Analysis on migration path and convergence ability of Neogene target traps in steep belt of rifted basin: A case study of the eastern steep slope of the Miaoxibei Uplift in Bohai Sea
-
摘要:
断陷盆地新近系的成藏规模与深层油气汇聚及立体输导体系息息相关,断陷盆地新近系源外目标圈闭油气充注的差异性是新近系目标研究中需要重点关注的问题。以渤海海域庙西北凸起东侧陡坡带为例,分析了陡坡带油气汇聚体系组成要素,通过断层输导能力评价划分了优势充注段,进而在断层充注段控制下开展了油气运移模拟。研究表明:(1)陡坡带汇聚体系由深层聚烃砂体、边界大断层、浅层晚期断层3个部分组成。(2)汇聚体系中3个部分的各自优势汇烃要素相互作用组成主要运移路径,最终体现在与目标圈闭搭接的断层充注段上;庙西北凸起东侧主干运移断层中段为强充注区,北段为中等充注区;次级运移断层中4,6,8号断层发育强充注段,1,2,11号断层发育中等充注段。(3)构造层运移模拟发现庙西北凸起东侧陡坡带中段发育油气聚集区,东侧发育2条主要运移路线,同时南侧发育1条主要运移路线;3号典型砂体发育4个汇聚区,其中汇聚区C为汇聚能力最强区域。研究成果可为目标区井位部署提供参考,技术方法可为油气汇聚成藏分析提供技术支持。
Abstract:Objective The size of Neogene reservoir formation in rifted basins is closely linked to deep oil and gas accumulation and three-dimensional transport systems.
Methods This study examines the differential oil and gas charging issues associated with target traps in Neogene fault basins. Using the eastern steep slope of the Miaoxibei Uplift in the Bohai Sea as an example, we analyze the components of the oil and gas accumulation system in steep slope zones by evaluating fault conduction capability and dividing the dominant injection segments. Subsequently, oil and gas migration simulations are conducted under the control of the fault injection section.
Results The research findings are as follows: ① The accumulation system in the steep slope zone consists of deep hydrocarbon accumulative sand bodies, large boundary faults, and late shallow faults. ② The dominant hydrocarbon sinks in the three parts of the accumulation system interact with each other, forming a dominant migration path that is reflected in the overlapping fault charging section with the target trap. The middle section of the main migration fault on the east side of the Miaoxibei Uplift is a strong charging area, while the northern section is a medium charging area. Among the secondary migration faults, faults 4, 6, and 8 have developed strong charging sections, while faults 1, 2, and 11 have developed medium charging sections. ③ Structural migration simulations reveal that the oil and gas accumulation area develops in the middle of the steep slope zone in the east of the Miaoxibei Uplift, with two main migration routes in the east and one in the south. The typical sand traps in fault No. 3 have developed four accumulation zones, with accumulation zone C being the most significant.
Conclusion In conclusion, these research findings can serve as a reference for well deployment in target areas, and the technical methods employed can provide support for hydrocarbon accumulation analysis.
-
表 1 次级断层充注能力综合评价表
Table 1. Comprehensive evaluation of the charging capacity for secondary faults
次级断层编号 1号 2号 4号 6号 8号 9号 10号 11号 与主干断层搭接关系 是 是 是 是 是 是 是 是 对应主干断层充注能力 强充注 强充注 强充注 强充注 强充注 弱充注 弱充注 中等充注 T02层断距/m 50.3~63.9 53.0~63.9 74.0~111.52 61.2~199.9 145.5~174.0 53.4~183.1 65.4~117.7 163.5~220.1 有效延伸长度/km 0.86 1.64 1.35 4.42 2.26 2.33 5.61 3.57 综合评价 中等充注 中等充注 强充注 强充注 强充注 弱充注 弱充注 中等充注 -
[1] 薛永安. 渤海海域垦利6-1油田的发现与浅层勘探思路的重大转变[J]. 中国海上油气, 2021, 33(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202102001.htmXUE Y A. Discovery of KL 6-1 oilfield and great change of shallow strata exploration ideas in Bohai Sea[J]. China Offshore Oil and Gas, 2021, 33(2): 1-12. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202102001.htm [2] 徐长贵, 杨海风, 王德英, 等. 渤海海域莱北低凸起新近系大面积高丰度岩性油藏形成条件[J]. 石油勘探与开发, 2021, 48(1): 12-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101003.htmXU C G, YANG H F, WANG D Y, et al. Formation conditions of Neogene large-scale high-abundance lithologic reservoir in the Laibei low up[J]. Petroleum Exploration and Development, 2021, 48(1): 12-25. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101003.htm [3] 杨海风, 牛成民, 柳永军, 等. 渤海垦利6-1新近系大型岩性油藏勘探发现与关键技术[J]. 中国石油勘探, 2020, 25(3): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003003.htmYANG H F, NIU C M, LIU Y J, et al. Discovery and key exploration technology of KL6-1 large lithologic oil reservoir of Neogene in the Bohai Bay Basin[J]. China Petroleum Exploration, 2020, 25(3): 24-32. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003003.htm [4] 吴小红, 韦阿娟, 王应斌, 等. 渤海海域QHD32-6亿吨级大油田的形成条件分析[J]. 地质科技情报, 2015, 34(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501018.htmWU X H, WEI A J, WANG Y B, et al. Formation conditions analysis of QHD32-6 Oilfield in Bohai Sea[J]. Geological Science and Technology Information, 2015, 34(1): 112-117. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501018.htm [5] 邓运华. 裂谷盆地油气运移"中转站"模式的实践效果: 以渤海油区第三系为例[J]. 石油学报, 2012, 33(1): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201001.htmDENG Y H. Practical effect of the "transfer station" model for oil-gas migration in rift basin: A case study on the Tertiary in the Bohai oil province[J]. Acta Petrolei Sinica, 2012, 33(1): 18-24. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201001.htm [6] 张善文, 王永诗, 石砥石, 等. 网毯式油气成藏体系: 以济阳坳陷新近系为例[J]. 石油勘探与开发, 2003, 30(1): 1-10. doi: 10.3321/j.issn:1000-0747.2003.01.001ZHANG S W, WANG Y S, SHI D S, et al. Meshwork-carpet type oil and gas pool-forming system: Taking Neogene of Jiyang Depression as an example[J]. Petroleum Exploration and Development, 2003, 30(1): 1-10. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0747.2003.01.001 [7] 薛永安. 渤海海域油气运移"汇聚脊"模式及其对新近系油气成藏的控制[J]. 石油学报, 2018, 39(9): 963-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201809001.htmXUE Y A. The "catchment ridge" model of hydrocarbon migration in Bohai Sea and its control on Neogene hydrocarbon accumulation[J]. Acta Petrolei Sinica, 2018, 39(9): 963-970. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201809001.htm [8] 王广源, 官大勇, 刘朋波, 等. 渤海海域庙西北洼烃源岩特征与勘探潜力[J]. 海洋地质前沿, 2018, 34(1): 35-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201801006.htmWANG G Y, GUAN D Y, LIU P B, et al. Characteristics of source rocks and exploration in the northern sag of Miaoxi, Bohai Sea[J]. Marine Geological Frontiers, 2018, 34(1): 35-32. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201801006.htm [9] 邓运华. 试论汇油面积对油田规模的控制作用[J]. 中国海上油气, 2014, 26(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201406001.htmDENG Y H. A discussion on the controls of oil collecting area on oilfield size[J]. China Offshore Oil and Gas, 2014, 26(6): 1-6. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201406001.htm [10] 郭兴伟, 施小斌, 丘学林, 等. 渤海湾盆地新生代沉降特征及其动力学机制探讨[J]. 大地构造与成矿学, 2007, 31(3): 273-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200703003.htmGuo X W, Shi X B, Qiu X L, et al. Cenozoic subsidence in Bohai Bay Basin: Characteristics and dynamic mechanism[J]. Geotectonica et Metallogenia, 2007, 31(3): 273-280. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200703003.htm [11] 王应斌, 黄雷, 刘廷海. 渤海新构造运动主要特征与构造型式[J]. 中国海上油气, 2012, 24(增刊1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD2012S1004.htmWANG Y B, HUANG L, LIU T H. The main characteristics and structural styles of Bohai new tectonism[J]. China Offshore Oil and Gas, 2012, 24(S1): 6-10. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD2012S1004.htm [12] 钟锴, 朱伟林, 薛永安, 等. 渤海海域盆地石油地质条件与大中型油气田分布特征[J]. 石油与天然气地质, 2019, 40(1): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901010.htmZHONG K, ZHU W L, XUE Y A, et al. Petroleum geologic conditions and distributional features of large- and medium-sized oil and gas fiels in Bohai Sea Basin[J]. Oil & Gas Geology, 2019, 40(1): 92-100. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901010.htm [13] 徐长贵, 彭靖淞, 吴庆勋, 等. 渤海湾凹陷区复杂断裂带垂向优势运移通道及油气运移模拟[J]. 石油勘探与开发, 2019, 46(4): 684-692. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904007.htmXU C G, PENG J S, WU Q X, et al. Vertical dominant migration channel and hydrocarbon migration in complex fault zone, Bohai Bay Sag, China[J]. Petroleum Exploration and Development, 2019, 46(4): 684-692. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904007.htm [14] 金帅, 蒋有录, 苏圣民, 等. 长岭断陷龙凤山地区断裂与火石岭组火山岩油气运聚关系[J]. 地质科技通报, 2023, 42(2): 137-145. doi: 10.19509/j.cnki.dzkq.tb20210500JIN S, JIANG Y L, SU S M, et al. Relationship between faults and hydrocarbon migration and accumulation in Huoshiling Formation volcanic rocks in Longfengshan area, Changling Fault Depression[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 137-145. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210500 [15] 吕丁友, 张宏国, 麻旭刚, 等. 渤海东部凸起区与斜坡区油气勘探实践与认识[J]. 地质科技情报, 2018, 37(5): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805012.htmLÜ D Y, ZHANG H G, MA X G, et al. Exploration practices from uplift and slope zones in eastern part of Bohai Sea and its inspiration[J]. Geological Science and Technology Information, 2018, 37(5): 84-89. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805012.htm [16] 李才, 周东红, 吕丁友, 等. 郯庐断裂带渤东区段断裂特征及其对油气运移的控制作用[J]. 地质科技情报, 2014, 33(2): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402011.htmLI C, ZHOU D H, LÜ D Y, et al. Fault characteristics and its control on hydrocarbon migration in Bodong Segment of Tan-Lu Fault Zone[J]. Geological Science and Technology Information, 2014, 33(2): 61-65. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402011.htm [17] 付广, 李世朝, 杨德相, 等. 断裂输导油气运移形式分布区预测方法及其应用[J]. 沉积学报, 2017, 35(3): 592-599. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703016.htmFU G, LI S C, YANG D X, et al. A method forecasting distribution areas of fault transporting oil-gas migration and its application[J]. Acta Sedimentologica Sinica, 2017, 35(3): 592-599. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703016.htm [18] HESTHAMMER J, JOHANSEN T E S, WATTS L. Spatial relationships within fault damage zones in sandstone[J]. Marine and Petroleum Geology, 200, 17: 873-893. [19] 付广, 历娜, 胡明. 盖层断接厚度封气下限及其对天然气分布的控制: 以松辽盆地徐家围子断陷为例[J]. 天然气地球科学, 2014, 25(7): 971-979. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201407003.htmFU G, LI N, HU M. Gas sealing limit of faulted thickness of caprock and its controlling effecton gas distribution: An example from Xujiaweizi Depression of Songliao Basin[J]. Natural Gas Geoscience, 2014, 25(7): 971-979. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201407003.htm [20] 周心怀, 牛成民, 腾长宇. 环渤中地区新构造运动期断层活动与油气成藏关系[J]. 石油与天然气地质, 2009, 30(4): 469-482. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200904017.htmZHOU X H, NIU C M, TENG C Y. Relationship between faulting and hydrocarbon pooling during the Neotectonic movement around the central Bohai Bay[J]. Oil & Gas Geology, 2009, 30(4): 469-482. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200904017.htm [21] 邹华耀, 周心怀, 鲍晓欢, 等. 渤海海域古近系、新近系原油富集/贫化控制因素与成藏模式[J]. 石油学报, 2010, 31(6): 885-899. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006002.htmZHOU H Y, ZHOU X H, BAO X H, et al. Controlling factors and models for hydrocarbon enrichment/depletion in Paleogene and Neogene, Bohai Sea[J]. Acta Petrolei Sinica, 2010, 31(6): 885-899. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006002.htm [22] SCHOLZ C H. Earthquake prediction: A physical basis[J]. Science, 1973, 181: 803-810. [23] SIBSON R H, MOORC J M, FANKIN A H. Seismic pumping: A hydrothermal fluid transport mechanism[J]. Journal of Geological Society of London, 1975, 131: 653-659. [24] KIM Y S, PEACOCK D C P, SANDERSON D J. Fault damage zones[J]. Journal of Structural Geology, 2004, 26(3): 503-517. [25] KING P R. The connectivity and conductivity of overlapping sand bodies[C]//Buller A T. North sea oil and gas reservoirsⅡ. London: Graham & Trotman, 1990: 353-358. [26] 腾长宇, 邹华耀, 郝芳. 渤海湾盆地构造差异演化与油气差异富集[J]. 中国科学(地球科学), 2014, 44(4): 579-590. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201404002.htmTENG C Y, ZHOU H Y, HAO F. Tectonic differential evolution and differential enrichment of oil and gas in the Bohai Bay Basin[J]. Sciences China(Earth Sciences), 2014, 44(4): 579-590. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201404002.htm [27] 胡志伟, 徐长贵, 杨波, 等. 渤海海域断裂对油气优势运移通道的影响及其控藏类型[J]. 地质科技情报, 2017, 36(3): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703007.htmHU Z W, XU C G, YANG B, et al. Influences of faults on the petroleum dominant migration pathway and its controlling reservoir types in the Bohai area[J]. Geological Science and Technology Information, 2017, 36(3): 38-45. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703007.htm [28] 吴静. 珠江口盆地恩平凹陷北部隆起区油气远源富集与主控因素[J]. 地质科技通报, 2022, 41(4): 117-124. doi: 10.19509/j.cnki.dzkq.2022.0020WU J. Key factors of far-source hydrocarbon enrichment in the northern uplift area of Enping Sag in Pearl River Mouth Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 117-124. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0020 [29] 曹强, 叶加仁. 伊通盆地莫里青断陷地层压力演化与油气运移模拟[J]. 石油勘探与开发, 2011, 38(2): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201102009.htmCAO Q, YE J R. Modeling of the pressure evolution and hydrocarbon migration in the Moliqing fault-depression, Yitong Basin, NE China[J]. Petroleum Exploration and Development, 2011, 38(2): 174-181. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201102009.htm [30] AUAN U S. Model for hydrocarbon migration and entrapment within faulted structures[J]. AAPG Bulletin, 1989, 73(7): 803-811.