留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球钴矿资源时空分布及成因类型

付浩 王加昇 李金龙 王博 叶彬 李梦玲

付浩, 王加昇, 李金龙, 王博, 叶彬, 李梦玲. 全球钴矿资源时空分布及成因类型[J]. 地质科技通报, 2024, 43(1): 1-22. doi: 10.19509/j.cnki.dzkq.tb20220431
引用本文: 付浩, 王加昇, 李金龙, 王博, 叶彬, 李梦玲. 全球钴矿资源时空分布及成因类型[J]. 地质科技通报, 2024, 43(1): 1-22. doi: 10.19509/j.cnki.dzkq.tb20220431
FU Hao, WANG Jiasheng, LI Jinlong, WANG Bo, YE Bin, LI Mengling. Spatiotemporal distribution and genesis types of global cobalt resources[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 1-22. doi: 10.19509/j.cnki.dzkq.tb20220431
Citation: FU Hao, WANG Jiasheng, LI Jinlong, WANG Bo, YE Bin, LI Mengling. Spatiotemporal distribution and genesis types of global cobalt resources[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 1-22. doi: 10.19509/j.cnki.dzkq.tb20220431

全球钴矿资源时空分布及成因类型

doi: 10.19509/j.cnki.dzkq.tb20220431
基金项目: 

云南省科技计划项目 202202AG050006

自然资源部三江成矿作用及资源勘查利用重点实验室开放基金 ZRZYBSJSYS2021002

云南省"万人计划青年拔尖人才"专项 云人设通[2020]150号

详细信息
    作者简介:

    付浩, E-mail: fuhao1202@sina.cn

    通讯作者:

    王加昇, E-mail: jiashengwang@126.com

  • 中图分类号: P617;P618.62

Spatiotemporal distribution and genesis types of global cobalt resources

More Information
  • 摘要:

    钴是重要的战略性矿产资源,在航空航天、电动车电池制造等工业领域具有不可替代的作用。钴矿是我国紧缺的矿种之一,可被工业利用的钴资源主要集中在全球少数几个国家,我国钴矿资源严重依赖进口。因此,加强钴矿资源研究,降低被"卡脖子"风险,事关我国经济可持续发展大计。系统综述了钴的地球化学性质和矿物类型,对钴矿床的类型及形成机制进行了细致总结,对全球和我国钴矿床的时空分布规律进行了全面梳理,此外,还对钴矿床研究中存在的问题进行了深入分析,并对钴矿床成矿时代及其动力学背景、钴的来源、钴元素迁移富集机制和钴的赋存状态等未来研究方向进行了展望,旨在为我国钴矿床的研究提供参考,同时也为国内钴矿资源的勘探开发提供新的思路。

     

  • 图 1  钴矿资源储量(数据来自文献[7-8])

    Figure 1.  Cobalt ore resource reserves

    图 2  全球主要钴矿床分布图(1.矿床序号与表 2中矿床序号对应;2.富钴的海底Fe-Mn结核(结壳), 数据来自于文献[56])

    Figure 2.  Distribution map of major cobalt deposits in the world

    表  1  主要钴矿物[22-24]

    Table  1.   Major cobalt minerals

    矿物种类 矿物名称 化学式 wB/% 颜色
    砷化物 砷钴矿 CoAs2 15~24 锡白色、钢灰色
    斜方砷钴矿 (Co, Fe, Ni)As2 13~23 锡白色、铅灰色
    硫化物 硫钴矿 Co3S4 57.95 亮灰色
    硫铜钴矿 CuCo2S4 28.56 钢灰色
    硫镍钴矿 (Co, Ni)3S4 29.00 亮钢灰色
    钴黄铁矿 (Fe, Co) S2 33.00 浅黄色
    方硫钴矿 CoS2 47.89 粉红色,灰色
    方硫镍钴矿 (Co, Ni)3S4 4~10 亮钢灰色
    钴镍黄铁矿 Co9S8 67.40 铜黄色
    硫锑钴镍矿 (Co, Ni)SbS 20.78 灰色
    硫砷化物 辉钴矿 CoAsS 35.52 锡白色、铝灰色
    铁硫砷钴矿 (Co, Fe)AsS 26.76 锡白色
    钴毒砂 (Fe, Co)AsS 3~10 灰黑色
    表生矿物 钴华 Co3(AsO)4·8H2O 29.53 粉红色、鲜红色
    钴土矿 (Ni, Co)2-xMn(O, OH)4·nH2O 1~25 褐色、黑色
    水钴矿 Co2O3·H2O 64.10 淡蓝色、淡紫色
    菱钴矿 CoCO3 49.55 玫瑰红
    钴孔雀石 (Cu, Co)2(CO3)(OH)2 17.84 绿色、黑棕色
    下载: 导出CSV

    表  2  世界主要钴矿床

    Table  2.   Major cobalt deposits in the world

    矿床名称 国家 赋存形式 钴金属量/万t 规模 Co品位/% 矿体形态 含钴矿物 围岩蚀变 成矿年代 资料来源
    岩浆岩型含(富) Co硫化物矿床 (1)Voisey′s Bay 加拿大 伴生 12.3 大型 0.12 层状、似层状、透镜状、脉状 含钴黄铁矿、含钴磁黄铁矿、钴镍黄铁矿 硅化、黑云母化、闪长岩化、碳酸盐化 1334 Ma中元古代 文献[39]
    (2)Kambalda 澳大利亚 伴生 大型 0.21 盆状、漏斗状、脉状 含钴镍黄铁矿、含钴黄铁矿 硅化、黑云母化 2 700 Ma古元古代-新太古代 文献[92]
    (3)Noril′sk-Talnakh 俄罗斯 伴生 79 大型 0.06 盆状、漏斗状、脉状 含钴镍黄铁矿、含钴黄铁矿 硅化、碳酸盐化、闪长岩化 347~226 Ma 文献[38, 93]
    (4)Sudbury 加拿大 伴生 100.6 大型 0.1 层状、透镜状 方硫镍钴矿、含钴砷镍矿 闪长岩化 文献[25, 94]
    (5)金川 中国 伴生 9.8 大型 0.07~0.2 似层状、透镜状 镍辉砷钴矿、铁镍辉钴矿、斜方辉砷钴矿、辉钴矿、含钴辉砷镍矿 黏土化、绿泥石化、蛇纹石化 (1 508±31) Ma 文献[46, 95]
    (6)Outokumpu 芬兰 7.3 大型 0.25 文献[40]
    (7)Dumont 加拿大 12.61 大型 0.011 文献[96]
    (8)Eagle 美国 0.08 含钴黄铁矿、含钴磁黄铁矿、钴镍黄铁矿 文献[56]
    (9)Raglan 加拿大 0.06 含钴黄铁矿、含钴磁黄铁矿、钴镍黄铁矿 文献[56]
    热液型含(富) Co多金属矿床 (10)BouAzzer 摩洛哥 伴生 8.5 大型 1~2.5 脉状、巢状、柱状、透镜状 方钴矿、砷钴矿、斜方砷钴矿 碳酸盐化、蛇纹石化、硅化、绿泥石化 泥盆纪-石炭纪 文献[47]
    (11)Olympic Dam 澳大利亚 伴生 12.1 大型 0.02 层状、透镜状、脉状 含钴黄铁矿、含钴针铁矿 硅化、绢云母化、绿泥石化 中元古代 文献[48]
    (12)Windy Craggy 加拿大 伴生 20.5 大型 0.069 层状、似层状、脉状 含钴黄铁矿、含钴磁黄铁矿 绿泥石化、钠长石化、硅化 文献[2]
    (13)Sibaiskoye 俄罗斯 伴生 13 大型 0.13 板状、透镜状 含钴黄铁矿、含钴磁黄铁矿 硅化、绢云母化、碳酸盐化、绿泥石化 文献[97]
    (14)Magnitogorsk 俄罗斯 伴生 9 大型 0.018 层状、透镜状、脉状 含钴黄铁矿、含钴磁黄铁矿 硅化、碳酸盐化 元古代 文献[98]
    沉积岩-变沉积岩容矿型Cu-Co矿床 (15)Blackbird 美国 伴生 12.3 大型 0.73 层状、似层状 钴铁矿、含钴毒砂、含钴黄铁矿 黑云母化、硅化、绿泥石化 (1 132±240)Ma中元古代 文献[60]
    (16)Kamoto 刚果 伴生 36.2 大型 0.39 层状、似层状 含钴黄铁矿、硫铜钴矿 碳酸盐化、硅化 (762±33)Ma早古生代-新元古代 文献[99, 57]
    (17)Chambishi 赞比亚 伴生 15 大型 0.10 层状、似层状 硫铜钴矿、含钴黄铁矿、含钴磁黄铁矿 绢云母化、绿泥石化、硅化、碳酸盐化 (504.8±2.2)Ma早古生代 文献[58-59]
    (18)Tenke-Fungurume 刚果 伴生 31 大型 0.1~1 层状、透镜状 硫铜钴矿、水钴矿、含钴孔雀石 硅化、碳酸盐化 新元古代 文献[24, 100]
    (19)Luishia 刚果 伴生 大型 0.20 层状、似层状、透镜状 硫铜钴矿、含钴黄铁矿、水钴矿 硅化、碳酸盐化、绿泥石化 (742±32)Ma新元古代 文献[101]
    (20)Luiswishi 刚果 伴生 大型 0.46 层状、似层状 硫铜钴矿 硅化、碳酸盐化、白云岩化 新元古代 文献[102]
    (21)Kamoya 刚果 伴生 5 大型 0.30 层状、似层状、透镜状 硫铜钴矿、碲硫镍钴矿 硅化、碳酸盐化、白云岩化、绿泥石化 880~735 Ma新元古代 文献[103]
    (22)Kansuki 刚果 共生 6 大型 0.75 层状、似层状、透镜状 水钴矿、菱钴矿 滑石化、绢云母化、赤铁矿化、高岭石化、硅化 880~750 Ma新元古代 文献[70, 103]
    (23)Kolwezi 刚果 伴生 小型 0.2 层状、似层状 硫铜钴矿、水钴矿、水钴铜矿、钴白云石、钴华 硅化、碳酸盐化、白云岩化 新元古代 文献[73]
    (24)Talvivaara 芬兰 伴生 31 大型 0.02 层状、似层状 含钴黄铁矿、含钴磁黄铁矿 硅化、滑石化、碳酸盐化、蛇纹石化 元古代 文献[67, 104]
    (25)Kimpe 刚果 伴生 3 大型 0.123 板状、脉状 硫钴矿、硫铜钴矿、水钴矿 硅化、白云石化、绢云母化、绿泥石化 880~550 Ma新元古代 文献[105]
    (26)Sicomines 刚果 伴生 61.6 大型 0.22 层状、似层状 硫铜钴矿、水钴矿、含钴黄铁矿 有硅化、白云岩化、绢云母化、碳酸盐化、滑石化 新元古代 文献[63]
    风化型红土Ni-Co矿床 (27)Goro 新喀里多尼亚 伴生 39 大型 0.12 层状、似层状 水钻矿、钴土矿 中新世 文献[106, 108]
    (28)Nkamouna 喀麦隆 伴生 86 大型 0.25 层状、似层状 钴红土、含钴针铁矿 文献[77]
    (29)Moa Bay 古巴 伴生 52 大型 0.01~0.15 镍钴钡镁锰矿 文献[24]
    (30)Jacaré 巴西 伴生 64 大型 0.13 钴土矿 文献[56]
    (31)Sunrise 澳大利亚 13.56 大型 0.09 文献[96]
    (32)Murrin 澳大利亚 35 大型 0.076 文献[96]
    (33)Ambatovy Joint Venture 马达加斯加 12.16 大型 0.08 文献[96]
    注:大型>20 000 t,中型[2 000, 20 000] t,小型<2 000 t[27]
    下载: 导出CSV

    表  3  中国主要钴矿床

    Table  3.   Major cobalt deposits in China

    矿床名称 赋存形式 钴金属量/万t 规模 Co品位/% 矿体形态 含钴矿物 围岩蚀变 成矿年代 资料来源
    岩浆岩型含(富) Co硫化物矿床 (1)甘肃金川Ni-Cu-Co矿 伴生 9.8 大型 0.07~0.2 似层状、透镜状 镍辉砷钴矿、铁镍辉钴矿、斜方辉砷钴矿、辉钴矿、含钴辉砷镍矿 黏土化、绿泥石化、蛇纹石化 (1 508±31)Ma元古代 文献[46, 95]
    (2)云南白马寨Ni-Cu-(-PGE-Co)矿 伴生 0.3 中型 0.07 层状、似层状 镍辉砷钴矿 次闪石化、绿泥石化、滑石化 260 Ma二叠纪-三叠纪 文献[46]
    (3)新疆图拉尔根Ni-Cu-Co矿 伴生 0.51 中型 0.03 板状、透镜状 含钴磁黄铁矿、镍辉砷钴矿、钴辉砷镍矿 蛇纹石化、滑石化、透闪石化 (280±4)Ma晚石炭世-早二叠世 文献[109-110]
    (4)新疆黄山西Ni-Cu-Co矿 伴生 1~2 中型 0.04 层状、似层状、透镜状 钴黄铁矿、含钴磁黄铁矿 蛇纹石化、绿泥石化、碳酸岩化 晚石炭世-早二叠世 文献[45]
    (5)新疆黄山Ni-Cu-Co矿 伴生 大型 0.026 层状、似层状、透镜状 钴黄铁矿、含钴磁黄铁矿 蛇纹石化、绿泥石化、碳酸岩化 晚石炭世-早二叠世 文献[111-112]
    (6)内蒙古嘎仙Ni-Co矿 伴生 2.6 大型 0.06 层状、似层状、透镜状 钴镍黄铁矿、含钴黄铁矿、含钴磁黄铁矿 透闪石化、蛇纹石化、绿泥石化、碳酸盐化 白垩纪 文献[113]
    (7)新疆黄山东Ni-Cu-Co矿 伴生 1.4 中型 0.024 层状、似层状、透镜状 钴黄铁矿、含钴磁黄铁矿 蛇纹石化、绿泥石化、碳酸岩化 (288±5)Ma晚石炭世-早二叠世 文献[111, 114]
    (8)吉林红旗岭Ni-Cu-Co矿 伴生 0.31 中型 0.04 层状、似层状 含钴磁黄铁矿 次闪石化、绢云母化、滑石化 海西期-印支期 文献[45]
    (9)新疆葫芦Cu-Ni(-Co)矿 伴生 0.51 中型 0.03 层状、似层状、透镜状 含钴磁黄铁矿 蛇纹石化、碳酸岩化 274.5 Ma晚石炭世-早二叠世 文献[111, 115]
    (10)陕西煎茶岭Ni(-Co)矿 伴生 1 中型 0.026 透镜状、层状 含钴镍黄铁矿 蛇纹石化 元古代 文献[116-117]
    (11)青海夏日哈木Ni-Cu(-Co)矿 伴生 4.03 大型 0.028 透镜状、似层状 含钴辉砷镍矿、钴镍黄铁矿 蛇纹石化、绿泥石化、阳起石化 (406.1±2.7)Ma晚泥盆世-早石炭世 文献[43, 118]
    (12)四川攀枝花V-Ti-Fe(-Co)矿 伴生 2 中型 0.01~0.02 层状、似层状、透镜状 含钴磁黄铁矿、含钴黄铁矿 次闪石化、绿泥石化、蛇纹石化 晚古生代 文献[45]
    (13)新疆喀拉通克Cu-Ni(-Co)矿 伴生 透镜状、囊状、脉状 含钴黄铁矿 绿泥石化、绿帘石化、滑石化、硅化 (282±20)Ma二叠纪 文献[46, 119]
    热液型含(富) Co多金属矿床 (14)青海德尔尼Cu-Co-Zn矿 共生 2.8 大型 0.1 透镜状、似层状 钴镍黄铁矿 蛇纹石化、碳酸盐化、硅化 海西期-印支期 文献[26, 45]
    (15)青海肯德克可Co-Bi-Au矿 共生 1.54 中型 0.064~0.46 层状、似层状 方钴矿、辉钴矿 矽卡岩化、硅化 早古生代 文献[91]
    (16)青海骆驼沟Co(Au) 独立 2 中型 0.06 似层状、透镜状 含钴黄铁矿、硫钴矿、硫铜钴矿 硅化、碳酸盐化 (429±29)Ma志留纪-泥盆纪 文献[97, 120-122]
    (17)新疆磁海Fe(Co)矿 伴生 1 中型 0.01~0.1 似层状、脉状 含钴黄铁矿、含钴磁黄铁矿、斜方砷钴矿、辉钴矿 钠长石化、黄铁石化、透辉石化 (281.9±2.2)Ma二叠纪-三叠纪 文献[123]
    (18)新疆阔尔真阔腊Au(-Co)矿 伴生 0.007~0.12 层状、透镜体状 含钴黄铁矿 硅化、碳酸岩化、绢云母化 海西期 文献[124]
    (19)湖北大冶铜绿山Fe-Cu(-Co)矿 伴生 似层状、透镜状 硫铜钴矿、含钴黄铁矿、辉钴矿、铁硫砷钴矿 矽卡岩化 燕山期 文献[125]
    (20)山西中条山胡-蓖型Cu-Co矿 伴生 0.53 中型 0.024 层状、似层状、透镜状 含钴黄铁矿、辉钴矿、钴铁矿 硅化、碳酸盐化 (1 844±25)Ma古元古代 文献[122]
    (21)云南新平大红山Fe-Cu-Co矿 伴生 0.27 中型 层状、似层状、透镜状 辉钴矿、硫钴矿、硫砷钴矿 硅化、碳酸盐化 文献[27]
    (22)江西五宝山Pb-Zn-Co矿床 独立 0.24 中型 0.024~1.15 似层状、透镜状 辉钴矿、钴毒砂、含钴黄铁矿、辉钴矿 硅化、绿泥石化 中生代 文献[126-127]
    (23)江西七宝山Pb-Zn-Co矿床 独立 0.2 小型 0.024~1.15 层状、似层状 含钴黄铁矿、辉钴矿 硅化 中生代 文献[128]
    (24)湖南普乐-横洞Co矿 独立 1.24 中型 0.04 层状、似层状 含钴黄铁矿、辉钴矿 硅化 125 Ma中生代 文献[129-130]
    (25)海南石碌Fe-Co-Cu矿 共生 1.18 中型 0.29 层状、似层状、透镜体状 含钴黄铁矿、含钴磁黄铁矿、辉钴矿 镁质矽卡岩化 330~240 Ma石炭纪-三叠纪 文献[52-53]
    (26)西藏玉龙Cu-Mo(-Co)矿 伴生 0.023 层状、似层状、透镜体状 含钴锰的水合氧化物、钴华、含钴黄铁矿 硅化、绿泥石化、绢云母化 40~35 Ma渐新世-始新世 文献[131-132]
    (27)西藏普桑果Cu-Pb-Zn-Co-Ni矿 伴生 0.025 小型 0.029 透镜状、脉状 辉砷钴镍矿 矽卡岩化、硅化、绿泥石化、碳酸盐化 喜山期 文献[50-51]
    (28)青海督冷沟Cu-Co矿 伴生 中型 0.02~1.31 脉状、透镜状、似层状 铁硫砷钴矿、铁硫砷镍钴矿、钴黄铁矿、钴镍黄铁矿、辉钴矿、硫钴镍矿 绢云母化、碳酸盐化、硅化 晚古生代 文献[133]
    (29)湖南井冲Cu-Co矿 共生 0.37 中型 0.027 层状、透镜状、脉状 含钴黄铁矿、钴铁矿 硅化、绿泥石化 晚侏罗世-白垩世 文献[134]
    (30)四川拉拉Cu-Co-Au矿 伴生 1.74 大型 0.022 似层状、透镜状 含钴黄铁矿、辉钴矿、硫钴镍矿、方硫镍钴矿 黄铜矿化、黄铁矿化、磁铁矿化、硅化、钠长石化 古元古代 文献[135]
    (31)云南易门老厂Cu-Co矿 伴生 中型 0.11 层状、似层状、脉状 辉钴矿、镍辉砷钴矿、含钴毒砂、杂水钴矿 硅化、白云岩化 元古代 文献[136]
    (32)甘肃康县阳坝Au-Cu-Co矿 伴生 0.01~0.04 似层状、扁豆状 含钴黄铁矿 硅化、绢云母化、黄铁矿化 文献[137]
    (33)新疆蕴都卡拉Au-Cu-Co矿 伴生 0.011 脉状、似层状、不规则状 辉钴矿、方钴矿 黄铜矿化、黄铁矿化、碳酸盐化、硅化、蛇纹石化、绿泥石化 文献[138]
    (34)云南兰坪白秧坪Cu(-Co) 矿 伴生 0.15 小型 0.025~0.094 似层状、脉状 辉钴矿、钴华、含钴黄铁矿、含钴砷黝铜矿 硅化、碳酸盐化、黄铁矿化 61.13 Ma古新世 文献[139]
    (35)内蒙古阿右旗卡休他他Fe-(-Au-Co)矿 伴生 0.22 中型 0.010 透镜状、囊状 斜方砷钴矿、辉钴矿、含镍辉钴矿、钴毒砂 矽卡岩化、硅化 文献[140]
    (36)新疆卡拉塔什含Cu砂页岩 伴生 小型 0.015 透镜状 含钴铜砂页岩、含钴辉铜矿 白云石化、硅化 元古代 文献[141]
    沉积岩-变沉积岩容矿型Cu-Co矿床 (37)云南永平水泄-厂街Cu-Co矿 共生 0.29 中型 0.03~0.1 脉状、透镜状、囊状 含钴黄铁矿、镍辉砷钴矿、含钴毒砂、辉钴矿 硅化、黄铁矿化、菱铁矿化、重晶石化 文献[142]
    (38)吉林大横路Cu-Co矿 共生 5 大型 0.035~0.80 层状、似层状、分枝复合状 硫镍钴矿、辉钴矿、方钴矿、含钴黄铁矿 硅化、绢云母化、钠长石化、碳酸盐化、黄铁矿化 古元古代 文献[143]
    (39)辽宁营口周家Cu-Co矿 共生 0.2 中型 0.013~0.042 呈层状、似层状、扁豆状、透镜体状 含钴黄铁矿、硫钴矿、铜硫钴矿 硅化、绢云母化、绿泥石化、碳酸盐化 早元古代 文献[144-145]
    (40)辽宁营口上华Cu-Co矿 共生 中型 0.013~0.042 似层状、扁豆状 含钴黄铁矿、硫钴矿、铜硫钴矿 硅化、绢云母化、绿泥石化、碳酸盐化 早元古代 文献[144-145]
    (41)广西金秀罗丹Cu-Co矿 独立 小型 0.034~0.048 透镜状、串珠状 辉钴矿 硅化、绿泥石化、白云母化 文献[146]
    风化型红土Ni-Co矿床 (42)云南元江-墨江Ni-Co矿 伴生 0.4 中型 0.03~0.04 层状、似层状 钴土矿 文献[27, 45]
    (43)海南文昌蓬莱钴土矿 伴生 0.89 中型 0.03 层状、似层状 钴土矿 文献[27, 45]
    (44)安定居丁钴土矿 伴生 1.4 中型 1.63 层状、似层状 钴土矿 文献[27, 45]
    (45)四川会理含钴蛇纹岩带 伴生 0.19 小型 0.01~0.02 层状、似层状 含钴的镍磁铁矿 蛇纹石化 文献[147]
    (46)贵州猫场杨家洞含钴铝土矿 伴生 小型 层状、似层状、透镜状 含钴黄铁矿 黏土化 文献[148]
    (47)贵州云峰含钴铝土矿 伴生 小型 0.021~0.038 似层状、透镜状 含钴黄铁矿、含钴的砷黄铁矿 黏土化 三叠纪 文献[149]
    注:大型>20 000 t,中型[2 000, 20 000] t,小型<2 000 t[27]
    下载: 导出CSV
  • [1] FENG C Y, QU W J, ZHANG D Q. Cobalt deposits of China: Classification, distribution and major advances[J]. Acta Geologica Sinica: English Edition, 2004, 78(2): 352-357. doi: 10.1111/j.1755-6724.2004.tb00139.x
    [2] 王辉, 丰成友, 张明玉. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 2019, 38(4): 739-750.

    WANG H, FENG C Y, ZHANG M Y. Characteristics and exploration and research progress of global cobalt deposits[J]. Mineral Deposits, 2019, 38(4): 739-750. (in Chinese with English abstract)
    [3] VINOSHA P A, MANIKANDAN A, PREETHA A C, et al. Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(4): 995-1018. doi: 10.1007/s10948-021-05854-6
    [4] ZENG X L, LI J H. On the sustainability of cobalt utilization in China[J]. Resources, Conservation and Recycling, 2015, 104: 12-18. doi: 10.1016/j.resconrec.2015.09.014
    [5] SIMON B, ZIEMANN S, WEIL M. Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe[J]. Resources, Conservation and Recycling, 2015, 104: 300-310. doi: 10.1016/j.resconrec.2015.07.011
    [6] QIAO D H, DAI T, WANG G S, et al. Exploring potential opportunities for the efficient development of the cobalt industry in China by quantitatively tracking cobalt flows during the entire life cycle from 2000 to 2021[J]. Journal of Environmental Management, 2022, 318: 11559.
    [7] U.S. Geological Survey. Mineral commodity summaries 2021[R]. Reston Virginia: U.S. Geological Survey. 2021.
    [8] 中华人民共和国自然资源部. 中国矿产资源报告2021[M]. 北京: 地质出版社, 2021.

    Ministry of Natural Resources, PRC. China mineral resources 2021[M]. Beijing: Geological Publishing House, 2021. (in Chinese with English abstract)
    [9] EUROPEAN COMMISSION. Study on the review of the list of critical raw materials[R]. Brussels: Report of the Ad Hoc Working Group on Defning Critical Raw Materials, 2017.
    [10] 王京, 石香江, 王寿成, 等. 未来中国钴资源需求预测[J]. 中国国土资源经济, 2019, 32(10): 28-33.

    WANG J, SHI X J, WANG S C, et al. Demand forecast of China's cobalt resource in the future[J]. Natural Resource Economics of China, 2019, 32(10): 28-33. (in Chinese with English abstract)
    [11] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984: 113-137.

    LIU Y J, CAO L M, LI Z L, et al. Geochemistry of element[M]. Beijing: Science Press, 1984: 113-137. (in Chinese with English abstract)
    [12] 黎彤. 化学元素的地球丰度[J]. 地球化学, 1976, 3: 167-174.

    LI T. Chemical element abundances in the earth and it's major shells[J]. Geochimica, 1976, 3: 1167-174. (in Chinese with English abstract)
    [13] HERZBERG C, VIDITO C, STARKEY N A. Nickel-cobalt contents of olivine record origins of mantle peridotite and related rocks[J]. American Mineralogist, 2016, 101(9): 1952-1966. doi: 10.2138/am-2016-5538
    [14] 潘彤. 我国钴矿矿产资源及其成矿作用[J]. 矿产与地质, 2003, 4: 516-518.

    PAN T. Cobalt resources and it's mineralization in China[J]. Mineral Resources and Geology, 2003, 4: 516-518. (in Chinese with English abstract)
    [15] DEHAINE Q, TIJSSELING L T, GLASS H J, et al. Geometallurgy of cobalt ores: A review[J]. Minerals Engineering, 2021, 160: 106-656.
    [16] 刘东盛, 王学求, 聂兰仕, 等. 中国钴地球化学异常特征、成因及找矿远景区预测[J]. 地球科学, 2022, 47(8): 2781-2794.

    LIU D S, WANG X Q, YE L S, et al. Cobalt geochemical anomalies characteristics and genesis in China and metallogenic prospecting areas prediction[J]. Earth Science, 2022, 47(8): 2781-2794. (in Chinese with English abstract)
    [17] TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262
    [18] MATZEN A K, BAKER M B, BECKETT J R, et al. The effect of liquid composition on the partitioning of Ni between olivine and silicate melt[J]. Contributions to Mineralogy and Petrology, 2017, 172: 3. doi: 10.1007/s00410-016-1319-8
    [19] LIU W, BORG S J, TESTEMALE D, et al. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35-440℃ and 600 bar: An in-situ XAS study[J]. Geochimica et Cosmochimica Acta, 2011, 75(1): 1227-1248.
    [20] 许德如, 王智琳, 聂逢君, 等. 中国钴矿资源现状与关键科学问题[J]. 中国科学基金, 2019, 33(2): 8.

    XU D R, WANG Z L, NIE F J, et al. Cobalt resources in China: Current research status and key scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 8. (in Chinese with English abstract)
    [21] NANSAI K, NAKAJIMA K, KAGAWA S, et al. Global mining risk footprint of critical metals necessary for low-carbon technologies: The case of neodymium, cobalt, and platinum in Japan[J]. Environmental Science & Technology, 2015, 49(4): 2022-2031.
    [22] 牟保磊. 元素地球化学[M]. 北京: 北京大学出版社, 1999.

    MU B L. Geochemistry of element[M]. Beijing: Peking University Press, 1999. (in Chinese)
    [23] 肖军辉. 沉积型钴锰矿选冶新工艺及机理研究[D]. 昆明: 昆明理工大学, 2012.

    XIAO J H. Study on new process and mechanism of sedimentary cobalt manganese ore[D]. Kunming: Kunming University of Science and Technology, 2012. (in Chinese with English abstract)
    [24] ROBERTS S, GUNN G. Cobalt[C]//Anon. Critical metals handbook. [S. l. ]: [s. n. ], 2014: 122-149.
    [25] SMITH C G. Always the bridesmaid, never the bride: Cobalt geology and resources[J]. Applied Earth Science, 2001, 110(2): 75-80. doi: 10.1179/aes.2001.110.2.75
    [26] 丰成友, 张德全. 世界钴矿资源及其研究进展述评[J]. 地质论评, 2002, 48(6): 627-633. doi: 10.3321/j.issn:0371-5736.2002.06.020

    FENG C Y, ZHANG D Q. Cobalt mineral resources in the world and advance of the research on cobalt deposits[J]. Geological Review, 2002, 48(6): 627-633. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.2002.06.020
    [27] 赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484-2500.

    ZHAO J X, LI G M, QIN K Z, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin, 2019, 64: 2484-2500. (in Chinese with English abstract)
    [28] MUDD G M. Global trends and environmental issues in nickel mining: Sulfides versus laterites[J]. Ore Geology Reviews, 2010, 38(1/2): 9-26.
    [29] PETAVRATZI E, GUNN G, KRESSE C. Commodity review: Cobalt[R]. Keyworth: British Geological Survey, 2019.
    [30] 张洪瑞, 侯增谦, 杨志明, 等. 钴矿床类型划分初探及其对特提斯钴矿带的指示意义[J]. 矿床地质, 2020, 39(3): 501-510.

    ZHANG H R, HOU Z Q, YANG Z M, et al. A new division of genetic types of cobalt deposits: Implications for Tethyancobalt-rich belt[J]. Mineral Deposits, 2020, 39(3): 501-510. (in Chinese with English abstract)
    [31] 丰成友, 张德全, 党兴彦. 中国钴资源及其开发利用概况[J]. 矿床地质, 2004, 1: 93-100. doi: 10.3969/j.issn.0258-7106.2004.01.011

    FENG C Y, ZHANG D Q, DANG X Y. Cobalt resources of China and their exploitation and utilization[J]. Mineral Deposits, 2004, 23(1): 93-100. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2004.01.011
    [32] SCHULZ K J, DEYOUNG J H, SEAL R R, et al. Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply[R]. Reston Virginia, U.S. Geological Survey Professional Paper 1802, 2018.
    [33] 张伟波, 叶锦华, 陈秀法, 等. 全球钴矿资源分布与找矿潜力[J]. 资源与产业, 2018, 20(4): 56-61.

    ZHANG W B, YE J H, CHEN X F, et al. Global cobalt resources distribution and exploration potentials[J]. Resources & Industries, 2018, 20(4): 56-61. (in Chinese with English abstract)
    [34] CROCKETT R N, CHAPMAN G R, FORREST M D. International strategic minerals inventory summary report-cobalt[C]//U. S Geological Survey. U. S Geological Survey Circular 930-F. Denver: U.S. Dept. of the Interior, Geological Survey. 1987: 1-54.
    [35] LESHER C M, KEAYS R. Komatiite-associated Ni-Cu-PGE deposits: Geology, mineralogy, geochemistry and genesis[J]. Higher Education Research Data Collection Publications, 2002, 579-617.
    [36] ZOU F H, XU D R, WANG Z L, et al. Co-Cu ore deposit in China continent: Geological characteristics, ore deposit-types, and dynamic settings[J]. Acta Geologica Sinica: English Edition, 2014, 88: 344-345. doi: 10.1111/1755-6724.12371_35
    [37] MAIER W D, GROVES D I. Temporal and spatial controls on the formation of magmatic PEG and Ni-Cu deposits[J]. Mineralium Deposita, 2011, 46(8): 841-857. doi: 10.1007/s00126-011-0339-6
    [38] NALDRETT A J, ASIF M, KRSTIC S, et al. The composition of mineralization at the Voisey's Bay Ni-Cu sulfide deposit, with special reference to platinum-group elements[J]. Economic Geology, 2000, 95(4): 845-865.
    [39] FOSTER J. Voisey's Bay: Geology, geochemistry and genesis[J]. Aseg Extended Abstracts, 2006, 1: 1-4.
    [40] PELTONEN P, KONTINEN P, HUHMA H, et al. Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu-Co-Zn-Ni-Ag-Au sulphide deposits[J]. Ore Geology Reviews, 2007, 33(3): 559-617.
    [41] 宋谢炎, 胡瑞忠, 陈列锰. 中国岩浆铜镍硫化物矿床地质特点及其启示[J]. 南京大学学报(自然科学版), 2018, 54(2): 221-235.

    SONG X Y, HU R Z, CHEN L M. Characteristics and inspirations of the Ni-Cu sulfide deposits in China[J]. Journal of Nanjing University(Natural Science Edition), 2018, 54(2): 221-235. (in Chinese with English abstract)
    [42] MARSH E, ANDERSON E, GRAY F. Nickel-cobalt laterites: A deposit model: Chapter H in mineral deposit models for resource assessment[R]. Virginia: Center for Integrated Data Analytics Wisconsin Science Center, 2013.
    [43] HAN Y X, LIU Y H, LI W Y. Mineralogy of nickel and cobalt minerals in Xiarihamu nickel-cobalt deposit, East Kunlun Orogen, China[J]. Frontiers in Earth Science, 2020, 8: 597-469.
    [44] LI Y, AUDÉTAT A. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt[J]. Geochimica et Cosmochimica Acta, 2015, 162: 25-45. doi: 10.1016/j.gca.2015.04.036
    [45] 王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825-3838.

    WANG Y, ZHONG H, CAO Y H, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 2020, 65(33): 3825-3838. (in Chinese with English abstract)
    [46] 汤中立, 闫海卿, 焦建刚, 等. 中国小岩体镍铜(铂族)矿床的区域成矿规律[J]. 地学前缘, 2007, 14(5): 92-103.

    TANG Z L, YAN H Q, JIAO J G, et al. Regional metallogenic controls of small-intrusion-hosted Ni-Cu (PGE) ore deposits in China[J]. Earth Science Frontiers, 2007, 14(5): 92-103. (in Chinese with English abstract)
    [47] SUBÍAS I, FANLO I, HAJJAR Z, et al. Isotopic constraints on the age and source of ore-forming fluids of the Bou Azzer arsenide ores (Morocco)[J]. Ore Geology Reviews, 2022, 143.
    [48] 张腾蛟, 龚雪婧, 张成江. 拉拉铜矿与奥林匹克坝式铜多金属矿床的对比研究[J]. 地球科学进展, 2012, 27(增刊1): 297-299.

    ZHANG T J, GONG X J, ZHANG C J. Comparative study on Lala copper deposit and Olympic dam type copper polymetallic deposit[J]. Advances in Earth Science, 2012, 27(S1): 297-299. (in Chinese with English abstract)
    [49] WANG X, SONG Y, ZHANG H, et al. Metallogeny of the Baiyangping lead-zinc polymetallic ore concentration area, northern Lanping Basin of Yunnan Province, China[J]. Acta Geologica Sinica: English Edition, 2018, 92(4): 1486-1507. doi: 10.1111/1755-6724.13639
    [50] 崔晓亮. 西藏南木林县浦桑果铜多金属矿床成矿作用研究[D]. 成都: 成都理工大学, 2013.

    CUI X L. Research on metallization of pusangguo polymetallic copper deposit in Tibet, China[J]. Chengdu: Chengdu University of Technology, 2013. (in Chinese with English abstract)
    [51] 杨海锐. 西藏浦桑果铜多金属矿金属硫化物矿物学特征及成因意义[D]. 成都: 成都理工大学, 2013.

    YANG H R. The mineralogical characteristics and its genetic significance of Pusangguo copper poly-metal ore deposit in Tibet[D]. Chengdu: Chengdu University of Technology, 2013. (in Chinese with English abstract)
    [52] 余金杰, 任军平, 陈福雄, 等. 石碌钴-铜矿床流体包裹体和稳定同位素特征及成因[J]. 矿床地质, 2013, 32(5): 884-898.

    YU J J, REN J P, CHEN F X, et al. Fluid inclusions, stable isotopes and origin of Shilu Co-Cu deposit, Hainan Province[J]. Mineral Deposits, 2013, 32(5): 884-898. (in Chinese with English abstract)
    [53] YU J, MAO J W, CHEN F X, et al. Metallogeny of the Shilu Fe-Co-Cu deposit, Hainan Island, South China: Constraints from fluid inclusions and stable isotopes[J]. Ore Geology Reviews, 2014, 57: 351-362. doi: 10.1016/j.oregeorev.2013.08.018
    [54] 曹明坚, 单鹏飞, 秦克章. 富钴斑岩型金铜矿床地质特征及存在问题: 以黑龙江金厂矿床为例[J/OL]. 科学通报, 2022, doi: 10.1360/TB-2021-1169.

    CAO M J, SHAN P F, QIN K Z. Cobalt-rich characteristics and existing problems of porphyry gold-copper deposit: A case study of Jinchang deposit in Heilongjiang Province[J/OL]. Chinese Science Bulletin, 2020, doi: 10.1360/TB-2021-1169.(in Chinese with English abstract)
    [55] MUCHEZ P, VANDERHAEGHEN P, DESOUKY H E, et al. Anhydrite pseudomorphs and the origin of stratiform Cu-Co ores in the Katangan Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2008, 43(5): 575. doi: 10.1007/s00126-008-0183-5
    [56] HITZMAN M W, BOOKSTROM A A, SLACK J F, et al. Cobalt-styles of deposits and the search for primary deposits[M]. Reston Virginia: American Exploration & Mining Association, 2017.
    [57] MUCHEZ P, ANDRÉ-MAYER A S, DESOUKY H A, et al. Diagenetic origin of the stratiform Cu-Co deposit at Kamoto in the Central African Copperbelt[J]. Mineralium Deposita, 2015, 50(4): 437-447. doi: 10.1007/s00126-015-0582-3
    [58] 卢宜冠, 郝波, 孙凯, 等. 钴金属资源概况与资源利用情况分析[J]. 地质调查与研究, 2020, 43(1): 72-80. doi: 10.3969/j.issn.1672-4135.2020.01.008

    LU Y G, HAO B, SUN K, et al. General situation of cobalt resource and its utilization analysis[J]. Geologlcal Survey and Research, 2020, 43(1): 72-80. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-4135.2020.01.008
    [59] 卢宜冠, 涂家润, 孙凯, 等. 中非赞比亚成矿带谦比希铜钴矿床钴的赋存状态与成矿规律[J]. 地学前缘, 2021, 28(3): 338-354.

    LU Y G, TU J R, SUN K, et al. Cobalt occurrence and ore-forming process in the Chambishi deposit in the Zambian Copperbelt, Central Africa[J]. Earth Science Frontiers, 2021, 28(3): 338-354. (in Chinese with English abstract)
    [60] SAINTILAN N J, CREASER R A, BOOKSTROM A A. Re-Os systematics and geochemistry of cobaltite (Co-As-S) in the Idaho cobalt belt, Belt-Purcell Basin, USA: Evidence for Middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization[J]. Ore Geology Reviews, 2017, 86: 509-525. doi: 10.1016/j.oregeorev.2017.02.032
    [61] HITZMAN M W, SELLEY D, BULL S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history[J]. Economic Geology, 2010, 105(3): 627-639. doi: 10.2113/gsecongeo.105.3.627
    [62] QIU Z J, FAN H R, GOLDFARB R, et al. Cobalt concentration in a sulfidic sea and mobilization during orogenesis: Implications for targeting epigenetic sediment-hosted Cu-Co deposits[J]. Geochimica et Cosmochimica Acta, 2021, 305: 1-18. doi: 10.1016/j.gca.2021.05.001
    [63] 陈兴海, 刘运纪, 杨焱, 等. 刚果(金)Sicomines铜钴矿床地质特征及成因探讨[J]. 有色金属(矿山部分), 2012, 64(6): 31-37.

    CHEN X H, LIU Y J, YANG Y, et al. Geological characteristics and gecnesis of Sicomines copper-cobalt deposit in D.R. Congo[J]. Nonferrous Metals(Mining Part), 2012, 64(6): 31-37. (in Chinese with English abstract)
    [64] CAILTEUX J L, KAMPUNZU A B, LEROUGE C, et al. Genesis of sediment-hosted stratiform copper-cobalt deposits, Central African Copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1/5): 134-158.
    [65] UNRUG R. Mineralization controls and source of metals in the Lufilian fold belt, Shaba (Zaire), Zambia, and Angola[J]. Economic Geology, 1988, 84(4): 963-964.
    [66] 王志刚, 陈玉华, 付小锦, 等. 刚果(金)加丹加省堪苏祁铜钴矿床地质特征及找矿方向[J]. 地质找矿论丛, 2012, 27(2): 206-213.

    WANG Z G, CHEN Y H, FU X J, et al. Geological characteristics and ore-searching directions of copper-cobalt deposit KS in Kaanga Province of Congo(King)[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(2): 206-213. (in Chinese with English abstract)
    [67] BROWN A C. Low-temperature sediment-hosted copper deposits[J]. Treatise on Geochemistry, 2014: 251-271.
    [68] DAVEY J E, ROBERTS S, WILKINSON J J. Copper-and cobalt-rich, ultrapotassic bittern brines responsible for the formation of the Nkana-Mindola deposits, Zambian Copperbelt[J]. Geology, 2020, 49(3): 341-345. doi: 10.3969/j.issn.1000-8845.2020.03.010
    [69] 刘俊辰, 莫江平, 刘草. 赞比亚铜带省铜矿成因分析[J]. 矿产与地质, 2016, 30(2): 203-207.

    LIU J C, MO J P, LIU C. Genesis of copper deposits in Copperbelt of Zambia[J]. Mineral Resources and Geology, 2016, 30(2): 203-207. (in Chinese with English abstract)
    [70] 李向前, 姜玉平, 赵锡岩, 等. 刚果(金)堪苏祁铜钴矿床地质特征及成因分析[J]. 地质与勘探, 2010, 46(1): 175-182.

    LI X Q, JIANG Y P, ZHAO X Y, et al. Geology and genesis of Kansuki copper-cobalt deposit in Katanga Province, D.R. Congo[J]. Geology and Exploration, 2010, 46(1): 175-182. (in Chinese with English abstract)
    [71] MCGOWAN R R, ROBERTS S, FOSTER R P, et al. Origin of the copper-cobalt deposits of the Zambian Copperbelt: An epigenetic view from Nchanga[J]. Geology, 2003, 31(6): 497-500. doi: 10.1130/0091-7613(2003)031<0497:OOTCDO>2.0.CO;2
    [72] 沈阳, 高帮飞, 张作伦, 等. 中非铜(钴)矿带绿纱铜(钴)矿床成矿流体特征[J]. 矿物岩石地球化学通报, 2014, 33(5): 711-720. doi: 10.3969/j.issn.1007-2802.2014.05.017

    SHEN Y, GAO B F, ZHANG Z L, et al. Characteristics of ore-forming fluid of the lÜsha Copper(Cobalt) deposit in the Central Africa Copper(cobalt) Belt[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(5): 711-720. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2802.2014.05.017
    [73] 刘洪微. 刚果(金)KOLWEZI铜钴矿床地质特征及成因分析[J]. 地质与勘探, 2018, 54(4): 856-866.

    LIU H W. Geological characteristics and genesis of the Kolwezi Cu-Co deposit in Democratic Republic of Congo[J]. Geology and Exploration, 2018, 54(4): 856-866. (in Chinese with English abstract)
    [74] SILLITOE R H, PERELLO' J, CREASER R A, et al. Age of the Zambian Copperbelt[J]. Mineralium Deposita, 2017, 52(8), 1245-1268. doi: 10.1007/s00126-017-0726-8
    [75] MARSH E, ANDERSON E, GRAY F. Nickel-cobalt laterites: A deposit model[R]. Reston Virginia: U.S. Geological Survey, Scientific Investigations Report 2010-5070-H, 2020.
    [76] GLEESON S A, BUTT C R, ELIAS M. Nickel laterites: A review[J]. SEG Newsletter, 2003, 54: 9-16.
    [77] DZEMUA G L, GLEESON S A, SCHOFIELD P F. Mineralogical characterization of the Nkamouna Co-Mn laterite ore, Southeast Cameroon[J]. Mineralium Deposita, 2013, 48(2): 155-171. doi: 10.1007/s00126-012-0426-3
    [78] 张富元, 章伟艳, 任向文, 等. 全球三大洋海山钴结壳资源量估算[J]. 海洋学报, 2015, 37(1): 88-105.

    ZHANG F Y, ZHANG W Y, REN X W, et al. Resource estimation of Co-rich crusts of seamounts in the three oceans[J]. Haiyang Xuebao, 2015, 37(1): 88-105. (in Chinese with English abstract)
    [79] GLASBY G P, MOUNTAIN B, VINEESH T C, et al. Role of hydrology in the formation of Co-rich Mn crusts from the Equatorial N Pacific, Equatorial S Indian Ocean and the NE Atlantic Ocean[J]. Resource Geology, 2010, 60(2): 165-177. doi: 10.1111/j.1751-3928.2010.00123.x
    [80] 王淑玲, 白凤龙, 黄文星, 等. 世界大洋金属矿产资源勘查开发现状及问题[J]. 海洋地质与第四纪地质, 2020, 40(3): 160-170.

    WANG S L, BAI F L, HUANG W X, et al. Current status and problems of exploration and development of world ocean metal mineral resources[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 160-170. (in Chinese with English abstract)
    [81] 崔迎春, 石学法, 刘季花, 等. 磷酸盐化作用对富钴结壳元素相关性的影响[J]. 地质科技情报, 2008, 27(3): 61-67. doi: 10.3969/j.issn.1000-7849.2008.03.009

    CUI Y C, SHI X F, LIU J H, et al. Effects of phosphatization on the elemental association of cobalt-rich crusts[J]. Geological Science and Technology Information, 2008, 27(3): 61-67. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7849.2008.03.009
    [82] 栾锡武. 大洋富钴结壳成因机制的探讨: 水成因证据[J]. 海洋学研究, 2006, 24: 8-19.

    LUAN X W. Cobalt-rich ferromanganese crusts formation: Evidences of hydrogenous origin[J]. Journal of Marine Sciences, 2006, 24: 8-19. (in Chinese with English abstract)
    [83] JOSSO P, PELLETER E, POURRET O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews, 2016, 87: 3-15.
    [84] ZHAO J, ZHANG H, WU G, et al. Biomineralization of organic matter in cobalt-rich crusts from the Marcus-Wake Seamounts of the western Pacific Ocean[J]. Acta Oceanologica Sinica, 2014, 33(12): 67-74. doi: 10.1007/s13131-014-0552-0
    [85] 陈建林, 马维林, 武光海, 等. 中太平洋海山富钴结壳与基岩关系的研究[J]. 海洋学报, 2004, 26(4): 71-79. doi: 10.3321/j.issn:0253-4193.2004.04.008

    CHEN J L, MA W L, WU G H, et al. Research on the relationships between cobalt-rich crusts and substrate rocks in the Mid-Pacific Mountains[J]. Haiyang Xuebao, 2004, 26(4): 71-79. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-4193.2004.04.008
    [86] LEARMAN D R, WANKEL S D, WEBB S M, et al. Coupled biotic-abiotic Mn (Ⅱ) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 6048-6063. doi: 10.1016/j.gca.2011.07.026
    [87] SUJITH P P, GONSALVES M J. Ferromanganese oxide deposits: Geochemical and microbiological perspectives of interactions of cobalt and nickel[J]. Ore Geology Reviews, 2021, 139: 104458. doi: 10.1016/j.oregeorev.2021.104458
    [88] WOOD C M, FARRELL A P, BRAUNER C J. Homeostasis and toxicology of essential metals[J]. Fish Physiology, 2012, 31.
    [89] HEIN J R, KOSCHINSKY A. Deep-ocean ferromanganese crusts and nodules[J]. Treatise on Geochemistry, 2014, 13: 273-291.
    [90] 姚会强, 刘永刚, 张伙带, 等. 维嘉平顶海山富钴铁锰结壳空间分布特征: 基于"蛟龙号"载人潜水器近海底观测资料[J]. 地学前缘, 2021, 28(6): 331-342.

    YANG H Q, LIU Y G, ZHANG H D, et al. Distribution characteristics of cobalt-rich ferromanganses crust on the Weijia Guyot: Constraints from the human-occupied vehicle "Jiaolong submersible" near-bottom observation data[J]. Earth Science Frontiers, 2021, 28(6): 331-342. (in Chinese with English abstract)
    [91] XU Y, ZHU X Y. Cobalt deposits in the central China orogenic belt[J]. Acta Geologica Sinica: English Edition, 2010, 74(3): 540-543.
    [92] LAMBERT D D, FOSTER J G, FRICK L R, et al. Application of the Re-Os isotopic system to the study of Precambrian magmatic sulfide deposits of Western Australia[J]. Australian Journal of Earth Sciences, 1998, 45(2): 265-284. doi: 10.1080/08120099808728386
    [93] 舒思齐, 裴荣富, 邢波, 等. 俄罗斯诺里尔斯克铜镍硫化物矿床研究进展[J]. 地质通报, 2015, 34(6): 1100-1109. doi: 10.3969/j.issn.1671-2552.2015.06.010

    SHU S Q, PEI R F, XING B, et al. The progress in the study of the Nonl'sk Cu-Ni-PGE sulfide deposit in Russia[J]. Geological Bulletin in China, 2015, 34(6): 1100-1109. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2015.06.010
    [94] 聂凤军, 辛洪波, 张伟波, 等. 加拿大萨德伯里超大型镍-铜-铂族元素矿床[J]. 矿床地质, 2013, 32(1): 217-220. doi: 10.3969/j.issn.0258-7106.2013.01.017

    NIE F J, XIN H B, ZHANG W B, et al. Sadbury ultra-large Ni-Cu-PGE deposit, Canada[J]. Mineral Deposits, 2013, 32(1): 217-220. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2013.01.017
    [95] FENG C Y, QU W J, ZHANG D Q, et al. Re-Os dating of pyrite from the Tuolugou stratabound Co (Au) deposit, eastern Kunlun orogenic belt, northwestern China[J]. Ore Geology Reviews, 2009, 36(1): 213-220.
    [96] 中国地质编辑部. 世界十大钴矿床[J]. 中国地质, 2020, 47(4): 1270.

    China Geological Editorial Department. Ten largest cobalt deposits in the world[J]. Geology in China, 2020, 47(4): 1270. (in Chinese with English abstract)
    [97] PROKIN V A, BUSLAEV F P. Massive copper-zinc sulphide deposits in the Urals[J]. Ore Geology Reviews, 1998, 14(1): 1-69. doi: 10.1016/S0169-1368(98)00014-6
    [98] HERRINGTON R J, ZAYKOV V V, MASLENNIKOV V V, et al. Mineral deposits of the Urals and links to geodynamic evolution[J]. Economic Geology, 2005, 1069-1095.
    [99] DESOUKY H, MUCHEZ P, BOYCE A J, et al. Genesis of sediment-hosted stratiform copper-cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2010, 45(8): 735-763. doi: 10.1007/s00126-010-0298-3
    [100] 李长根. 刚果民主共和国腾克丰古鲁梅铜钴矿山[J]. 矿产综合利用, 2012, 1: 64-68.

    LI C G. The DRC Tenke-Fugurume Copper and Cobalt Mine[J]. Multipurpose Utilization of Mineral Resources, 2012, 1: 64-68. (in Chinese with English abstract)
    [101] 高帮飞, 沈阳, 钟长汀, 等. 刚果(金)绿纱铜钴矿床黑色页岩Rb-Sr测年及其区域成矿意义[J]. 地质学报, 2021, 95(4): 1029-1049. doi: 10.3969/j.issn.0001-5717.2021.04.007

    GAO B F, SHEN Y, ZHONG C J, et al. Rb-Sr dating of the black shale and its signifcance for regional metallogenesis, Luishia Cu-Co deposit, D R Congo[J]. Acta Geologica Sinica, 2021, 95(4): 1029-1049. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.04.007
    [102] 王武名, 盛涛, 王丽娟, 等. 刚果(金)加丹加鲁苏西铜钴矿床S、C、O、Sr同位素特征及矿床成因[J]. 地学前缘, 2021, 28(6): 318-330.

    WANG W M, SHENG T, WANG L J, et al. Characteristics of sulfur, carbon, oxygen and strontium isotope and genesis of Luiswishi Cu-Co deposit, Katanga, Democratic Republic of Congo[J]. Earth Science Froniters, 2021, 28(6): 318-330. (in Chinese with English abstract)
    [103] 李向前, 毛景文, 闫艳玲, 等. 中非刚果(金)加丹加铜钴矿带主要矿化类型及特征[J]. 矿床地质, 2009, 28(3): 366-380. doi: 10.3969/j.issn.0258-7106.2009.03.012

    LI X Q, MAO J W, YAN Y L, et al. Regional geology and characteristics of ore deposits in Katangan copper-cobalt belt within Congo(Kinshasa)Central Africa[J]. Mineral Deposits, 2009, 28(3): 366-380. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2009.03.012
    [104] RUSKEENIEMI K L, LAHTINEN H. Multiphase evolution in the black-shale-hosted Ni-Cu-Zn-Co deposit at Talvivaara, Finland[J]. Ore Geology Reviews, 2013, 52: 85-99. doi: 10.1016/j.oregeorev.2012.10.006
    [105] 李先富. 刚果(金)KIMPE铜钴矿床地质特征及成因探讨[D]. 成都: 成都理工大学, 2017.

    LI X F. Discussion on geological characteristics and genesis of KIMPE copper-cobalt deposit in D.R. Congo[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)
    [106] 张伟波, 叶锦华, 向运川, 等. 新喀里多尼亚红土型镍-钴矿床地质特征[J]. 矿物学报, 2015, 35(增刊1): 1091.

    ZHANG W B, YE J H, XIANG Y C, et al. Geological characteristics of laterite nickel-cobalt deposit in New Caledonia[J], Acta Mineralogica Sinica, 2015, 35(S1): 1091. (in Chinese with English abstract)
    [107] 郭健, 牛斯达, 孙赫, 等. 赞比亚砂(页)岩型铜矿成矿年龄及其成因意义[J]. 地质与勘探, 2018, 54(3): 634-644. doi: 10.3969/j.issn.0495-5331.2018.03.019

    GUO J, NIU S D, SUN H, et al. Mineralization age of the sediment-hosted stratiform copper deposits in Zambia and its implications for deposit genesis[J]. Geology and Exploration, 2018, 54(3): 634-644. (in Chinese with English abstract) doi: 10.3969/j.issn.0495-5331.2018.03.019
    [108] 张伟波, 叶锦华, 向运川, 等. 新喀里多尼亚红土型镍-钴矿床地质特征[J]. 矿物学报, 2015, 35(增刊1): 1091.

    ZHANG W B, YE J H, XING Y C, et al. Geological characteristics of lateric nickel-cobalt deposits in New Caledonia[J]. Acta Mineralogica Sinica, 2013, 35(S1): 1091. (in Chinese with English abstract)
    [109] 秦克章, 丁奎首, 许英霞, 等. 东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J]. 矿床地质, 2007, 26(1): 1-14. doi: 10.3969/j.issn.0258-7106.2007.01.001

    QIN K Z, DING K S, XU Y X, et al. Ore potential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang[J]. Mineral Deposits, 2007, 26(1): 1-14. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2007.01.001
    [110] XUE S C, WANG Q F, DENG J, et al. Mechanism of organic matter assimilation and its role in sulfide saturation of oxidized magmatic ore-forming system: Insights from C-S-Sr-Nd isotopes of the Tulaergen deposit in NW China[J]. Mineralium Deposita, 2022, 57(7): 1-19.
    [111] HAN C, XIAO W, ZHAO G, et al. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization[J]. Lithos, 2010, 120(3/4): 547-562.
    [112] 张小连, 吴昌志, 黄建华, 等. 东天山黄山岩体的侵位时代及其地质意义[J]. 地质科技情报, 2012, 31(1): 22-26. doi: 10.3969/j.issn.1000-7849.2012.01.004

    ZHANG X L, WU C Z, HANG J H, et al. Geochronology and its geological significance of the Huangshan intrusion in Eastern Tianshan, Xinjiang[J]. Geological Science and Technology Information, 2012, 31(1): 22-26. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7849.2012.01.004
    [113] 李德东, 王玉往, 石煜, 等. 内蒙古嘎仙镍钴矿区岩浆作用与成矿[J]. 矿床地质, 2018, 37(5): 893-916.

    LI D D, WANG Y W, SHI Y, et al. Magmatism and ore-forming process of Gaxian nickel cobalt deposit, Inner Mongolia[J]. Mineral Deposits, 2018, 37(5): 893-916. (in Chinese with English abstract)
    [114] 毛景文, 杨建民, 屈文俊, 等. 新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球化学意义[J]. 矿床地质, 2002, 21(4): 323-330. doi: 10.3969/j.issn.0258-7106.2002.04.002

    MAO J W, YANG J M, QU W J, et al. Re-Os dating of Cu-Ni Sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance[J]. Mineral Deposits, 2002, 21(4): 323-330. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2002.04.002
    [115] 孙涛, 钱壮志, 汤中立, 等. 新疆葫芦铜镍矿床锆石U-Pb年代学、铂族元素地球化学特征及其地质意义[J]. 岩石学报, 2010, 11(26): 3339-3349.

    SUN T, QIAN Z Z, TANG Z L, et al. Zircon U-Pb chronology, platinum group element geochemistry characteristics of Hulu Cu-Ni deposit East Xinjiang and its geological significance[J]. Acta Petrologica Sinica, 2010, 11(26): 3339-3349. (in Chinese with English abstract)
    [116] 王瑞廷, 赫英, 汤中立, 等. 煎茶岭大型含钴硫化镍矿床微量元素地球化学研究[J]. 矿床地质, 2002, 21(增刊1): 1041-1044.

    WANG R T, HAO Y, TANG Z L, et al. Study on minor elements geochemistry in Jianchaling large cobalt-bearing sulfide nickel deposit[J]. Mineral Deposits, 2002, 21(S1): 1041-1044. (in Chinese with English abstract)
    [117] 王瑞廷, 赫英, 王东生, 等. 煎茶岭含钴硫化镍矿床成矿作用研究[J]. 西北大学学报(自然科学版), 2003(2): 185-190. doi: 10.3321/j.issn:1000-274X.2003.02.017

    WANG R T, HAO Y, WANG D S, et al. The study on ore-forming process of Jianchaling large cobalt-bearing nickel ore deposit[J]. Journal of Northwest University(Natural Science Edition), 2003(2): 185-190. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-274X.2003.02.017
    [118] SONG X Y, YI J N, CHEN L M, et al. The Giant Xiarihamu Ni-Co sulfide deposit in the east Kunlun orogenic belt, northern Tibet Plateau, China[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2016, 111(1): 29-55. doi: 10.2113/econgeo.111.1.29
    [119] 王建中. 新疆喀拉通克铜镍硫化物矿床成矿作用与成矿潜力研究[D]. 西安: 长安大学, 2010.

    WANG J Z. The Minerogenesis and metallogenic potential of Kalatongke nickel-copper sulfide deposit, Xinjiang, China[J]. Xian: Chang'an University, 2010. (in Chinese with English abstract)
    [120] FENG C Y, ZHANG D Q. China's first independent cobalt deposit and its metallogenic mechanism: Evidence from fluid inclusions and isotopic geochemistry[J]. Acta Geologica Sinica: English Edition, 2011, 85(6): 1403-1418. doi: 10.1111/j.1755-6724.2011.00595.x
    [121] 张德全, 王彦, 丰成友, 等. 驼路沟喷气沉积型钴(金)矿床的地质-地球化学[J]. 矿床地质, 2002, 21(3): 213-222. doi: 10.3969/j.issn.0258-7106.2002.03.001

    ZHANG D Q, WANG Y, FENG C Y, et al. Geology and geochemistry of Tuolugou exhalative sedimentary Co-Au deposit, Qinghai Province[J]. Mineral Deposits, 2002, 21(3): 213-222. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2002.03.001
    [122] HUANG X W, ZHOU M F, QI L, et al. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China[J]. Mineralium Deposita, 2013, 48: 925-946. doi: 10.1007/s00126-013-0467-2
    [123] 尹意求, 李嘉兴, 唐红松, 等. 新疆阔尔真阔腊金矿床中伴生钴的发现及其找矿地质意义[J]. 矿产与地质, 2003, 17(1): 1-5. doi: 10.3969/j.issn.1001-5663.2003.01.001

    YIN Y Q, LI J X, TANG H S, et al. Discoverey of associated cobalt in Kuoerzhenkuola gold deposit and its geological significance for exploration[J]. Mineral Resources and Geology, 2003, 17(1): 1-5. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5663.2003.01.001
    [124] 马光. 鄂东南铜绿山铜铁金矿床地质特征、成因模式及找矿方向[D]. 长沙: 中南大学, 2005.

    MA G. Geological features, mineralization model and prospecting areas of Tonglushan Cu-Fe-Au deposit, Southeast Hubei[D]. Changsha: Central South University, 2005. (in Chinese with English abstract)
    [125] 张晗. 山西中条山北段古元古代铜矿成矿作用[D]. 长春: 吉林大学, 2012.

    ZHANG H. Metallogenesis of Paleoproterozoic copper deposits in the northern Zhongtiaoshan Mountains, Shanxi Province[D]. Changchun: Jilin University, 2012. (in Chinese with English abstract)
    [126] 于晓飞, 公凡影, 李永胜, 等. 中国典型钴矿床地质特征及重点地区矿产资源预测[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1377-1418.

    YU X F, GONG F Y, LI Y S, et al. Geological characteristics of typical cobalt deposits in China and prediction of mineral resources in the key areas[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(5): 1377-1418. (in Chinese with English abstract)
    [127] 周辉, 曾书明. 江西五宝山(式)钴矿床成矿模型及地质: 地球化学找矿模式[J]. 江西地质, 2000, 14(4): 271-275.

    ZHOU H, ZENG S M. Genetic model of the Wubaoshan type cobalt deposit in Jiangxi and geological-geochemical model for ore-searching[J]. Jiangxi Geology, 2000, 14(4): 271-275. (in Chinese with English abstract)
    [128] 王学平, 周建廷, 范爱春. 江西省上高县七宝山铅锌铁钴矿床成矿模式[J]. 东华理工大学学报(自然科学版), 2011, 34(3): 248-256.

    WANG X P, ZHOU J T, FAN A C. The metallogenic model of the Qibaoshan lead and zinc iron cobalt deposit in Shanggao County, Jiangxi Province[J]. Journal of East China University of Technology(Natural Science Edition), 2011, 34(3): 248-256. (in Chinese with English abstract)
    [129] WANG Z L, XU D R, CHI G X, et al. Mineralogical and isotopic constraints on the genesis of the Jingchong Co-Cu polymetallic ore deposit in northeastern Hunan Province, South China[J]. Ore Geology Reviews, 2017, 88: 638-654. doi: 10.1016/j.oregeorev.2017.02.011
    [130] ZOU S H, ZOU F H, NING J T, et al. A stand-alone Co mineral deposit in northeastern Hunan Province, South China: Its timing, origin of ore fluids and metal Co, and geodynamic setting[J]. Ore Geology Reviews, 2018, 92: 42-60. doi: 10.1016/j.oregeorev.2017.11.008
    [131] 高鹏义. 西藏玉龙铜矿V号矿体铜钴离析效果的研究[J]. 矿产综合利用, 1981: 1: 42-44.

    GAO P Y. Study on the seperation of copper and cobalt in the No. V. orebody of the Yulong Cu deposit, Tibet (in Chinese)[J]. Multipurpose Utilization of Mineral Resources, 2014, 57: 351-362. (in Chinese with English abstract)
    [132] 陈建平, 唐菊兴, 丛源, 等. 藏东玉龙斑岩铜矿地质特征及成矿模型[J]. 地质学报, 2009, 83(12): 1887-1900. doi: 10.3321/j.issn:0001-5717.2009.12.007

    CHEN J P, TANG J X, CONG Y, et al. Geological characteristics and metallogenic model in the Yulong porphyry copper deposit, East Tibet[J]. Acta Geologica Sinica, 2009: 83(12): 1887-1900. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2009.12.007
    [133] 舒树兰, 李彬, 陈林. 东昆仑督冷沟铜钴矿床多期成矿特征及成矿过程探讨[J]. 西北地质, 2015, 48(1): 137-144.

    SHU S L, LI B, CHEN L. Discussion on metallogenic characteristics and multi-stage mineralization process of Dulenggou copper-cobalt deposit in East Kunlun, Qinghai Province[J]. Northwestern Geology, 2015, 48(1): 137-144. (in Chinese with English abstract)
    [134] 陕亮. 湘东北地区铜-铅-锌-钴多金属成矿系统[D]. 北京: 中国地质大学(北京), 2019.

    SHAN L. Metallogenic system of copper-lead-zinc-cobalt polymetallic deposits, northeastern Hu'nan Province, South China[D]. Beijing: China University of Geosciences(Beijing), 2019. (in Chinese with English abstract)
    [135] 陈根文, 夏斌. 四川拉拉铜矿床成因研究[J]. 矿物岩石地球化学通报, 2001, 20(1): 42-44.

    CHEN G W, XIA B. Study on the genesis of Lala copper deposit, Sichuan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(1): 42-44. (in Chinese with English abstract)
    [136] 薛步高. 易门铜矿区叠加钴矿化地质特征[J]. 矿产与地质, 1996, 10(6): 29-35.

    XUE B G. Geological characteristics of superimposed cobalt mineralization in the Yimen copper district[J]. Mineral Resources and Geology, 1996, 10(6): 29-35. (in Chinese with English abstract)
    [137] 刘天祥. 甘肃省康县阳坝地区铜矿地质特征及找矿标志[J]. 甘肃冶金, 2018, 40(5): 88-91, 107.

    LIU T X. Geological characteristics and prospecting indicators of copper deposit in Yangba district, Kangxian, Gansu Province[J]. Gansu Metallurgy, 2018, 40(5): 88-91, 107. (in Chinese with English abstract)
    [138] 朱伯鹏, 张汉清, 秦纪华, 等. 新疆准噶尔东北缘蕴都卡拉金铜钴矿床地质特征及前景分析[J]. 地质论评, 2020, 66(1): 157-168.

    ZHU B P, ZHANG H Q, QIN J H, et al. Geological characteristics and prospect analysis of the Yundukala Au-Cu-Co deposit in the northeastern margin of Junggar, Xinjiang[J]. Geological Review, 2020, 66(1): 157-168. (in Chinese with English abstract)
    [139] 范世家, 王安建, 刘汉斌, 等.论兰坪盆地白秧坪铜(钴)矿床成因的氦氩同位素证据[J].地质论评, 2006, 52(5):628-635. doi: 10.3321/j.issn:0371-5736.2006.05.015

    FAN S J, WANG A J, LIU H B, et al.A Discussion on the helium and argon isotopic evidences for genesis of the Baiyangping copper-cobalt deposit in the Lanping Basin[J].Geological Review, 2006, 52(5):628-635.(in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.2006.05.015
    [140] 许东青, 江思宏, 张建华, 等.内蒙古阿右旗卡休他他铁(金、钴)矿床地质地球化学特征[J].矿床地质, 2006, 25(3):231-242. doi: 10.3969/j.issn.0258-7106.2006.03.002

    XU D Q, JIANG S H, ZHANG J H, et al.Geological and geochemical features of Kaxiutata iron (gold, cobalt) deposit in Alxa Right Banner, Inner Mongolia[J].Mineral Deposits, 2006, 25(3):231-242.(in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2006.03.002
    [141] 印建平, 王旭东, 李明, 等.西昆仑卡拉塔什矿区含铜砂页岩中发现钴矿[J].地质通报, 2003, 22(9):736-740. doi: 10.3969/j.issn.1671-2552.2003.09.020

    YIN J P, WANG X D, LI M, et al.A cobalt deposit discovered in copper-bearing sandstone-shale in the Karatax ore district, Western Kunlun Mountains[J].Geological Bulletin of China, 2003, 22(9):736-740.(in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2003.09.020
    [142] 董方浏.云南巍山-永平矿化集中区铜金多金属矿床成矿条件及成矿潜力研究[D].北京:中国地质大学(北京), 2003.

    DONG F L.Study on metallogenic condition and potentiality of copper-gold-polymetallic deposits in Weishan-Yongping mineralization district, Yunnan[D].Beijing:China University of Geosciences(Beijing), 2003.(in Chinese with English abstract)
    [143] 杨言辰, 王可勇, 冯本智.大横路式钴(铜)矿床地质特征及成因探讨[J].地质与勘探, 2004(1):7-11. doi: 10.3969/j.issn.0495-5331.2004.01.002

    YANG Y C, WANG K Y, FENG B Z.Geological characteristics and genesis of the Dahenglu type cobalt(copper) deposits, Jilin Provice[J], Geology and Exploration, 2004(1):7-11.(in Chinese with English abstract) doi: 10.3969/j.issn.0495-5331.2004.01.002
    [144] 宋建潮.辽东裂谷金属矿床成矿系列与成矿作用研究[D].沈阳:东北大学, 2011.

    SONG J C.Minerogenetic series and ore-forming processes of metal deposits in the Liaodong Rift[D].Shenyang:Northeastern University, 2011.(in Chinese with English abstract)
    [145] 刘培栋.辽东裂谷铜钴矿产资源特征与潜力评价[D].长春:吉林大学, 2008.

    LIU P D.Evaluation on Cu and Co mineral resource characteristic and potential of Liaodong Rift[D].Changchun:Jilin University, 2008.(in Chinese with English abstract)
    [146] 李社宏, 粟阳扬, 严松, 等.广西金秀北部石英脉型铜矿地质特征与成因分析[J].矿产与地质, 2018, 32(1):67-73. doi: 10.3969/j.issn.1001-5663.2018.01.009

    LI S H, SU Y Y, YAN S, et al.Geological characteristics and genetic analysis of of quartz-vein-type copper deposit in North Jinxiu of Guangxi[J].Mineral Resources and Geology, 2018, 32(1):67-73.(in Chinese with English abstract) doi: 10.3969/j.issn.1001-5663.2018.01.009
    [147] 夏传见, 陈浩, 刘忠秋, 等.四川会理大田隘口镍矿地质特征及可利用性探索[J].四川地质学报, 2012, 32(增刊2):138-140.

    XIA C X, CHEN H, LIU Z Q, et al.Exploration of geological character of Ni deposit and its availability at Huilidatian, Sichuan (in Chinese)[J].Acta Geological Sinica, 2012, 32(S2):138-140.(in Chinese with English abstract)
    [148] 王宇非, 王智琳, 鲁安怀, 等.黔中猫场杨家洞矿段铝土矿中富钴黄铁矿的发现与意义[J].矿物学报, 2021, 41(增刊1):460-474.

    WANG Y F, WANG Z L, LU A H, et al.Discovery of cobalt-rich pyrite in the Yangjiadong ore block of the Maochang bauxite deposit, Guizhou Province and its significance[J].Acta Mineralogica Sinica, 2021, 41(S1):460-474.(in Chinese with English abstract)
    [149] LONG Y Z, LU A H, GU X P, et al.Cobalt enrichment in a paleo-karstic bauxite deposit at Yunfeng, Guizhou Province, SW China[J].Ore Geology Reviews, 2020, 117:103-308.
    [150] XU D R, WANG Z L, CHEN H Y, et al.Petrography and geochemistry of the Shilu Fe-Co-Cu ore district, South China:Implications for the origin of a Neoproterozoic BIF system[J].Ore Geology Reviews, 2014, 57:322-350. doi: 10.1016/j.oregeorev.2013.08.011
    [151] PATTEN C, BARNES S J, MATHEZ E A, et al.Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid:LA-ICP-MS analysis of MORB sulfide droplets[J].Chemical Geology, 2013, 358:170-188. doi: 10.1016/j.chemgeo.2013.08.040
    [152] 阎磊, 范裕, 刘一男.安徽庐枞盆地龙桥铁矿床中钴的赋存状态和空间分布规律[J].岩石学报, 2021, 37(9):2778-2796.

    YAN L, FAN Y, LIU Y N.The occurrence and spatial distribution of cobalt in Longqiao iron deposit in Luzong Basin, Anhui Province[J].Acta Petrologica Sinica, 2021, 37(9):2778-2790.(in Chinese with English abstract)
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  868
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-07
  • 录用日期:  2022-10-06
  • 修回日期:  2022-10-05

目录

    /

    返回文章
    返回