厚度的半变异函数模型及其参数

    Table  3.   Types and parameters of the semivariogram model for the soil-epikarst thickness

    模型 块金值C0 基台值C0+C 块金值/基台值C0/(C0+C) 变程/m 决定系数R2
    土壤厚度 球状模型 0.8 1.77 0.45 201 0.877
    表层岩溶带厚度 指数模型 4.8 20.32 0.24 153 0.725
    下载: 导出CSV

    表  4  土壤-表层岩溶带厚度与地形-环境因子的相关系数

    Table  4.   Correlation coefficients between soil-epikarst thickness and terrain-environmental factors

    地形湿度指数 垂向曲率 平面曲率 曲率 坡向 坡度 高程 覆盖度 出露基岩率 植被归一化指数
    土壤厚度 0.149** -0.080** 0.052 -0.070** -0.087** -0.281** -0.320** -0.206** -0.377** -0.082**
    表层岩溶带厚度 0.163** -0.014 0.034 -0.031 0.010 -0.151** -0.220** -0.255** -0.301** -0.275**
    注:**表示在0.01水平上显著相关
    下载: 导出CSV

    表  5  土壤和表层岩溶带厚度回归方程参数

    Table  5.   Parameters of the regression equations of the soil-epikarst thickness

    常数 地形湿度指数 垂向曲率 曲率 坡向 坡度 高程 覆盖度 出露基岩率 植被归一化指数 R2 P
    土壤厚度 4.023 -0.004 0.334 -0.125 0.001 -0.029 -0.003 -0.009 -0.037 -0.219 0.215 <0.001
    表层岩溶带厚度 22.33 0.118 -0.006 -0.017 -0.043 -0.089 -13.63 0.177 <0.001
    下载: 导出CSV

    表  6  基于植被类型和土壤厚度划分的土表层岩溶带厚度回归方程参数

    Table  6.   Parameters of the regression equations of the epikarst thickness based on soil thickness and land cover

    常数 地形湿度指数 坡度 高程 覆盖度 出露基岩率 植被归一化指数 土壤厚度 虚拟参数 R2 P
    D1 D2 D3
    表层岩溶 11.932 0.063 0.001 -0.004 -0.021 -0.082 -2.503 -0.398 -1.569 2.666 0.232 <0.001
    带厚度 10.558 0.075 0.011 -0.002 -0.020 -0.063 -3.800 0.571 -0.340 -1.395 2.263 0.253 <0.001
    下载: 导出CSV
  • [1] 吕玉香, 胡伟, 杨琰. 岩溶关键带水循环过程研究进展[J]. 水科学进展, 2019, 30(1): 124-138.

    LV Y X, HU W, YANG Y. Research process of hydrological cycle in karst critial zone[J]. Advance in Water Science, 2019, 30(1): 124-138. (in Chinese with English abstract)
    [2] 张君, 付智勇, 陈洪松, 等. 西南喀斯特白云岩坡地土壤-表层岩溶带结构及水文特征[J]. 应用生态学报, 2021, 32(6): 2107-2118.

    ZHANG J, FU Z Y, CHEN H S, et al. Soil-epikarst structures and their hydrological characteristics on dolomite slopes in karst region of Southwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2107-2118. (in Chinese with English abstract)
    [3] YANG Q Y, ZHANG F W, JIANG Z C, et al. Relationship between soil depth and terrain attributes in karst region in Southwest China[J]. Journal of Soils and Sediments, 2014, 14(9): 1568-1576. doi: 10.1007/s11368-014-0904-6
    [4] LU Y Y, LIU F, ZHAO Y G, et al. An integrated method of selecting environmental covariates for predictive soil depth mapping[J]. Journal of Integrative Agriculture, 2019, 18(2): 57-71.
    [5] HAN X L, LIU J T, MITR S, et al. Selection of optimal scales for soil depth prediction on headwater hillslopes: A modeling approach[J]. Catena, 2018, 163: 257-275. doi: 10.1016/j.catena.2017.12.026
    [6] JIANG Z C, LIAN Y Q, QIN X Q. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth Science Reviews, 2014, 132: 1-12. doi: 10.1016/j.earscirev.2014.01.005
    [7] 袁道先. 我国西南岩溶石山的环境地质问题[J]. 大自然探索, 1996, 15(4): 21- 23.

    YUAN D X. On the environmental and geologic problems of karst mountains and rocks in the Southwest China[J]. Exploration of Nature, 1996, 15(4): 21-23. (in Chinese with English abstract)
    [8] 王苗苗, 陈洪松, 付同刚, 等. 典型喀斯特小流域不同植被类型间土壤养分的差异性及其空间预测方法[J]. 应用生态学报, 2016, 27(6): 1759-1766.

    WANG M M, CHEN H S, FU T G, et al. Differences of soil nutrients among different vegetation types and their spatial prediction in a small typical karst catchment[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1759-1766. (in Chinese with English abstract)
    [9] ZHANG Y, XU X, LI Z, et al. Modelling soil thickness using environmental attributes in karst watersheds[J]. Catena, 2022, 212: 106053. doi: 10.1016/j.catena.2022.106053
    [10] ZHANG S, LIU G, CHEN S L, et al. Assessing soil thickness in a black soil watershed in Northeast China using random forest and field observations[J]. International Soil and Water Conservation Research, 2021, 9(1): 49-57. doi: 10.1016/j.iswcr.2020.09.004
    [11] FORD D, WILLIAMS P D. Karst hydrogeology and geomorphology[M]. Chichester: John Wiley & Sons, 2013.
    [12] 袁道先. 论岩溶环境系统[J]. 中国岩溶, 1988, 7(8): 9-16.

    YAN D X. On the karst environmental system[J]. Carsologica Sinica, 1988, 7(8): 179-186. (in Chinese with English abstract)
    [13] 王焕. 贵州白云岩与石灰岩地区水资源特征及开发利用对策研究[D]. 贵阳: 贵州师范大学, 2020.

    WANG H. Research on the features, and strategies of development and utilization of the water resource in dolomite and limestone areas in Guizhou Province[D]. Guiyang: Guizhou Normal University, 2020. (in Chinese with English abstract)
    [14] MENG Q, WANG S, FU Z, et al. Soil types determine vegetation communities along a toposequence in a dolomite peak-cluster depression catchment[J]. Plant and Soil, 2022, 475: 5-22. doi: 10.1007/s11104-022-05308-5
    [15] 黄昌勇. 面向21世纪课程教材: 土壤学[M]. 北京: 中国农业出版社, 2000.

    HUANG C Y. Textbook series for 21st century: Pedology[M]. Beijing: China Agriculture Press, 2000. (in Chinese)
    [16] 廖双斌. 典型岩溶山地土壤厚度的空间插值模型应用研究[D]. 昆明: 昆明理工大学, 2015.

    LIAO S B. Application of spatial interpolation model for soil thickness in typical karst mountains[D]. Kunming: Kunming University of Science and Technology, 2015. (in Chinese with English abstract)
    [17] 周运超, 罗美. 喀斯特小流域土壤厚度的影响因素[J]. 山地农业生物学报, 2017, 36(3): 1-5.

    ZHOU Y C, LUO M. Influencing factors of soil thickness in karst small watershed[J]. Journal of Mountain Agriculture and Biology, 2017, 36(3): 1-5. (in Chinese with English abstract)
    [18] 尹亮, 崔明, 周金星, 等. 岩溶高原地区小流域土壤厚度的空间变异特征[J]. 中国水土保持科学, 2013, 11(1): 51-58.

    YIN L, CUI M, ZHOU J X, et al. Spatial variability of soil thickness in a small watershed of karst plateau[J]. Science of Soil and Water Conservation, 2013, 11(1): 51-58. (in Chinese with English abstract)
    [19] LI X C, LUO J H, JIN X L, et al. Improving soil thickness estimations based on multiple environmental variables with stacking ensemble methods[J]. Remote Sensing, 2020, 12(21): 3609. doi: 10.3390/rs12213609
    [20] NIE Y P, DING Y L, ZHANG H L, et al. Comparison in woody species composition between rocky outcrop and nearby matrix vegetation on degraded karst hillslope of Southwest China[J]. Journal of Forestry Research, 2019, 30(3): 911-920. doi: 10.1007/s11676-018-0682-x
    [21] WILLIAMS P W. The role of the epikarst in karst and cave hydrogeology: A review[J]. Int. J. Speleol., 2008, 37(1): 1-10. doi: 10.5038/1827-806X.37.1.1
    [22] MAHER K, CHAMBERLAIN C P. Hydrologic regulation of chemical weathering and the geologic carbon cycle[J]. Science, 2014, 343: 1502-1504. doi: 10.1126/science.1250770
    [23] CAO M, LEI J Q, HE Q F, et al. Rainfall-driven and hydrologically controlled variations in cave CO2 sources and dynamics: Evidence from monitoring soil CO2, stream flow and cave CO2[J]. J. Hydrol., 2021, 595: 126060. doi: 10.1016/j.jhydrol.2021.126060
    [24] 张志才, 陈喜, 刘金涛, 等. 喀斯特山体地形对表层岩溶带发育的影响: 以陈旗小流域为例[J]. 地球与环境, 2012, 40(2): 137-143.

    ZHANG Z C, CHEN X, LIU J T, et al. Influence of topography on epikarst in karst mountain areas: A case study of Chenqi catchment[J]. Earth and Environment, 2012, 40(2): 137-143. (in Chinese with English abstract)
    [25] BAKALOWICZ M. Epikarst processes, treatise on geomorphology[M]. San Diego: Academic Press, 2013.
    [26] SCHWINNING S. A critical question for the critical zone: How do plants use rock water?[J]. Plant Soil, 2020, 454: 49-56. doi: 10.1007/s11104-020-04648-4
    [27] NIE Y, CHEN H, WANG K, et al. Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of Southwest China[J]. Journal of Hydrology, 2012, 420: 264-274.
    [28] 罗维均, 杨开萍, 王彦伟, 等. 喀斯特地区不同岩土组构对岩溶碳通量的影响[J]. 地质科技通报, 2022, 41(3): 208-214. doi: 10.19509/j.cnki.dzkq.2022.0088

    LUO W J, YANG K P, WANG Y W, et al. Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 208-214. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0088
    [29] 马剑飞, 付昌昌, 张春潮, 等. 康定北部高原构造岩溶发育特征与地下水径流带识别[J]. 地质科技通报, 2022, 41(1): 288-299. doi: 10.19509/j.cnki.dzkq.2022.0017

    MA J F, FU C C, ZHANG C C, et al. Plateau tectonic karst development characteristics and underground conduits identification in the northern part of Kangding[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 288-299. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0017
    [30] HU K, CHEN H S, NIE Y P, et al. Seasonal recharge and mean residence times of soil and epikarst water in a small karst catchment of Southwest China[J]. Scientific Reports, 2015, 5: 10215. doi: 10.1038/srep10215
    [31] WANG F, CHEN H, LIAN J, et al. Seasonal recharge of spring and stream waters in a karst catchment revealed by isotopic and hydrochemical analyses[J]. J. Hydrol., 2020, 591: 125595. doi: 10.1016/j.jhydrol.2020.125595
    [32] MCCORMICK E, DRALLE D, HAHM W, et al. Widespread woody plant use of water stored in bedrock[J]. Nature, 2021, 597: 225-229. doi: 10.1038/s41586-021-03761-3
    [33] 邓艳. 西南典型峰丛洼地岩溶关键带植被-表层岩溶水的耦合过程[D]. 武汉: 中国地质大学(武汉), 2018.

    DENG Y. Coupling process between vegetation and epikarst water in karst critical zone, southwest typical peak-cluster depression area[D]. Wuhan: China University of Geosciences(Wuhan), 2018. (in Chinese with English abstract)
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  495
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-24
  • 录用日期:  2022-08-30
  • 修回日期:  2022-08-24

目录

    /

    返回文章
    返回