留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广州某地下水污染场地监控自然衰减修复模拟

袁昊辰 张幼宽 梁修雨

袁昊辰, 张幼宽, 梁修雨. 广州某地下水污染场地监控自然衰减修复模拟[J]. 地质科技通报, 2023, 42(4): 268-278. doi: 10.19509/j.cnki.dzkq.tb20220434
引用本文: 袁昊辰, 张幼宽, 梁修雨. 广州某地下水污染场地监控自然衰减修复模拟[J]. 地质科技通报, 2023, 42(4): 268-278. doi: 10.19509/j.cnki.dzkq.tb20220434
Yuan Haochen, Zhang Youkuan, Liang Xiuyu. Modelling of groundwater remediation using monitored natural attenuation at a contamination site in Guangzhou[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 268-278. doi: 10.19509/j.cnki.dzkq.tb20220434
Citation: Yuan Haochen, Zhang Youkuan, Liang Xiuyu. Modelling of groundwater remediation using monitored natural attenuation at a contamination site in Guangzhou[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 268-278. doi: 10.19509/j.cnki.dzkq.tb20220434

广州某地下水污染场地监控自然衰减修复模拟

doi: 10.19509/j.cnki.dzkq.tb20220434
基金项目: 

国家重点研发项目 2019YFC803903

国家自然科学基金项目 41977165

国家自然科学基金项目 42172275

深圳市自然科学基金项目 JCYJ20190809142203633

广东省大学生"攀登计划"项目 pdjh2021c0037

详细信息
    作者简介:

    袁昊辰(2000—),男,现正攻读环境科学硕士学位, 主要从事地下水资源与环境方向的研究工作。E-mail: haochen.yuan@wur.nl

    通讯作者:

    梁修雨(1983—),男,助理教授,主要从事地下水资源与环境方向的研究工作。E-mail: liangxy@sustech.edu.cn

  • 中图分类号: X523

Modelling of groundwater remediation using monitored natural attenuation at a contamination site in Guangzhou

  • 摘要:

    监控自然衰减(MNA)作为一种成本低、不产生二次污染物、对污染场地环境影响较小的地下水污染修复方法, 具有较高的应用价值和发展前景, 值得实践与研究。选取广州某地下水污染场地作为研究区, 评价MNA修复方法的适用性。基于水文地质条件及污染现状分析, 运用地下水数值模拟程序MODFLOW建立了污染场地地下水流模型, 运用污染物迁移数值模拟程序MT3DMS建立了场地污染物迁移模型, 分别模拟了场地地下水流、主要污染物总石油烃(TPH)和重金属镍(Ni)的迁移过程。基于模型, 对比监控自然衰减和抽出处理与监控自然衰减结合的2种方案修复效果。结果表明, TPH和Ni对于Freundlich常数及Freundlich指数变化均较为敏感; TPH的自然衰减效果较好, 采用自然衰减方案, 经过850 d可由初始浓度1.52 mg/L衰减到修复目标值(0.3 mg/L); Ni衰减较慢, 适宜采用结合抽出处理的监控下自然衰减方案, 经过300 d可由初始浓度0.13 mg/L达到修复目标值(0.02 mg/L)。在自然衰减能力较强或地下水流速较缓的条件下, 适宜采用监控自然衰减修复方案; 在自然衰减能力较弱或地下水有显著流动的情况下, 适宜采用结合抽出处理的监控自然衰减修复方案。研究结果对地下水污染修复具有参考价值与借鉴意义。

     

  • 图 1  场地钻孔柱状图

    Figure 1.  Borehole logs of the field site

    图 2  场地及污染源分布图

    Figure 2.  Schematic diagram of field site and pollution sources

    图 3  场地概念模型

    Figure 3.  Schematic diagram of the conceptual model

    图 4  模拟的地下水位与观测水位对比(a)和校正后的地下水流场(b)

    Figure 4.  Comparison of modelling hydraulic head and observed hydraulic head (a), and the distribution of hydraulic head predicted by the calibrated model (b)

    图 5  不同参数条件下(Kf, λ1, a, aL)TPH污染羽随时间变化的空间分布

    Kf.Freundich常数(mg·L-1)-aa.Freundich指数; λ1.溶解相一级反应速度(d-1); aL.纵向弥散度(m);下同

    Figure 5.  Changes in the TPH plume with time for different parameters(Kf, λ1, a, aL)

    图 6  不同参数条件下(Kf, λ1, a, aL)北区Ni污染羽随时间变化的空间分布

    Figure 6.  Changes in the Ni (north) plume with time for different parameters(Kf, λ1, a, aL)

    图 7  不同纵向弥散度(αL)下南区Ni污染羽随时间变化的空间分布

    Figure 7.  Changes in the Ni (south) plume with time for different aL

    图 8  抽出处理下TPH和Ni污染羽随时间变化的空间分布(左)及污染源(右)穿透曲线

    Figure 8.  Changes in the TPH and Ni plume with time (left) and breakthrough of the pollution source (right) under pump and treat conditions

    表  1  校正后的地下水流模型参数

    Table  1.   Calibration parameters of the groundwater flow model

    参数名称 区域Ⅰ 区域Ⅱ 区域Ⅲ 区域Ⅳ
    水平渗透系数K/(m·d-1) 0.26 1.50 1.06 0.007 3
    地下水补给量W/(m·d-1) 0.000 67 0.000 97 0.000 67 0.000 67
    河流传导系数C/(m·d-1) 0.26
    下载: 导出CSV

    表  2  溶质运移模型参数

    Table  2.   Solute transport model parameters

    参数名称 总石油烃(TPH) 镍(Ni)
    土壤容重ρb/(kg·m-3) 1 500
    孔隙度ne/% 30
    纵向弥散系数Dy/(m2·d-1) 10 15 25 5
    纵向弥散度aL/m 1(区域Ⅰ) 1.5(区域Ⅱ) 1.5(区域Ⅲ) 0.5(区域Ⅳ)
    横向弥散度at/m 0.1(区域Ⅰ) 0.15(区域Ⅱ) 0.15(区域Ⅲ) 0.05(区域Ⅳ)
    Freundlich常数Kf/(mg·L-1)-a 5×10-6~1×10-3[21] 0.001~0.005[22]
    Freundlich指数a 0.5~1[21] 1.5~3.5[22]
    溶解相一级反应速率λ1/d-1 0.001~0.01[23] 1×10-7~1×10-5[24]
    吸附相一级反应速率λ2/d-1 0 0
    下载: 导出CSV

    表  3  参数敏感度分析取值

    Table  3.   Parameter sensitivity analysis value

    参数名称 污染物 取值1 取值2 取值3
    Freundlich常数
    Kf/(mg·L-1)-a
    总石油烃
    5×10-6
    1×10-3
    5×10-4
    3×10-3
    1×10-3
    5×10-3
    Freundlich指数a 总石油烃
    0.50
    1.50
    0.75
    2.50
    1.00
    3.50
    溶解相一级反应速率
    λ1/d-1
    总石油烃
    1×10-3
    1×10-7
    5×10-3
    1×10-6
    1×10-2
    1×10-5
    纵向弥散度aL/m 总石油烃
    镍(北部)
    镍(南部)
    0.20
    0.20
    1
    1
    1
    5
    5
    5
    10
    下载: 导出CSV

    表  4  监控条件下TPH源区域衰减情况

    Table  4.   Attenuation situation of the TPH source under monitoring

    模型参数 衰减比率/% 停留时间/d
    Kf/(mg·L-1)-a a λ1/d-1 aL/m 150 d 300 d 600 d
    0.000 5 0.75 0.005 1.0 24.66 43.44 70.28 800~850
    下载: 导出CSV

    表  5  监控条件下场地南北部Ni源区域衰减情况

    Table  5.   Attenuation situation of the Ni source under monitoring

    区域 模型参数 衰减比率/% 停留时间/d
    Kf/(mg·L-1)-a a λ1/d-1 aL/m 500 d 1 000 d 1 500 d
    北区 0.003 2.5 1×10-6 1.0 57.61 84.81 94.17 500~550
    南区 0.003 2.5 1×10-6 5.0 40.44 79.69 93.13 1 200~1 250
    下载: 导出CSV

    表  6  抽水井设置

    Table  6.   Settings of pumping wells

    污染物 井类型 井位置 处理时间/d 流量/(m3·d-1) 所需监控时间(原始停留时间)/d
    TPH 抽水井 污染源中心 0~100 -25 < 100(800~850)
    北区 Ni 抽水井 污染区域中轴线 0~100 -20 150~200(500~550)
    抽水井 污染区域中轴线 0~200 -20
    抽水井 污染区域中轴线 0~100 -20
    注水井 污染区域左外侧 0~100 10
    南区 Ni 抽水井 污染区域中轴线 0~100 -30 300~350(1 200~1 250)
    抽水井 污染区域中轴线 0~100 -50
    抽水井 污染区域中轴线 0~100 -40
    抽水井 污染羽传播方向 0~100 -30
    下载: 导出CSV
  • [1] 赵娜娜, 黄启飞, 易爱华, 等. 我国污染场地的管理现状与环境对策[J]. 环境科学与技术, 2006, 29(12): 39-40, 48. doi: 10.3969/j.issn.1003-6504.2006.12.017

    Zhao N N, Huang Q F, Yi A H, et al. Contaminated sites management in China: Current status and control[J]. Environmental Science & Technology, 2006, 29(12): 39-40, 48(in Chinese with English abstract). doi: 10.3969/j.issn.1003-6504.2006.12.017
    [2] Talabi A O, Kayode T J. Groundwater pollution and remediation[J]. Journal of Water Resource and Protection, 2019, 11(1): 1-19. doi: 10.4236/jwarp.2019.111001
    [3] 王威, 陈社明, 马震, 等. 浅层地下水中石油类污染物监测自然衰减(MNA)预测与适宜性评价研究[J]. 节水灌溉, 2014, 228(8): 29-33, 37. doi: 10.3969/j.issn.1007-4929.2014.08.009

    Wang W, Chen S M, Ma Z, et al. Forecast and suitability assessment of monitored natural attenuation (MNA) of petroleum pollutant in shallow groundwater[J]. Water Saving Irrigation, 2014, 228(8): 29-33, 37(in Chinese with English abstract). doi: 10.3969/j.issn.1007-4929.2014.08.009
    [4] U.S. EPA. Superfund remedy report, 13th edition[R]. Washington D C: U.S. EPA, Office of solid waste and emergency response, EPA-542-R-10-004, 2010.
    [5] U.S. EPA. Superfund remedy report, 15th edition[R]. Washington D C: U.S. EPA, Office of solid waste and emergency response, EPA-542-R-10-004, 2017.
    [6] 李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(3): 1185-1193. doi: 10.3969/j.issn.1000-6923.2018.03.047

    Li Y J, Wang S J, Zhang M, et al. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution[J]. China Environmental Science, 2018, 38(3): 1185-1193(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2018.03.047
    [7] 张翠云, 张胜, 殷密英, 等. 地下水污染自然衰减研究进展[J]. 南水北调与水利科技, 2010, 8(6): 50-52, 62. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201006020.htm

    Zhang C Y, Zhang S, Yin M Y, et al. Research advances on natural attenuation of groundwater contamination[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(6): 50-52, 62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201006020.htm
    [8] Declercq I, Cappuyns V, Duclos Y. Monitored natural attenuation (MNA) of contaminated soils: State of the art in Europe: A critical evaluation[J]. Science of the Total Environment, 2012, 426: 393-405. doi: 10.1016/j.scitotenv.2012.03.040
    [9] 刘玉利, 贾超. 基于GMS处置有机污染质运移数值模拟研究[J]. 水科学与工程技术, 2016, 199(5): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSD201605029.htm

    Liu Y L, Jia C. Numerical simulation research of the organic pollutants migration of hazardous waste disposal center based on GMS[J]. Water Sciences and Engineering Technology, 2016, 199(5): 78-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBSD201605029.htm
    [10] 刚什婷, 邓英尔. 基于GMS在地下水资源评价与管理中的应用综述[J]. 地下水, 2015, 37(2): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201502014.htm

    Gang S T, Deng Y E. Comprehensive summary of GMS application for groundwater resource evaluation and management[J]. Underground Water, 2015, 37(2): 33-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201502014.htm
    [11] 胡成, 陈刚, 曹孟雄, 等. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126, 136. doi: 10.19509/j.cnki.dzkq.2022.0029

    Hu C, Chen G, Cao M X, et al. A case study on water sealing efficiency of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126, 136(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0029
    [12] 生活饮用水卫生标准: GB5749-2006[S]. 北京: 卫生部, 2006.

    Hygienic Standards for Drinking Water: GB5749-2006[S]. Beijing: Ministry of Health, 2006.
    [13] 地下水质量标准: GB/T 14848-2017[S]. 北京: 卫生部, 2017.

    Groundwater Quality Standard: GB/T 14848-2017[S]. Beijing: Ministry of Health, 2017.
    [14] 谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. doi: 10.19509/j.cnki.dzkq.2020.0104

    Xie X J, Liu H X, Gao S, et al. Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0104
    [15] 广州草木蕃环境科技有限公司. 广州市华侨糖厂旧厂区地块场地环境调查和风险评估报告[R]. 广州: 中国科学院生态环境研究中心, 2017.

    Guangzhou Caomufan Environmental Technology Co., LTD. Site environment investigation and risk assessment report of the old factory of Guangzhou Huaqiao Sugar Factory[R]. Guangzhou: Research Center for Eco-Environment, Chinese Academy of Sciences, 2017.
    [16] Harbaugh A W, Banta R E, Hill C M, et al. MODFLOW-2000, the U.S. geological survey modular ground-water flow model: User guide to modularization concepts and the ground-water flow process. U.S. Geological Survey Open-File Report 00-92[R]. Reston: U.S. Geological Survey, 2000.
    [17] Carroll R W H, Pohll G M, Hershey R L. An unconfined groundwater model of the Death Valley Regional Flow System and a comparison to its confined predecessor[J]. Journal of Hydrology, 2009, 373(3/4): 316-328.
    [18] 文章, 李旭. 考虑表皮效应的径向溶质迁移模型以及半解析解[J]. 地质科技通报, 2020, 39(1): 60-66. doi: 10.19509/j.cnki.dzkq.2020.0107

    Wen Z, Li X. Semi-analytical solution for radial solute transport model with skin effect[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 60-66(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0107
    [19] 李贵仁, 赵珍, 折书群, 等. 复式推覆体内矿坑涌水量预测的地下水数值模拟[J]. 地质科技情报, 2019, 38(6): 212-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906026.htm

    Li G R, Zhao Z, She S Q, et al. Groundwater numerical simulation for predicting mine water inflow in a compound nappe[J]. Geological Science and Technology Information, 2019, 38(6): 212-220(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906026.htm
    [20] 梁杏, 张人权, 罗明明, 等. 地下水流系统研究中的方法论探讨: 以CUG-武汉地下水流系统研究为例[J]. 地质科技通报, 2022, 41(1): 30-42. doi: 10.19509/j.cnki.dzkq.2022.0005

    Liang X, Zhang R Q, Luo M M, et al. Discussion on methodology in research of groundwater flow system: A review of research on groundwater flow systems at CUG-Wuhan[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 30-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0005
    [21] He Y, Xu J, Wang H, et al. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties[J]. Environmental Research, 2006, 101(3): 362-372.
    [22] Malkoc E, Nuhoglu Y. Nickel (Ⅱ) adsorption mechanism from aqueous solution by a new adsorbent: Waste acorn of Quercus ithaburensis[J]. Environmental Progress & Sustainable Energy, 2010, 29(3): 297-306.
    [23] Basim Y, Mohebali G, Jorfi S, et al. Biodegradation of total petroleum hydrocarbons in contaminated soils using indigenous bacterial consortium[J]. Environmental Health Engineering and Management, 2020, 7(2): 127-133.
    [24] Irnich H, Geissel H, Nolden F, et al. Half-life measurements of bare, mass-resolved isomers in a storage-cooler ring[J]. Physical Review Letters, 1995, 75(23): 4182-4185.
    [25] 张艳, 白相东, 张莹. 地下水污染抽出处理技术中抽水井最优布局方案研究[J]. 防灾科技学院学报, 2013, 15(2): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-FZJS201302007.htm

    Zhang Y, Bai X D, Zhang Y. Optimal layout of pump well research of pump-and-treat technology in groundwater pollution[J]. Journal of Institute of Disaster-Prevention Science and Technology, 2013, 15(2): 26-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZJS201302007.htm
    [26] U.S. EPA. Cost analyses for selected groundwater cleanup projects: Pump and treat systems and permeable reactive barriers[R]. Washington: U.S. Environmental Protection Agency, 2001.
    [27] Ding D, Jiang D, Zhou Y, et al. Assessing the environmental impacts and costs of biochar and monitored natural attenuation for groundwater heavily contaminated with volatile organic compounds[J]. Science of the Total Environment, 2022, 846: 157316.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  854
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-13
  • 录用日期:  2022-10-21
  • 修回日期:  2022-10-13

目录

    /

    返回文章
    返回