Modelling of groundwater remediation using monitored natural attenuation at a contamination site in Guangzhou
-
摘要:
监控自然衰减(MNA)作为一种成本低、不产生二次污染物、对污染场地环境影响较小的地下水污染修复方法, 具有较高的应用价值和发展前景, 值得实践与研究。选取广州某地下水污染场地作为研究区, 评价MNA修复方法的适用性。基于水文地质条件及污染现状分析, 运用地下水数值模拟程序MODFLOW建立了污染场地地下水流模型, 运用污染物迁移数值模拟程序MT3DMS建立了场地污染物迁移模型, 分别模拟了场地地下水流、主要污染物总石油烃(TPH)和重金属镍(Ni)的迁移过程。基于模型, 对比监控自然衰减和抽出处理与监控自然衰减结合的2种方案修复效果。结果表明, TPH和Ni对于Freundlich常数及Freundlich指数变化均较为敏感; TPH的自然衰减效果较好, 采用自然衰减方案, 经过850 d可由初始浓度1.52 mg/L衰减到修复目标值(0.3 mg/L); Ni衰减较慢, 适宜采用结合抽出处理的监控下自然衰减方案, 经过300 d可由初始浓度0.13 mg/L达到修复目标值(0.02 mg/L)。在自然衰减能力较强或地下水流速较缓的条件下, 适宜采用监控自然衰减修复方案; 在自然衰减能力较弱或地下水有显著流动的情况下, 适宜采用结合抽出处理的监控自然衰减修复方案。研究结果对地下水污染修复具有参考价值与借鉴意义。
Abstract:Objective Monitoring natural attenuation (MNA), as a low cost remediation method for groundwater pollution that does not produce secondary pollutants and has little impact on the polluted site environment, has high application value and development prospects, and is worth practicing and studying.
Methods This paper adopts a groundwater-contaminated site in Baiyun District of Guangzhou to assess the applicability of MNA. Based on the analysis of hydrogeological conditions and pollution status, a groundwater numerical simulation program MODFLOW was used to establish a groundwater flow model for contaminated sites. The pollutant migration numerical simulation program MT3DMS was used to establish a pollutant migration model for the site. The migration processes of groundwater flow, main pollutants total petroleum hydrocarbons (TPH), and heavy metal nickel (Ni) were simulated, respectively. Based on the model, the performances of the MNA alone and the MNA combined with pump and treat methods were compared.
Results The results show that TPH and Ni are both sensitive to changes in the Freundlich constant and Freundlich exponent. The TPH shows good natural attenuation effect and can be substantially attenuated by the MNA alone. The concentration of TPH decreased from the initial value of 1.52 mg/L to the target (0.3 mg/L) after 850 days. Ni decay is relatively slow and it is suitable to adopt to a natural attenuation scheme under monitoring combined with the pump & treat method. The concentration of Ni decreased from the initial value of 0.13 mg/L to the target (0.02 mg/L) after 300 days. For a contaminated site with large natural attenuation capacities and/or low groundwater flow velocities, MNA alone is an appropriate remediation strategy. In contrast, for a contaminated site with low natural attenuation capacities and/or high groundwater flow velocities, the MNA combined with pump and treat may be a better remediation strategy.
Conclusion This study provides an appropriate reference for the application of MNA to groundwater pollution remediation.
-
表 1 校正后的地下水流模型参数
Table 1. Calibration parameters of the groundwater flow model
参数名称 区域Ⅰ 区域Ⅱ 区域Ⅲ 区域Ⅳ 水平渗透系数K/(m·d-1) 0.26 1.50 1.06 0.007 3 地下水补给量W/(m·d-1) 0.000 67 0.000 97 0.000 67 0.000 67 河流传导系数C/(m·d-1) 0.26 表 2 溶质运移模型参数
Table 2. Solute transport model parameters
参数名称 总石油烃(TPH) 镍(Ni) 土壤容重ρb/(kg·m-3) 1 500 孔隙度ne/% 30 纵向弥散系数Dy/(m2·d-1) 10 15 25 5 纵向弥散度aL/m 1(区域Ⅰ) 1.5(区域Ⅱ) 1.5(区域Ⅲ) 0.5(区域Ⅳ) 横向弥散度at/m 0.1(区域Ⅰ) 0.15(区域Ⅱ) 0.15(区域Ⅲ) 0.05(区域Ⅳ) Freundlich常数Kf/(mg·L-1)-a 5×10-6~1×10-3[21] 0.001~0.005[22] Freundlich指数a 0.5~1[21] 1.5~3.5[22] 溶解相一级反应速率λ1/d-1 0.001~0.01[23] 1×10-7~1×10-5[24] 吸附相一级反应速率λ2/d-1 0 0 表 3 参数敏感度分析取值
Table 3. Parameter sensitivity analysis value
参数名称 污染物 取值1 取值2 取值3 Freundlich常数
Kf/(mg·L-1)-a总石油烃
镍5×10-6
1×10-35×10-4
3×10-31×10-3
5×10-3Freundlich指数a 总石油烃
镍0.50
1.500.75
2.501.00
3.50溶解相一级反应速率
λ1/d-1总石油烃
镍1×10-3
1×10-75×10-3
1×10-61×10-2
1×10-5纵向弥散度aL/m 总石油烃
镍(北部)
镍(南部)0.20
0.20
11
1
55
5
10表 4 监控条件下TPH源区域衰减情况
Table 4. Attenuation situation of the TPH source under monitoring
模型参数 衰减比率/% 停留时间/d Kf/(mg·L-1)-a a λ1/d-1 aL/m 150 d 300 d 600 d 0.000 5 0.75 0.005 1.0 24.66 43.44 70.28 800~850 表 5 监控条件下场地南北部Ni源区域衰减情况
Table 5. Attenuation situation of the Ni source under monitoring
区域 模型参数 衰减比率/% 停留时间/d Kf/(mg·L-1)-a a λ1/d-1 aL/m 500 d 1 000 d 1 500 d 北区 0.003 2.5 1×10-6 1.0 57.61 84.81 94.17 500~550 南区 0.003 2.5 1×10-6 5.0 40.44 79.69 93.13 1 200~1 250 表 6 抽水井设置
Table 6. Settings of pumping wells
污染物 井类型 井位置 处理时间/d 流量/(m3·d-1) 所需监控时间(原始停留时间)/d TPH 抽水井 污染源中心 0~100 -25 < 100(800~850) 北区 Ni 抽水井 污染区域中轴线 0~100 -20 150~200(500~550) 抽水井 污染区域中轴线 0~200 -20 抽水井 污染区域中轴线 0~100 -20 注水井 污染区域左外侧 0~100 10 南区 Ni 抽水井 污染区域中轴线 0~100 -30 300~350(1 200~1 250) 抽水井 污染区域中轴线 0~100 -50 抽水井 污染区域中轴线 0~100 -40 抽水井 污染羽传播方向 0~100 -30 -
[1] 赵娜娜, 黄启飞, 易爱华, 等. 我国污染场地的管理现状与环境对策[J]. 环境科学与技术, 2006, 29(12): 39-40, 48. doi: 10.3969/j.issn.1003-6504.2006.12.017Zhao N N, Huang Q F, Yi A H, et al. Contaminated sites management in China: Current status and control[J]. Environmental Science & Technology, 2006, 29(12): 39-40, 48(in Chinese with English abstract). doi: 10.3969/j.issn.1003-6504.2006.12.017 [2] Talabi A O, Kayode T J. Groundwater pollution and remediation[J]. Journal of Water Resource and Protection, 2019, 11(1): 1-19. doi: 10.4236/jwarp.2019.111001 [3] 王威, 陈社明, 马震, 等. 浅层地下水中石油类污染物监测自然衰减(MNA)预测与适宜性评价研究[J]. 节水灌溉, 2014, 228(8): 29-33, 37. doi: 10.3969/j.issn.1007-4929.2014.08.009Wang W, Chen S M, Ma Z, et al. Forecast and suitability assessment of monitored natural attenuation (MNA) of petroleum pollutant in shallow groundwater[J]. Water Saving Irrigation, 2014, 228(8): 29-33, 37(in Chinese with English abstract). doi: 10.3969/j.issn.1007-4929.2014.08.009 [4] U.S. EPA. Superfund remedy report, 13th edition[R]. Washington D C: U.S. EPA, Office of solid waste and emergency response, EPA-542-R-10-004, 2010. [5] U.S. EPA. Superfund remedy report, 15th edition[R]. Washington D C: U.S. EPA, Office of solid waste and emergency response, EPA-542-R-10-004, 2017. [6] 李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(3): 1185-1193. doi: 10.3969/j.issn.1000-6923.2018.03.047Li Y J, Wang S J, Zhang M, et al. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution[J]. China Environmental Science, 2018, 38(3): 1185-1193(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2018.03.047 [7] 张翠云, 张胜, 殷密英, 等. 地下水污染自然衰减研究进展[J]. 南水北调与水利科技, 2010, 8(6): 50-52, 62. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201006020.htmZhang C Y, Zhang S, Yin M Y, et al. Research advances on natural attenuation of groundwater contamination[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(6): 50-52, 62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201006020.htm [8] Declercq I, Cappuyns V, Duclos Y. Monitored natural attenuation (MNA) of contaminated soils: State of the art in Europe: A critical evaluation[J]. Science of the Total Environment, 2012, 426: 393-405. doi: 10.1016/j.scitotenv.2012.03.040 [9] 刘玉利, 贾超. 基于GMS处置有机污染质运移数值模拟研究[J]. 水科学与工程技术, 2016, 199(5): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSD201605029.htmLiu Y L, Jia C. Numerical simulation research of the organic pollutants migration of hazardous waste disposal center based on GMS[J]. Water Sciences and Engineering Technology, 2016, 199(5): 78-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBSD201605029.htm [10] 刚什婷, 邓英尔. 基于GMS在地下水资源评价与管理中的应用综述[J]. 地下水, 2015, 37(2): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201502014.htmGang S T, Deng Y E. Comprehensive summary of GMS application for groundwater resource evaluation and management[J]. Underground Water, 2015, 37(2): 33-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201502014.htm [11] 胡成, 陈刚, 曹孟雄, 等. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126, 136. doi: 10.19509/j.cnki.dzkq.2022.0029Hu C, Chen G, Cao M X, et al. A case study on water sealing efficiency of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126, 136(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0029 [12] 生活饮用水卫生标准: GB5749-2006[S]. 北京: 卫生部, 2006.Hygienic Standards for Drinking Water: GB5749-2006[S]. Beijing: Ministry of Health, 2006. [13] 地下水质量标准: GB/T 14848-2017[S]. 北京: 卫生部, 2017.Groundwater Quality Standard: GB/T 14848-2017[S]. Beijing: Ministry of Health, 2017. [14] 谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. doi: 10.19509/j.cnki.dzkq.2020.0104Xie X J, Liu H X, Gao S, et al. Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0104 [15] 广州草木蕃环境科技有限公司. 广州市华侨糖厂旧厂区地块场地环境调查和风险评估报告[R]. 广州: 中国科学院生态环境研究中心, 2017.Guangzhou Caomufan Environmental Technology Co., LTD. Site environment investigation and risk assessment report of the old factory of Guangzhou Huaqiao Sugar Factory[R]. Guangzhou: Research Center for Eco-Environment, Chinese Academy of Sciences, 2017. [16] Harbaugh A W, Banta R E, Hill C M, et al. MODFLOW-2000, the U.S. geological survey modular ground-water flow model: User guide to modularization concepts and the ground-water flow process. U.S. Geological Survey Open-File Report 00-92[R]. Reston: U.S. Geological Survey, 2000. [17] Carroll R W H, Pohll G M, Hershey R L. An unconfined groundwater model of the Death Valley Regional Flow System and a comparison to its confined predecessor[J]. Journal of Hydrology, 2009, 373(3/4): 316-328. [18] 文章, 李旭. 考虑表皮效应的径向溶质迁移模型以及半解析解[J]. 地质科技通报, 2020, 39(1): 60-66. doi: 10.19509/j.cnki.dzkq.2020.0107Wen Z, Li X. Semi-analytical solution for radial solute transport model with skin effect[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 60-66(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0107 [19] 李贵仁, 赵珍, 折书群, 等. 复式推覆体内矿坑涌水量预测的地下水数值模拟[J]. 地质科技情报, 2019, 38(6): 212-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906026.htmLi G R, Zhao Z, She S Q, et al. Groundwater numerical simulation for predicting mine water inflow in a compound nappe[J]. Geological Science and Technology Information, 2019, 38(6): 212-220(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906026.htm [20] 梁杏, 张人权, 罗明明, 等. 地下水流系统研究中的方法论探讨: 以CUG-武汉地下水流系统研究为例[J]. 地质科技通报, 2022, 41(1): 30-42. doi: 10.19509/j.cnki.dzkq.2022.0005Liang X, Zhang R Q, Luo M M, et al. Discussion on methodology in research of groundwater flow system: A review of research on groundwater flow systems at CUG-Wuhan[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 30-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0005 [21] He Y, Xu J, Wang H, et al. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties[J]. Environmental Research, 2006, 101(3): 362-372. [22] Malkoc E, Nuhoglu Y. Nickel (Ⅱ) adsorption mechanism from aqueous solution by a new adsorbent: Waste acorn of Quercus ithaburensis[J]. Environmental Progress & Sustainable Energy, 2010, 29(3): 297-306. [23] Basim Y, Mohebali G, Jorfi S, et al. Biodegradation of total petroleum hydrocarbons in contaminated soils using indigenous bacterial consortium[J]. Environmental Health Engineering and Management, 2020, 7(2): 127-133. [24] Irnich H, Geissel H, Nolden F, et al. Half-life measurements of bare, mass-resolved isomers in a storage-cooler ring[J]. Physical Review Letters, 1995, 75(23): 4182-4185. [25] 张艳, 白相东, 张莹. 地下水污染抽出处理技术中抽水井最优布局方案研究[J]. 防灾科技学院学报, 2013, 15(2): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-FZJS201302007.htmZhang Y, Bai X D, Zhang Y. Optimal layout of pump well research of pump-and-treat technology in groundwater pollution[J]. Journal of Institute of Disaster-Prevention Science and Technology, 2013, 15(2): 26-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZJS201302007.htm [26] U.S. EPA. Cost analyses for selected groundwater cleanup projects: Pump and treat systems and permeable reactive barriers[R]. Washington: U.S. Environmental Protection Agency, 2001. [27] Ding D, Jiang D, Zhou Y, et al. Assessing the environmental impacts and costs of biochar and monitored natural attenuation for groundwater heavily contaminated with volatile organic compounds[J]. Science of the Total Environment, 2022, 846: 157316.