留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯混合模型在水系沉积物地球化学异常圈定中的应用: 以湖南省溆浦地区为例

刘旭洋 赵玉岩

刘旭洋, 赵玉岩. 高斯混合模型在水系沉积物地球化学异常圈定中的应用: 以湖南省溆浦地区为例[J]. 地质科技通报, 2024, 43(1): 122-134. doi: 10.19509/j.cnki.dzkq.tb20220423
引用本文: 刘旭洋, 赵玉岩. 高斯混合模型在水系沉积物地球化学异常圈定中的应用: 以湖南省溆浦地区为例[J]. 地质科技通报, 2024, 43(1): 122-134. doi: 10.19509/j.cnki.dzkq.tb20220423
LIU Xuyang, ZHAO Yuyan. Gaussian mixture model in geochemical anomaly delineation of stream sediments: A case study of Xupu, Hunan Province[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 122-134. doi: 10.19509/j.cnki.dzkq.tb20220423
Citation: LIU Xuyang, ZHAO Yuyan. Gaussian mixture model in geochemical anomaly delineation of stream sediments: A case study of Xupu, Hunan Province[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 122-134. doi: 10.19509/j.cnki.dzkq.tb20220423

高斯混合模型在水系沉积物地球化学异常圈定中的应用: 以湖南省溆浦地区为例

doi: 10.19509/j.cnki.dzkq.tb20220423
基金项目: 

湖南省国土资源信息中心地球化学找矿信息挖掘服务项目 湘财采计[2014D]0326号

详细信息
    通讯作者:

    刘旭洋, E-mail: 156473059@qq.com

  • 中图分类号: P632;P628

Gaussian mixture model in geochemical anomaly delineation of stream sediments: A case study of Xupu, Hunan Province

More Information
  • 摘要:

    化探数据的正确处理和解译对于区域矿产勘查工作具有重要意义。然而,由于不同类型的岩石具有不同的元素丰度,在处理复杂岩性区化探数据时如果采用统一的异常下限,会导致高背景区被误判为异常区,而部分低弱地球化学异常被忽略。所以复杂岩性区的化探数据需按岩性分类后再划分地球化学背景与异常,从而更准确地圈定化探异常。提出了基于因子得分高斯混合模型的化探异常圈定方法,首先将化探数据做对数比转换后进行因子分析,然后利用因子得分完成高斯混合模型岩性分类,再进行分类标准化处理以消除岩性背景的影响,最后使用处理后的数据圈定化探异常。利用该方法对湖南溆浦地区1:20万水系沉积物化探数据进行研究,结果表明,成矿元素在研究区不同岩性中的含量存在一定差异,若采用统一的异常下限是不合理的;而本研究提出的方法能准确地进行岩性分类、消除不同岩性的背景和强化低弱异常,且异常位置与已知矿点相吻合。因此,高斯混合模型方法可以准确地圈定复杂岩性区的化探异常,并为研究区下一步的矿产勘查工作提供一些参考依据。

     

  • 图 1  数据处理流程图

    Figure 1.  Data processing flow chart

    图 2  研究区地质简图

    Figure 2.  Simplified geological map of the study area

    图 3  Au, Sb, W元素质量分数直方图

    Figure 3.  Histograms of Au, Sb, and W contents

    图 4  岩性分类数目BIC曲线

    Figure 4.  BIC curve of classification number

    图 5  分类结果投图

    Ⅰ.寒武系板岩;Ⅱ.侏罗系和白垩系的砂岩;Ⅲ.上元古界和震旦系的变质砂岩和板岩;Ⅳ.燕山期花岗岩;Ⅴ.泥盆系、石炭系、二叠系和三叠系的碳酸盐岩;Ⅵ.加里东期花岗岩;Ⅶ.奥陶系和志留系的砂岩和板岩;下同

    Figure 5.  Diagram of the classification result projection

    图 6  原始数据和各分类中Li(a)和K2O(b)的质量分数直方图

    Figure 6.  Histograms of Li (a) and K2O (b) contentsin various classes and raw data

    图 7  原始数据和GMM方法校正后的成矿元素质量分数直方图

    Figure 7.  Histograms of raw data and GMM-calibrated metallogenic element contents

    图 8  原始数据(a, c, e)和GMM方法校正后的(b, d, f)Au,Sb,W元素异常图(蓝点代表相应矿点)

    Figure 8.  Raw data (a, c, e) and GMM-calibrated (b, d, f) Au, Sb, W anomaly map(the bule points represent the corresponding mines)

    表  1  旋转因子矩阵

    Table  1.   Rotation factor matrix

    1 2 3 4 5 6 1 2 3 4 5 6
    B 0.015 0.054 -0.06 0.079 -0.01 -0.856 Ti 0.327 0.538 0.303 -0.038 0.563 0.213
    Ba 0.053 0.117 0.091 -0.885 -0.145 -0.079 U 0.117 -0.179 -0.239 -0.191 -0.778 -0.065
    Be -0.697 -0.173 0.076 0.187 -0.323 -0.121 V 0.734 0.075 0.084 -0.506 -0.195 -0.167
    Co 0.372 0.099 0.728 0.009 0.162 0.077 Y 0.156 0.795 0.072 -0.169 0.319 0.015
    Cr 0.837 -0.045 0.312 0.055 0.039 -0.099 Zr -0.128 0.209 -0.266 0.302 0.196 0.698
    La 0.026 0.642 -0.159 0.203 0.034 0.287 Al2O3 -0.551 0.4 0.202 0.499 0.253 0.099
    Li -0.5 -0.075 -0.092 0.683 -0.237 -0.184 CaO 0.177 -0.642 -0.38 0.261 -0.052 0.033
    Nb 0.027 0.683 0.221 -0.111 0.152 -0.161 Fe2O3 0.057 0.026 0.877 -0.031 0.183 -0.058
    Ni 0.616 -0.316 0.446 -0.192 -0.294 0.056 K2O -0.866 0.028 0.099 0.03 -0.172 -0.031
    P 0.437 0.283 0.174 -0.402 -0.1 -0.379 MgO 0.133 -0.545 0.242 -0.146 0.43 0.405
    Sr -0.004 -0.255 -0.613 0.123 0.203 0.107 Na2O -0.713 -0.106 -0.319 0.099 0.351 0.107
    Th -0.506 -0.035 -0.028 0.418 -0.418 0.281 SiO2 0.068 0.308 -0.365 0.009 0.613 0.105
    下载: 导出CSV

    表  2  原始数据和各分类中Li和K2O的均值、标准差和正态分布检验

    Table  2.   Mean, standard deviation values, and normal distribution test of Li and K2O in various classes and raw data

    w(Li)/10-6 正态分布 w(K2O)/% 正态分布
    均值 标准差 偏度 峰度 均值 标准差 偏度 峰度
    原始数据 40.25 22.11 2.74 10.09 原始数据 2.62 0.96 1.06 1.05
    29.98 8.65 0.51 0.00 2.34 0.53 0.47 -0.04
    29.38 6.00 0.93 2.03 1.86 0.36 0.31 0.71
    30.59 6.79 0.32 0.44 2.35 0.27 0.12 0.40
    108.39 31.81 0.52 -0.50 4.72 0.77 -0.03 -0.39
    41.95 13.38 1.77 5.67 1.55 0.42 0.07 0.35
    58.15 11.88 0.26 0.94 3.88 0.68 -0.10 -0.52
    32.92 7.69 0.61 2.13 2.67 0.39 0.01 -0.14
    下载: 导出CSV

    表  3  各分类中Au、Sb、W元素的均值和标准差

    Table  3.   Mean and standard deviation values of Au, Sb, and W in various classes

    分类
    w(Au) / 10-9 均值 1.12 0.97 1.00 1.04 0.95 1.03 1.28 标准差 0.46 0.19 0.27 0.21 0.21 0.34 0.50
    w(Sb) / 10-6 4.33 1.23 1.79 0.77 4.10 1.28 2.45 2.83 0.52 0.80 0.34 2.75 0.85 1.00
    w(W) / 10-6 2.11 1.74 1.93 4.78 2.43 3.40 2.21 0.49 0.43 0.50 4.96 0.67 2.62 0.45
    下载: 导出CSV

    表  4  原始数据和各分类中成矿元素异常下限

    Table  4.   Anomaly thresholds of metallogenic elements in raw data and various classes

    原始数据
    w(Au)/10-9 1.30 2.04 1.34 1.53 1.46 1.36 1.72 2.29
    w(Sb)/10-6 2.52 9.99 2.26 3.39 1.44 9.59 2.97 4.46
    w(W)/10-6 2.57 3.09 2.61 2.93 14.70 3.77 8.65 3.11
    下载: 导出CSV
  • [1] 田密. 水系沉积物低弱地球化学异常提取方法研究[D]. 长春: 吉林大学, 2017.

    TIAN M. The study of identification method on weak geochemical anomaly of stream sediment[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract)
    [2] CHENG Q M, AGTERBERG F P, BALLANTYNE S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
    [3] TIAN M, HAO L B, ZHAO X Y, et al. The study of stream sediment geochemical data processing by using k-means algorithm and centered logratio transformation: An example of a district in Hunan, China[J]. Geochemistry International, 2018, 56(12): 1233-1244. doi: 10.1134/S0016702918120066
    [4] ZHAO X Y, HAO L B, LU J L, et al. Origin of skewed frequency distribution of regional geochemical data from stream sediments and a data processing method[J]. Journal for Geochemical Exploration, 2018, 194: 1-8. doi: 10.1016/j.gexplo.2018.07.007
    [5] CHEN X, XU R, ZHENG Y, et al. Identifying potential Au-Pb-Ag mineralization in SE Shuangkoushan, North Qaidam, Western China: Combined log-ratio approach and singularity mapping[J]. Journal of Geochemical Exploration, 2018, 189: 109-121. doi: 10.1016/j.gexplo.2017.04.001
    [6] ZUO R G, WANG J, XIONG Y, et al. The processing methods of geochemical exploration data: Past, present, and future[J]. Applied Geochemistry, 2021, 132: 105072. doi: 10.1016/j.apgeochem.2021.105072
    [7] SUN Y Y, HAO L B, ZHAO X Y, et al. Identification of stream sediment geochemical anomalies in lithologically complex regions: Case study of Cu mineralization in Hunan Province, SE China[J]. Geochemistry: Exploration, Environment, Analysis, 2022, 22(2): geochem2021-096. doi: 10.1144/geochem2021-096
    [8] 程志中, 谢学锦. 岩石中元素背景值变化对地球化学成矿预测的影响[J]. 中国地质, 2006, 33(2): 411-417.

    CHENG Z Z, XIE X J. Influence of variation in element background values in rocks on metallogenic prognosis in geochemical maps[J]. Geology in China, 2006, 33(2): 411-417. (in Chinese with English abstract)
    [9] 耿国帅, 杨帆, 郭建娜. ILR变换后数据的因子分区标准化在东昆仑东段地球化学异常圈定中的应用[J]. 物探与化探, 2020, 44(1): 112-121.

    GENG G S, YANG F, GUO J N. The application of ILR transformed data factor analysis to delineating geochemical anomalies[J]. Geophysical and Geochemical Exploration, 2020, 44(1): 112-121. (in Chinese with English abstract)
    [10] 陈亮, 王惠艳, 孙诚业. 多背景下异常衬值法在地球化学异常信息提取中的应用: 以黑龙江多宝山地区为例[J]. 物探与化探, 2018, 42(6): 1150-1155.

    CHEN L, WANG H Y, SUN C Y. The application of anomaly contrast to extracting geochemical anomaly information: A study of Duobaoshan area in Heilongjiang Province[J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1150-1155. (in Chinese with English abstract)
    [11] 纪宏金, 连长云, 杜庆丰. 地球化学数据的标准化与衬度变换[J]. 物探化探计算技术, 1993, 159(1): 19-25.

    JI H J, LIAN C Y, DU Q F. Standardization and contrast transformation of geochemical data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1993, 159(1): 19-25. (in Chinese with English abstract)
    [12] 池顺都. 苏联处理化探数据方法介绍: 改进的逐步扩展滑动平均法[J]. 地质科技情报, 1989, 8(1): 93-100.

    CHI S D. A modified moving average method for geo-chemical prospecting data in Ussr[J]. Geological Science and Technology Information, 1989, 8(1): 93-100. (in Chinese with English abstract)
    [13] 成秋明. 地质异常的奇异性度量与隐伏源致矿异常识别[J]. 地球科学, 2011, 36(2): 307-316.

    CHENG Q M. Singularity modeling of geo-anomalies and recognition of anomalies caused by buried sources[J]. Earth Science, 2011, 36(2): 307-316. (in Chinese with English abstract)
    [14] CHENG Q M, AGTERBERG F P. Singularity analysis of ore-mineral and toxic trace elements in stream sediments[J]. Computers & Geosciences, 2009, 35(2): 234-244.
    [15] ZUO R G. Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas[J]. Journal of Geochemical Exploration, 2014, 136: 93-101. doi: 10.1016/j.gexplo.2013.10.011
    [16] 余中美, 王四利, 王勤, 等. 趋势面法确定西藏青龙地区银铜铅锌化探异常及应用效果评价[J]. 矿产勘查, 2020, 11(3): 540-545.

    YU Z M, WANG S L, WANG Q, et al. Application of trend surface analysis on evaluation effect Ag-Cu-Pb-Zn geochemical anomalies of Qinglong area, Tibet[J]. Mineral Exploration, 2020, 11(3): 540-545. (in Chinese with English abstract)
    [17] 赵玉岩, 李兵, 郝立波, 等. 化探背景异常划分的多背景变差衬度法[J]. 物探化探计算技术, 2018, 40(2): 235-240.

    ZHAO Y Y, LI B, HAO L B, et al. Method of contrast of variation coefficient for geochemical anomaly division on multi-background area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(2): 235-240. (in Chinese with English abstract)
    [18] 史长义. 化探数据解释推断的新方法: EDA技术[J]. 国外地质勘探技术, 1991, 1(1): 38-41.

    SHI C Y. A Newmethod for interpretation and inference of geochemical exploration data: EDA technology[J]. Foreign Geological Exploration Technology, 1991, 1(1): 38-41. (in Chinese with English abstract)
    [19] 成秋明, 张生元, 左仁广, 等. 多重分形滤波方法和地球化学信息提取技术研究与进展[J]. 地学前缘, 2009, 16(2): 185-198.

    CHENG Q M, ZHANG S Y, ZUO R G, et al. Progress of multifractal filtering techniques and their applications in geochemical information extraction[J]. Earth Science Frontiers, 2009, 16(2): 185-198. (in Chinese with English abstract)
    [20] CHEN Y L, WU W. Separation of geochemical anomalies from the sample data of unknown distribution population using Gaussian mixture model[J]. Computers & Geosciences, 2019, 125: 9-18.
    [21] 谢学锦. 区域地质调查野外工作方法: 第4分册区域化探[M]. 北京: 地质出版社, 1979.

    XIE X J. Regional geological survey fieldwork methods Volume 4 Regional geochemical exploration[M]. Beijing: Geological Publishing House, 1979. (in Chinese)
    [22] 时艳香, 纪宏金, 郝立波, 等. 利用水系沉积物地球化学数据判别浅覆盖区岩性与构造: 欧氏距离法[J]. 物探化探计算技术, 2004, 26(3): 243-246.

    SHI Y X, JI H J, HAO L B, et al. Identification of the lithologic characters and structures in the shallow overlay area using the geochemical data of stream sediment: Method of Euclidean distance[J]. Computing Techniques For Geophysical and Geochemical Exploration, 2004, 26(3): 243-246. (in Chinese with English abstract)
    [23] 陈军林, 闫岩, 彭润民. 基于t-SNE降维算法的区域化探数据中地质体空间分布信息可视化: 以英格兰西南部为例[J]. 地质科技通报, 2021, 40(2): 186-196. doi: 10.19509/j.cnki.dzkq.2021.0217

    CHEN J L, YAN Y, PENG R M. Visualization of geological spatial distributing information in regional geochemical exploration data based on t-SNE algorithm: A case study of SW England[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 186-196. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0217
    [24] AITCHISON J. The statistical analysis of compositional data[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1982, 44(2): 139-160. doi: 10.1111/j.2517-6161.1982.tb01195.x
    [25] 左仁广, 王健, 熊义辉, 等. 2011-2020年勘查地球化学数据处理研究进展[J]. 矿物岩石地球化学通报, 2011, 40(1): 81-93.

    ZUO R G, WANG J, XIONG Y H, et al. Progresses of research on geochemical exploration data processing during 2011-2020[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 81-93. (in Chinese with English abstract)
    [26] FILZMOSER P, HRON K, REIMANN C. Univariate statistical analysis of environmental (compositional) data: Problems and possibilities[J]. Science of the Total Environment, 2009, 407(23): 6100-6108. doi: 10.1016/j.scitotenv.2009.08.008
    [27] FILZMOSER P. Robust principal component and factor analysis in the geostatistical treatment of environmental data[J]. Environmetrics, 1999, 10(4): 363-375. doi: 10.1002/(SICI)1099-095X(199907/08)10:4<363::AID-ENV362>3.0.CO;2-0
    [28] FILZMOSER P, HRON K, REIMANN C. Principal component analysis for compositional data with outliers[J]. Environmetrics, 2009, 20(6): 621-632. doi: 10.1002/env.966
    [29] EGOZCUE J J, PAWLOWSKY-GLAHN V, MATEU-FIGUERAS G, et al. Isometric log ratio transformations for compositional data analysis[J]. Mathematical Geology, 2003, 35(3): 279-300. doi: 10.1023/A:1023818214614
    [30] REIMANN C, FILZMOSER P, FABIAN K, et al. The concept of compositional data analysis in practice: Total major element concentrations in agricultural and grazing land soils of Europe[J]. Science of the Total Environment, 2012, 426: 196-210. doi: 10.1016/j.scitotenv.2012.02.032
    [31] ZUO R G, XIA Q, WANG H. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization[J]. Applied Geochemistry, 2013, 28: 202-211. doi: 10.1016/j.apgeochem.2012.10.031
    [32] ZHAO J N, CHEN S, ZUO R G. Identifying geochemical anomalies associated with Au-Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China[J]. Journal of Geochemical Exploration, 2016, 164: 54-64. doi: 10.1016/j.gexplo.2015.06.018
    [33] LIU Y, CHENG Q M, ZHOU K F, et al. Multivariate analysis for geochemical process identification using stream sediment geochemical data: A perspective from compositional data[J]. Geochemical Journal, 2016, 50(4): 293-314. doi: 10.2343/geochemj.2.0415
    [34] 贾卓. 深部矿产资源地球物理响应与多参数指标体系研究[D]. 长春: 吉林大学, 2020.

    JIA Z. Research on geophysical response and multi-parameter index system of deep mineral resources[D]. Changchun: Jilin University, 2020. (in Chinese with English abstract)
    [35] DO C B, BATZOGLOU S. What is the expectation maximization algorithm?[J]. Nature Biotechnology, 2008, 26(8): 897-899. doi: 10.1038/nbt1406
    [36] PHO K H, LY S, LY S, et al. Comparison among Akaike information criterion, Bayesian information criterion and Vuong's test in model selection: A case study of violated speed regulation in Taiwan[J]. Journal of Advanced Engineering and Computation, 2019, 3(1): 293-303. doi: 10.25073/jaec.201931.220
    [37] NEATH A A, CAVANAUGH J E. The Bayesian information criterion: Background, derivation, and applications[J]. Wiley Interdisciplinary Reviews(Computation Statistics), 2012, 4(2): 199-203. doi: 10.1002/wics.199
    [38] Watanabe S. A widely applicable Bayesian information criterion[J]. Journal of Machine Learning Research, 2013, 14(1): 867-897.
    [39] 康如华. 湖南白马山-龙山东西向构造带金锑矿找矿前景分析[J]. 华南地质与矿产, 2002, 18(1): 57-61.

    KANG R H. Analysis of exploration perspectives of gold-antimony deposits in Baimashan-Longshan EW-striking structural zone, Hunan Province[J]. Geology and Mineral Resources of South China, 2002, 18(1): 57-61. (in Chinese with English abstract)
    [40] 孙际茂, 娄亚利, 高利军, 等. 湘中前寒武系金矿地质及相关成矿问题探讨[J]. 地质与资源, 2007, 16(3): 189-195.

    SUN J M, LOU Y L, GAO L J, et al. Geology and metallogenesis of Precambrian gold deposits in central Hunan Province[J]. Geology and Resources, 2007, 16(3): 189-195. (in Chinese with English abstract)
    [41] 陈武. 湖南省隆回县金山里地区金矿成矿规律与找矿预测研究[D]. 北京: 中国地质大学(北京), 2013.

    CHEN W. Research on metallogenic regularity and prediction of gold deposits of Jinshanli area in Longhui Country, Hunan Province[D]. Beijing: China University of Geosciences (Beijing), 2013. (in Chinese with English abstract)
    [42] 李华芹, 王登红, 陈富文, 等. 湖南雪峰山地区铲子坪和大坪金矿成矿作用年代学研究[J]. 地质学报, 2008, 82(7): 900-905.

    LI H Q, WANG D H, CHEN F W, et al. Study on chronology of the Chanziping and Daping gold deposit in Xuefeng Mountains, Hunan Province[J]. Journal of Geology, 2008, 82(7), 900-905. (in Chinese with English abstract)
    [43] 吕沅峻, 彭建堂, 蔡亚飞. 湖南杏枫山钨矿床热液榍石的地球化学特征、U-Pb定年及其地质意义[J]. 岩石学报, 2021, 37(3): 830-846

    LÜ Y J, PENG J T, CAI Y F, et al. Geochemical characteristics, U-Pb dating of hydrothermal titanite from the Xingfengshan tungsten deposit in Hunan Province and their geological significance[J]. Acta Petrologica Sinica, 2021, 37(3): 830-846. (in Chinese with English abstract)
    [44] 肖静芸, 彭建堂, 胡阿香, 等. 湘中杏枫山金矿床流体包裹体特征及其对矿床成因的指示[J]. 地质论评, 2020, 66(5): 1376-1392.

    XIAO J Y, PENG J T, HU A X, et al. Characteristics of fluid inclusions of the Xingfengshan gold deposit, Central Hunan, and its genetic implications[J]. Geological Review, 2020, 66(5): 1376-1392. (in Chinese with English abstract)
    [45] 尹华锋, 向田, 杨洪超, 等. 湖南江溪垄金锑矿床地质地球化学特征及开发应用[J]. 地质与资源, 2007, 16(4): 1671-1947.

    YIN H F, XIANG T, YANG H C, et al. Geology and geochemistry of Jiangxilong gold-antimony deposit in western Hunan Province[J]. Geology and Resources, 2007, 16(4): 1671-1947. (in Chinese with English abstract)
    [46] 游先军, 戴塔根, 息朝庄, 等. 湘西北下寒武统黑色岩系地球化学特征[J]. 大地构造与成矿学, 2009, 33(2): 304-312.

    YOU X J, DAI T G, XI C Z, et al. Geochemical characteristics of Lower Cambrian black rock series in northwestern Hunan, China[J]. Geotectonica et Metallogenia, 2009, 33(2): 304-312. (in Chinese with English abstract)
    [47] 徐腾达. 湖南中部白马山复式岩体与衡山复式岩体的年代学、地球化学研究及其与该区域构造演化的关系[D]. 北京: 中国地质大学(北京), 2019.

    XU T D. Geochronology and geochemistry of the Baimashan pluton and Hengshan pluton in central Hunan and its relationship with tectonic evolution in the region[D]. Beijing: China University of Geosciences (Beijing), 2019. (in Chinese with English abstract)
    [48] REIMANN C, FILZMOSER P, GARRETT R G. Factor analysis applied to regional geochemical data: Problems and possibilities[J]. Applied Geochemistry, 2002, 17(3): 185-206. doi: 10.1016/S0883-2927(01)00066-X
    [49] 黄文斌, 罗先熔, 刘攀峰, 等. 青海省石灰沟地区水系沉积物测量地球化学特征及找矿预测[J]. 地质科技通报, 2020, 39(3): 150-159. doi: 10.19509/j.cnki.dzkq.2020.0316

    HUANG W B, LUO X R, LIU P F, et al. Geochemical characteristics of stream sediments and ore prospecting prediction in Shihuigou area, Qinghai Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 150-159. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0316
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  376
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 录用日期:  2022-10-10
  • 修回日期:  2022-09-12

目录

    /

    返回文章
    返回