留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土工格室加筋正常固结粉质黏土应力应变响应

宋飞 石磊 樊明尊

宋飞, 石磊, 樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报, 2024, 43(1): 184-193. doi: 10.19509/j.cnki.dzkq.tb20220428
引用本文: 宋飞, 石磊, 樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报, 2024, 43(1): 184-193. doi: 10.19509/j.cnki.dzkq.tb20220428
SONG Fei, SHI Lei, FAN Mingzun. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 184-193. doi: 10.19509/j.cnki.dzkq.tb20220428
Citation: SONG Fei, SHI Lei, FAN Mingzun. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 184-193. doi: 10.19509/j.cnki.dzkq.tb20220428

土工格室加筋正常固结粉质黏土应力应变响应

doi: 10.19509/j.cnki.dzkq.tb20220428
基金项目: 

国家自然科学基金项目 52278328

中建新疆建工科技研发课题 65000022859700210197

详细信息
    通讯作者:

    宋飞, E-mail: songf1980@163.com

  • 中图分类号: P642.16

Stress-strain response of geocell-reinforced normally consolidated silty clay

More Information
  • 摘要:

    土工格室加筋正常固结粉质黏土对工程建设意义重大。基于土工格室与填土的相互作用机制和增量法,采用弹塑性理论、邓肯-张双曲线模型、修正剑桥屈服函数以及剪胀方程,推导了土工格室加筋正常固结黏土的应力应变响应计算模型,进行了土工格室加筋正常固结黏土的三轴固结排水剪切试验,实测不同围压下的应力应变关系,采用三轴试验结果验证了所提理论模型的正确性和可靠性。此外,采用所提理论模型进行了参数敏感分析,研究了填土的力学性质参数、格室的网格尺寸和力学性质参数对于加筋土应力应变响应的影响。研究结论表明,与砂砾料相似,土工格室约束作用对于正常固结黏土的内摩擦角影响较小,而黏聚力有所增加;随着轴向应变的增加或围压的减小,加筋效果逐渐明显;加筋正常固结黏土的强度和刚度随着非线性弹性常数k的增加、强度参数φ的增加和Rf的减小而增大,常数n对于加筋土应力应变响应影响较小。本研究成果可为工程建设提供理论借鉴。

     

  • 图 1  应力应变关系计算分析流程图

    Figure 1.  Flowchart to predict the stress-strain responses of geosynthetic-encased soil

    图 2  土工格室及其加筋黏土试样

    Figure 2.  Geocell and the reinforced clay specimen

    图 3  土工格室条带拉伸曲线

    Figure 3.  Load-strain curve of the geocell sheet

    图 4  素土及格室加筋土应力应变曲线

    Figure 4.  Stress-strain curves of unreinforced and reinforced clay specimens

    图 5  模量增强系数随轴向应变变化

    Figure 5.  Variation in the increasing coefficient with the axial strain

    图 6  素土及格室加筋土摩尔圆

    Figure 6.  Mohr circles of unreinforced and reinforced clay

    图 7  素土计算参数标定

    Figure 7.  Calibration of calculation parameters of unreinforced soil

    图 8  理论分析方法验证

    Figure 8.  Validation of the proposed method via triaxial compression tests

    图 9  参数敏感分析

    Figure 9.  Parameter sensitivity analysis

    表  1  填土主要物理性质指标

    Table  1.   Physical properties of the backfill used in the test

    比重 液限/% 塑限/% 最优含水量/% 最大干密度/(g·cm-3)
    2.67 29.5 18.1 16.0 1.66
    下载: 导出CSV
  • [1] WEBSTER S L, WATKINS J E. Investigation of construction techniques for tactical bridge approach roads across soft ground[R]. Technical Report S-77-1, Vicksburg: U.S. Army Engineer Waterways Experiment Station, 1977.
    [2] REA C, MITCHELL J K. Sand reinforcement using paper grid cells[C]//Anon. Symposium on earth reinforcement. Pittsburgh: ASCE, 1978: 644-663.
    [3] WEBSTER S L. Investigation of beach sand traffic ability enhancement using sand-grid confinement and membrane reinforcement concepts[R]. Report 1, Sand Test Sections 1 and 2, Technical Report GL-79-20, Vicksburg: Geotechnical Laboratory, US Army Corps of Engineers Waterways Experimentation Station, 1979.
    [4] BATHURST R J, CROWE R E. Recent case histories of flexible geocell retaining walls in North America[C]//Tatsuoka F, Leshchinsky D, Rotterdam B. Recent case histories of permanent geosynthetic-reinforced soil retaining walls. [S. l. ]: [s. n. ], 1994: 3-19.
    [5] 杨晓华, 王陆平, 俞永华. 土工格室生态挡墙工程性状分析[J]. 公路交通科技, 2004(11): 23-26.

    YANG X H, WANG L P, YU Y H. Engineering performance analysis of geocell ecological retaining wall[J]. Journal of Highway and Transportation Research and Development, 2004(11): 23-26. (in Chinese with English abstract)
    [6] OKUYAMA M, AJIKI T, YAZAWA K, et al. Field observation of geocell reinforced retaining walls after the Niigataken Chuetsu-oki earthquake[J]. Geosynthetics Engineering Journal, 2007, 22: 239-242. (in Japanese) doi: 10.5030/jcigsjournal.22.239
    [7] 何艳平, 张思峰, 王冠英, 等. 土工格室加固铁路软弱基床的有限元分析[J]. 山东建筑大学学报, 2008, 23(5): 431-434.

    HE Y P, ZHANG S F, WANG G Y, et al. FEM analysis on geocell reinforced soft subgrade of railway[J]. Journal of Shandong Jianzhu University, 2008, 23(5): 431-434. (in Chinese with English abstract)
    [8] XIE Y L, YANG X H. Characteristics of a new-type geocell flexible retaining wall[J]. Journal of Materials in Civil Engineering, ASCE, 2009, 21(4): 171-175. doi: 10.1061/(ASCE)0899-1561(2009)21:4(171)
    [9] 王启龙, 杨晓华, 晏长根. 路肩式土工格室柔性挡墙受力及变形分析[J]. 铁道科学与工程学报, 2017, 14(5): 980-987. doi: 10.3969/j.issn.1672-7029.2017.05.014

    WANG Q L, YANG X H, YAN C G. Analysis of the stress and deformation characteristics of geocell flexible retaining wall for subgrade shoulders[J]. Journal of Railway Science and Engineering, 2017, 14(5): 980-987. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7029.2017.05.014
    [10] 孙冬旭, 李静, 兰导, 等. 微桩土工格室在生态护坡工程中的研究与应用[J]. 中外公路, 2021, 41(增刊2): 80-83.

    SUN D X, LI J, LAN D, et al. Research and application of micro-pile geocell in the ecological protection of slope[J] Journal of China and Foreign Highway, 2021, 41(S2): 80-83. (in Chinese with English abstract)
    [11] BATHURST R J, KARPURAPU R. Large-scale triaxial compression testing of geocell-reinforced granular soils[J]. Geotechnical Testing Journal, 1993, 16(3): 296-303. doi: 10.1520/GTJ10050J
    [12] RAJAGOPAL K, KRISHNASWAMY N R, MADHAVI LATHA G. Behavior of sand confined with single and multiple geocells[J]. Geotextiles and Geomembranes, 1999, 17(3): 171-184. doi: 10.1016/S0266-1144(98)00034-X
    [13] MADHAVI LATHA G, MURTHY V S. Effects of reinforcement form on the behaviour of geosynthetic reinforced sand[J]. Geotextiles and Geomembranes, 2007, 25(3): 23-32.
    [14] WU C S, HONG Y S. Laboratory tests on geosynthetic-encapsulated sand columns[J]. Geotextiles and Geomembranes, 2009, 27(2): 107-120. doi: 10.1016/j.geotexmem.2008.09.003
    [15] CHEN R H, HUANG Y W, HUANG F C. Confinement effect of geocells on sand samples under triaxial compression[J]. Geotextiles and Geomembranes, 2013, 37(3): 35-44.
    [16] 陈建峰, 曾岳, 冯守中, 等. 土工织物散体桩桩体单轴压缩试验[J]. 中国公路学报, 2018, 31(6): 181-187.

    CHEN J F, ZENG Y, FENG S Z, et al. Uniaxial compression test of geosynthetic-encased stone columns[J]. China Journal of Highway Transportation, 2018, 31(6): 181-187. (in Chinese with English abstract)
    [17] XUE J F, LIU Z Y, CHEN J F. Triaxial compressive behavior of geotextile encased stone columns[J]. Computers and Geotechnics, 2019, 108: 53-60. doi: 10.1016/j.compgeo.2018.12.010
    [18] SONG F, LIU H B, YANG B Q, et al. Large-scale triaxial compression tests on geocell-reinforced sand[J]. Geosynthetics International, 2019, 26(5): 388-395.
    [19] SONG F, JIN Y T, LIU H B, et al. Analyzing the deformation and failure of geosynthetic-encased granular soil in the triaxial stress condition[J]. Geotextiles and Geomembranes, 2020, 48(6): 886-896. doi: 10.1016/j.geotexmem.2020.06.007
    [20] SONG F, CHEN W S, NIE Y W, et al. Evaluation of required stiffness and strength of cellular geosynthetics[J]. Geosynthetics International, 2022, 29(3): 217-228. doi: 10.1680/jgein.21.00032
    [21] SONG F, TIAN Y H. Three-dimensional numerical modelling of geocell reinforced soils and its practical application[J]. Geomechanics and Engineering, 2019, 17(1): 1-9.
    [22] 井旭, 谢婉丽, 单帅. 原状及重塑黄土双轴试验微观力学特征离散元模拟[J]. 地质科技通报, 2021, 40(3): 184-193. doi: 10.19509/j.cnki.dzkq.2021.0311

    JING X, XIE W L, SHAN S. Discrete element simulationstudy on micromechanical characteristics of undisturbed and remolded loess in biaxial test[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 184-193. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0311
    [23] 杜毅, 李凌, 晏鄂川, 等. 基于粗糙集理论与响应面法的老黏土膨胀敏感性分析方法[J]. 地质科技通报, 2021, 40(4): 204-213. doi: 10.19509/j.cnki.dzkq.2021.0414

    DU Y, LI L, YAN E C, et al. Sensitivity analysis method of swelling of paleo-clay based on rough set theory and response surface method[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 204-213. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0414
    [24] 黄维, 孙畅, 项伟, 等. 融雪条件下新疆伊犁谷地黄土-卵砾石接触面残余强度[J]. 地质科技通报, 2020, 39(6): 112-120.

    HUANG W, SUN C, XIANG W, et al. Residual strength of loess-gravel interface under snowmelt in Ili valley, Xinjiang[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 112-120. (in Chinese with English abstract)
    [25] DUNCAN J M, BYRNE P, WONG K S, et al. Strength, stress strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses[R] No. UCB/GT/80-01, Berkeley: University of California-Berkeley, 1980.
    [26] KRISHNASWAMY N R, RAJAGOPAL K, MADHAVI LATHA G. Model studies on geocell supported embankments constructed over a soft clay foundation[J]. Geotechnical Testing Journal, 2000, 23(2): 45-54.
    [27] MADHAVI LATHA G, DASH S K, RAJAGOPAL K. Equivalent continuum simulations of geocell reinforced sand beds supporting strip footings[J]. Geotechnical and Geological Engineering, 2008, 26(4), 387-398. doi: 10.1007/s10706-008-9176-5
    [28] HEGDE A, SITHARAM T G. 3-Dimensional numerical modelling of geocell reinforced sand beds[J]. Geotextiles and Geomembranes, 2015, 43(2): 171-181. doi: 10.1016/j.geotexmem.2014.11.009
    [29] GARCIA R S, AVESANI NETO J O. Stress-dependent method for calculating the modulus improvement factor in geocell-reinforced soil layers[J]. Geotextiles and Geomembranes, 2021, 49(1): 146-158. doi: 10.1016/j.geotexmem.2020.09.009
    [30] ROSCOE K H, BURLAND J B. On thegeneralised stress-strain behavior of 'wet' clay[C]//Heyman J, Leckie F A. Engineering plasticity. Cam-clay, England: Cam-clay University Press, 1968: 535-609.
    [31] BOSCARDIN M D, SELIG E T, LIN R S, et al. Hyperbolic parameters for compacted soils[J]. Journal of Geotechnical Engineering, 1990, 116(1): 88-104. doi: 10.1061/(ASCE)0733-9410(1990)116:1(88)
    [32] 公路工程土工合成材料试验规程: JTG E50-2006[S]. 北京: 人民交通出版社, 2006.

    Testmethods of geosynthetics for highway engineering: JTG E50-2006[S]. Beijing: China Communications Press, 2006. (in Chinese)
    [33] 土工试验方法标准: GBT 50123-2019[S]. 北京: 中国计划出版社, 2019.

    Standard forsoil test method: GBT 50123-2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  298
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 录用日期:  2022-11-09
  • 修回日期:  2022-10-31

目录

    /

    返回文章
    返回