留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法

庞鑫 袁明 卢渊 杜文杰 万道春 李得 丁海锋 付晓东

庞鑫, 袁明, 卢渊, 杜文杰, 万道春, 李得, 丁海锋, 付晓东. 基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法[J]. 地质科技通报, 2023, 42(6): 21-30. doi: 10.19509/j.cnki.dzkq.tb20220427
引用本文: 庞鑫, 袁明, 卢渊, 杜文杰, 万道春, 李得, 丁海锋, 付晓东. 基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法[J]. 地质科技通报, 2023, 42(6): 21-30. doi: 10.19509/j.cnki.dzkq.tb20220427
Pang Xin, Yuan Ming, Lu Yuan, Du Wenjie, Wan Daochun, Li De, Ding Haifeng, Fu Xiaodong. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 21-30. doi: 10.19509/j.cnki.dzkq.tb20220427
Citation: Pang Xin, Yuan Ming, Lu Yuan, Du Wenjie, Wan Daochun, Li De, Ding Haifeng, Fu Xiaodong. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 21-30. doi: 10.19509/j.cnki.dzkq.tb20220427

基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法

doi: 10.19509/j.cnki.dzkq.tb20220427
基金项目: 

国家自然科学基金项目 52179117

湖北-国家自然科学联合基金项目 U21A20159

详细信息
    作者简介:

    庞鑫(1982—), 男, 高级工程师, 主要从事非煤露天矿山边坡地质灾害治理等方面的研究工作。E-mail: 36754555@qq.com

    通讯作者:

    丁海锋(1997—), 男, 现正攻读土木水利专业硕士学位, 主要从事边坡稳定性分析与灾变机制方面的研究工作。E-mail: dinghaifeng21@mails.ucas.ac.cn

    付晓东(1986—), 男, 副研究员, 主要从事边坡地质灾害数值模拟与评估等方面的研究工作。E-mail: xdfu@whrsm.ac.cn

  • 中图分类号: P23;P642.2;TN958.98

Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight

  • 摘要:

    我国西南地区山高谷深、斜坡高陡, 危岩落石灾害极为发育, 高陡边坡危岩落石由于高差大、坡面陡, 具有显著的突发性, 因此快速、准确、便捷地解译与识别危岩体源头成为高陡岩质边坡风险分析的首要问题。当前探测手段的进步使基于影像的地质灾害解译逐步从目视识别向人机交互式识别方向发展。其中, 无人机激光雷达(LiDAR)系统通过融合无人机载体与LiDAR测量技术的优势, 广泛应用于地质灾害调查中, 同时仿地飞行技术的引入可以使无人机LiDAR系统适应复杂的地形, 快速获取高精度、高密度的点云数据。基于以上技术对攀枝花某铁矿露天采场东侧边坡开展了无人机调查, 通过获取高精度DOM影像和三维点云模型, 量化提取点云模型中露头坡面粗糙度、倾向等危岩体几何特征参数作为DOM影像的补充材料, 提出了一套基于DOM影像和几何特征的危岩体人机交互式识别方法。通过对东侧边坡危岩体的应用表明: 提出的人机交互式识别方法通过在DOM影像的基础上叠加露头坡面几何特征, 对悬空危岩体的识别精度优于目视识别, 可以显著提高危岩体识别的效率和准确性。提出的方法通过结合创新的遥感技术, 为高陡岩质边坡危岩体识别提供了快速便捷的方案。

     

  • 图 1  无人机遥感技术与传统地质勘察手段的结合

    Figure 1.  Combination of UAV remote sensing technology and traditional geological survey

    图 2  仿地飞行示意图

    Figure 2.  Sketch map of the ground imitation flight

    图 3  技术路线图

    Figure 3.  Technical route of the study

    图 4  研究现场的总体情况

    a.四川地形图及研究区域位置;b.F106断层;c.失稳前研究区域DOM;d.破坏前影像;e.破坏后影像

    Figure 4.  Overall situation of the study site

    图 5  无人机设备与仿地航线规划

    a.DJI M300 RTK搭载AlphaAir 450 LiDAR; b.仿地飞行航线

    Figure 5.  UAV equipment and route planning of ground imitation flight

    图 6  基于CSF方法的地面点和非地面点分离

    Figure 6.  Separation of ground and off-ground points based on CSF

    图 7  基于DOM和点云透视投影的危岩体初步识别

    a.DOM(正视图);b.DOM(侧视图);c.三维点云透视投影(正视图);d.三维点云透视投影(侧视图)

    Figure 7.  Preliminary recognition of dangerous rock masses based on DOM and perspective projection of point cloud model

    图 8  剖面分析

    Figure 8.  Profile analysis

    图 9  采场东侧边坡露头研究区域

    Figure 9.  Study area of slope outcrop on East side of stope

    图 10  结构面点簇分布

    Figure 10.  Point cluster distribution of structural plane

    图 11  表面粗糙度指数提取

    Figure 11.  Extraction of the surface roughness index

    图 12  露头坡面倾向

    Figure 12.  Dip of the outcrop

    图 13  突出岩体悬空面提取(倾向)

    Figure 13.  Extraction of the suspended surface of the outburst rock mass

    图 14  基于DOM和几何特征参数的人机交互式识别

    Figure 14.  Human-computer interactive recognition based on DOM image and geometric features

    表  1  3类探测手段的对比

    Table  1.   Comparison of three detection approachs

    探测技术 精度 速度 成本 应用范围
    UAV激光雷达 非常高/cm 很快 大范围/102 km2
    UAV摄影测量 较高/cm~m 较快 较高 较大范围/10 km2
    遥感卫星 很快 较高 全球范围
    下载: 导出CSV

    表  2  CSF参数

    Table  2.   CSF parameters

    参数 分辨率/m 最大迭代步 分类阈值
    数值 0.2 500 0.2
    下载: 导出CSV

    表  3  4组结构面产状信息

    Table  3.   Four sets of discontinuities and their characteristics

    点簇 倾向/(°) 倾角/(°) 密度/(个·cm-3) 产状点云占比/%
    J1 208.384 3 38.734 1 3.289 8 68.46
    J2 358.556 0 88.600 1 0.121 1 7.94
    J3 10.107 5 86.614 7 0.120 4 7.38
    J4 340.624 3 86.044 1 0.095 9 6.15
    下载: 导出CSV
  • [1] De Biagi V, Napoli M L, Barbero M, et al. Estimation of the return period of rockfall blocks according to their size[J]. Natural Hazards and Earth System Sciences, 2017, 17(1): 103-113. doi: 10.5194/nhess-17-103-2017
    [2] Glade T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand[J]. Catena, 2003, 51(3/4): 297-314.
    [3] Crosta G B, Agliardi F. Parametric evaluation of 3D dispersion of rockfall trajectories[J]. Natural Hazards and Earth System Sciences, 2004, 4(4): 583-598. doi: 10.5194/nhess-4-583-2004
    [4] Michoud C, Derron M H, Horton P, et al. Rockfall hazard and risk assessments along roads at a regional scale: Example in Swiss Alps[J]. Natural Hazards and Earth System Sciences, 2012, 12(3): 615-629. doi: 10.5194/nhess-12-615-2012
    [5] Wang X, Frattini P, Crosta G B, et al. Uncertainty assessment in quantitative rockfall risk assessment[J]. Landslides, 2013, 11(4): 711-722.
    [6] 汤伏全, 芦家欣, 韦书平, 等. 基于无人机LiDAR的榆神矿区采煤沉陷建模方法改进[J]. 煤炭学报, 2020, 45(7): 2655-2666. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007034.htm

    Tang F Q, Lu J X, Wei S P, et al. Improvement of mining subsidence modeling method based on UAV LiDAR in Yushen mining area[J]. Journal of China Coal Society, 2020, 45(7): 2655-2666 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007034.htm
    [7] 冯威. 高寒高海拔复杂艰险山区无人机勘察技术应用[J]. 铁道工程学报, 2019, 36(8): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201908003.htm

    Feng W. Application of unmanned aerial vehicle survey technology in alpine and high altitude complex and difficult mountainous area[J]. Journal of Railway Engineering Society, 2019, 36(8): 9-13 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201908003.htm
    [8] 李杰林, 杨承业, 胡远, 等. 无人机三维激光扫描技术在地下采空区探测中的应用研究[J]. 金属矿山, 2020, 49(12): 168-172.

    Li J L, Yang C Y, Hu Y, et al. Application research of UAV-LiDAR in detection of underground goaf[J]. Metal Mine, 2020, 49(12): 168-172 (in Chinese with English abstract).
    [9] 张欢, 巨能攀, 陆渊, 等. 基于无人机的滑坡地形快速重建与稳定性分析[J]. 水文地质工程地质, 2021, 48(6): 171-179. doi: 10.16030/j.cnki.issn.1000-3665.202008010

    Zhang H, Ju N P, Lu Y, et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 171-179(in Chinese with English abstract). doi: 10.16030/j.cnki.issn.1000-3665.202008010
    [10] 殷坤龙, 张宇, 汪洋. 水库滑坡涌浪风险研究现状和灾害链风险管控实践[J]. 地质科技通报, 2022, 41(2): 1-12. doi: 10.19509/j.cnki.dzkq.2022.0064

    Yin K L, Zhang Y, Wang Y. A review of landslide-generated waves risk and practice of management of hazard chain risk from reservoir landslide[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 1-12 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0064
    [11] 刘圣伟, 郭大海, 陈伟涛, 等. 机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J]. 中国地质, 2012, 39(2): 507-517. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202020.htm

    Liu S W, Guo D H, Chen W T, et al. The application of airborne LiDAR technology in landslide in vestigation and monitoring of Three Gorges Reservoir area[J]. Geology in China, 2012, 39(2): 507-517 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202020.htm
    [12] 贾曙光, 金爱兵, 赵怡晴. 无人机摄影测量在高陡边坡地质调查中的应用[J]. 岩土力学, 2018, 39(3): 1130-1136. doi: 10.16285/j.rsm.2017.1474

    Jia S G, Jin A B, Zhao Y Q. Application of UAV oblique photogrammetry in the field of geology survey at the high and steep slope[J]. Rock and Soil Mechanics, 2018, 39(3): 1130-1136 (in Chinese with English abstract). doi: 10.16285/j.rsm.2017.1474
    [13] Fanti R, Gigli G, Lombardi L, et al. Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy)[J]. Landslides, 2013, 10(4): 409-420. doi: 10.1007/s10346-012-0329-5
    [14] Voge M, Lato M J, Diederichs M S. Automated rockmass discontinuity mapping from 3-dimensional surface data[J]. Engineering Geology, 2013, 164: 155-162. doi: 10.1016/j.enggeo.2013.07.008
    [15] Chen J Q, Zhu H H, Li X J. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud[J]. Computers & Geosciences, 2016, 95: 18-31.
    [16] Dewez T J B, Girardeau-Montaut D, Allanic C, et al. Facets: A cloudcompare plugin to extract geological planes from unstructured 3D point clouds[J]. XXⅢ ISPRS Congress, 2016, 41(B5): 799-804.
    [17] Gomes R K, de Oliveira L P L, Gonzaga L, et al. An algorithm for automatic detection and orientation estimation of planar structures in LiDAR-scanned outcrops[J]. Computers & Geosciences, 2016, 90: 170-178.
    [18] Bordehore L J, Riquelme A, Cano M, et al. Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 97: 24-32. doi: 10.1016/j.ijrmms.2017.06.004
    [19] Guo J T, Liu Y H, Wu L X, et al. Ageometry- and texture-based automatic discontinuity trace extraction method for rock mass point cloud[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104132. doi: 10.1016/j.ijrmms.2019.104132
    [20] Riquelme A J, Abellán A, Tomás R. Discontinuity spacing analysis in rock masses using 3D point clouds[J]. Engineering Geology, 2015, 195: 185-195. doi: 10.1016/j.enggeo.2015.06.009
    [21] Riquelme A, Tomás R, Cano M, et al. Automatic mapping of discontinuity persistence on rock masses using 3D point clouds[J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3005-3028. doi: 10.1007/s00603-018-1519-9
    [22] Slob S. Automated rock mass characterisation using 3D terrestrial laser scanning[D]. Dissertation: International Institute for Geo-information Science and Earth Observation, 2010.
    [23] Sturzenegger M, Stead D, Elmo D. Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape[J]. Engineering Geology, 2011, 119(3/4): 96-111.
    [24] Unlusoy D, Suzen M L. A new method for automated estimation of joint roughness coefficient for 2D surface profiles using power spectral density[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104156. doi: 10.1016/j.ijrmms.2019.104156
    [25] Zhang P, Zhao Q Y, Tannant D D, et al. 3D mapping of discontinuity traces using fusion of point cloud and image data[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(4): 2789-2801. doi: 10.1007/s10064-018-1280-z
    [26] Albarelli D S N A, Mavrouli O C, Nyktas P. Identification of potential rockfall sources using UAV-derived point cloud[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(8): 6539-6561. doi: 10.1007/s10064-021-02306-2
    [27] 贾虎军, 王立娟, 范冬丽. 无人机载LiDAR和倾斜摄影技术在地质灾害隐患早期识别中的应用[J]. 中国地质灾害与防治学报, 2021, 32(2): 60-65.

    Jia H J, Wang L J, Fan D L. The application of UAV LiDAR and tilt photography in the early identification of geo-hazards[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 60-65(in Chinese with English abstract).
    [28] 吕权儒, 曾斌, 孟小军, 等. 基于无人机倾斜摄影技术的崩塌隐患早期识别及影响区划分方法[J]. 地质科技通报, 2021, 40(6): 313-325, 334. doi: 10.19509/j.cnki.dzkq.2021.0631

    Lv Q R, Zeng B, Meng X J, et al. Early identificaion and influence range division method of collapse hazards based on UAV oblique photography technology[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 313-325, 334(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0631
    [29] 陈飞, 崔健, 王郑. 垂起固定翼无人机激光雷达的电力巡检应用[J]. 测绘科学, 2020, 45(12): 77-80, 125.

    Chen F, Cui J, Wang Z. Application of vertical fixed-wing UAV carrying LiDAR system on powerline inspection[J]. Science of Surveying and Mapping, 2020, 45(12): 77-80, 125(in Chinese with English abstract).
    [30] 梁峰. 基于遥感技术与深度学习的四川高陡山区典型地质灾害识别[D]. 成都: 成都理工大学, 2021.

    Liang F. The identification of typical geohazards in Sichuan steep mountainous based on remote sensing technology and deep learning technology[D]. Chengdu: Chengdu University of Technology, 2021 (in Chinese with English abstract).
    [31] Zhang W M, Qi J B, Wan P, et al. Aneasy-to-use airborne lidar data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501.
    [32] Riquelme A J, Abellán A, Tomás R, et al. A new approach for semi-automatic rock mass joints recognition from 3D point clouds[J]. Computers & Geosciences, 2014, 68: 38-52.
    [33] 崔溦, 谢恩发, 张贵科, 等. 利用无人机技术的高陡边坡孤立危岩体识别[J]. 武汉大学学报: 信息科学版, 2021, 46(6): 836-843.

    Cui W, Xie E F, Zhang G K, et al. Identification of isolated dangerous rock mass in high and steep slope using unmanned aerial vehicle[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 836-843(in Chinese with English abstract).
    [34] Çevik E, Topal T. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey)[J]. Environmental Geology, 2003, 44(8): 949-962.
    [35] McKean J, Roering J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry[J]. Geomorphology, 2004, 57(3/4): 331-351.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1258
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-06
  • 录用日期:  2022-10-03
  • 修回日期:  2022-09-28

目录

    /

    返回文章
    返回