留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆相页岩岩相非均质性及储层孔隙发育特征:以四川盆地自流井组东岳庙段页岩为例

舒志国 舒逸 陈绵琨 彭伟 刘皓天 肖雄

舒志国, 舒逸, 陈绵琨, 彭伟, 刘皓天, 肖雄. 陆相页岩岩相非均质性及储层孔隙发育特征:以四川盆地自流井组东岳庙段页岩为例[J]. 地质科技通报, 2024, 43(2): 1-15. doi: 10.19509/j.cnki.dzkq.tb20220446
引用本文: 舒志国, 舒逸, 陈绵琨, 彭伟, 刘皓天, 肖雄. 陆相页岩岩相非均质性及储层孔隙发育特征:以四川盆地自流井组东岳庙段页岩为例[J]. 地质科技通报, 2024, 43(2): 1-15. doi: 10.19509/j.cnki.dzkq.tb20220446
SHU Zhiguo, SHU Yi, CHEN Miankun, PENG Wei, LIU Haotian, XIAO Xiong. Lithofacies heterogeneity and reservoir pore development characteristics of continental shale: A case study of the Dongyuemiao shale of the Ziliujing Formation in the Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 1-15. doi: 10.19509/j.cnki.dzkq.tb20220446
Citation: SHU Zhiguo, SHU Yi, CHEN Miankun, PENG Wei, LIU Haotian, XIAO Xiong. Lithofacies heterogeneity and reservoir pore development characteristics of continental shale: A case study of the Dongyuemiao shale of the Ziliujing Formation in the Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 1-15. doi: 10.19509/j.cnki.dzkq.tb20220446

陆相页岩岩相非均质性及储层孔隙发育特征:以四川盆地自流井组东岳庙段页岩为例

doi: 10.19509/j.cnki.dzkq.tb20220446
基金项目: 

中国石油化工股份有限公司"十条龙"科研项目"复兴侏罗系陆相页岩油气藏地质评价技术" P21078-2

中国石油化工股份有限公司科研项目 P23077

详细信息
    作者简介:

    舒志国, E-mail: shuzg.jhyt@sinopec.com

    通讯作者:

    舒逸, E-mail: cugsy@sina.com

  • 中图分类号: P618.130.2

Lithofacies heterogeneity and reservoir pore development characteristics of continental shale: A case study of the Dongyuemiao shale of the Ziliujing Formation in the Sichuan Basin

More Information
  • 摘要:

    继四川盆地复兴地区涪页10井取得勘探突破后, 侏罗系自流井组东岳庙段页岩油气表现出良好的勘探潜力。东岳庙段页岩发育独特的介壳灰岩夹层、黏土矿物含量高(质量分数最高可达60%), 储层孔隙类型多样, 纵向上具有很强的非均质性。以兴页X井为例, 结合测录井资料、岩心观察、氩离子抛光扫描电镜等技术手段, 重点剖析了东岳庙段陆相页岩岩相特征及其孔隙发育特征。建立了"夹层+矿物三端元"的陆相页岩岩相划分原则, 将东岳庙段陆相页岩纵向上划分为6种岩相, 即: 介屑纹夹层型黏土页岩相; 介屑纹夹层型混合页岩相; 介屑灰岩相; 粉砂介屑互层型混合页岩相; 粉砂介屑互层型黏土页岩相; 介壳韵律型混合页岩相。通过氩离子抛光扫描电镜观察发现, 该套陆相页岩具有特殊的有机黏土复合体孔, 其中介屑纹夹层型黏土页岩相有机孔类型最为发育, 而介屑灰岩相有机孔不发育, 主要发育粒内溶孔。压汞-氮气吸附联测结果显示6种岩相页岩的孔径分布无明显差异性。综合分析认为, 有机质和黏土矿物在成岩演化过程中的相互作用是东岳庙段陆相页岩孔隙发育的主要因素。

     

  • 图 1  四川盆地构造划分(a)及研究区地理位置图(b)

    Figure 1.  Tectonic division of the Sichuan Basin (a) and geographical location map of the study area (b)

    图 2  研究区构造划分(a)及兴页A井侏罗系自流井组东岳庙段地层分布综合柱状图(b)

    Figure 2.  Structural division of the study area (a) and comprehensive histogram of stratum distribution of the Dongyuemiao section of the Jurassic Ziliujing Formation in the Well Xingye A (b)

    图 3  复兴地区兴页A井侏罗系东一亚段和东二亚段矿物成分分布图

    Figure 3.  Mineral composition distributions map of Jurassic Dong-1 and Dong-2 of the Well Xingye A in the Fuxing area

    图 4  复兴地区兴页X井侏罗系东一亚段①小层韵律型介壳夹层分布示意图

    Figure 4.  Distribution diagram of the rhythmic shell interlayer in small layer ① of Jurassic Dong-1 of the Well Xingye X in the Fuxing area

    图 5  复兴地区兴页A井侏罗系东一亚段和东二亚段岩心照片

    Figure 5.  Core photos of Jurassic Dong-1 and Dong-2 of the Well Xingye A in the Fuxing area

    图 6  侏罗系陆相页岩矿物三端元图及岩相划分标准

    Figure 6.  Mineral ternary diagram and lithofacies classification standard of Jurassic continental shale

    图 7  复兴地区兴页X井侏罗系东一亚段岩相划分综合柱状图

    Figure 7.  Lithofacies division comprehensive histogram of Jurassic Dong-1 of the Well Xingye X in the Fuxing area

    图 8  复兴地区侏罗系东岳庙段6种岩相孔隙发育特征图版

    Figure 8.  Development characteristics of six kinds of lithofacies pores in the Jurassic Dongyuemiao section in the Fuxing area

    图 9  复兴地区侏罗系东岳庙段6种岩相孔径发育特征对比(IUPAC.国际纯粹与应用化学联合会)

    Figure 9.  Comparison of the development characteristics of six kinds of lithofacies pore diameters in the Jurassic Dongyuemiao section in the Fuxing area

    图 10  复兴地区侏罗系东岳庙段6种岩相孔隙度和w(TOC), 黏土矿物质量分数相关性图

    Figure 10.  Correlation diagram of six kinds of lithofacies porosities and TOC, clay minerals content in the Jurassic Dongyuemiao section in the Fuxing area

    图 11  介屑纹夹层型黏土页岩相不同TOC含量样品有机黏土复合体孔发育特征对比

    Figure 11.  Comparison of pore development characteristics of the organic clay complex in the different TOC content samples of the interlayer clay shale facies

    图 12  龙马溪组海相页岩和东岳庙段陆相页岩有机孔发育特征对比

    a.海相页岩沥青球粒孔;b.海相页岩气孔;c.海相页岩有机质内溶孔;d.海相页岩有机质收缩孔/缝;e.陆相页岩有机孔;f.陆相页岩有机黏土复合体孔

    Figure 12.  Comparison of organic pore development characteristics between marine shale of the Longmaxi Formation and continental shale of the Dongyuemiao section

    表  1  侏罗系东岳庙段一亚段和二亚段矿物成分统计

    Table  1.   Mineral composition statistics of the Jurassic Dong-1 and Dong-2

    小层编号 黏土wB/% 长英质wB/% 碳酸盐wB/%
    区间 平均值 区间 平均值 区间 平均值
    38~49 43 21~36 32 12~39 24
    43~60 52 24~42 33 6~29 15
    35~57 45 14~38 29 6~68 29
    33~56 47 24~38 31 4~34 20
    19~42 28 19~41 29 14~59 41
    下载: 导出CSV

    表  2  侏罗系陆相页岩夹层厚度划分标准

    Table  2.   Interlayer thickness division standard of Jurassic continental shale

    组分划分 单层厚度划分
    粉砂质 ≤2 mm 纹层
    (2 mm, 10 cm] 薄层
    >10 cm 中层
    介屑(壳) ≤2 mm 纹层
    (2 mm, 10 cm] 薄层
    >10 cm 中层
    肉眼不可见 隐性纹层
    下载: 导出CSV

    表  3  复兴地区兴页X井侏罗系东一亚段夹层分布统计

    Table  3.   Interlayer distribution statistics of the Jurassic Dong-1 of the Well Xingye X in the Fuxing area

    夹层
    纹层 154 293 141 129
    薄层 54 23 10 15
    中层 5 2 4 0
    下载: 导出CSV
  • [1] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm

    JIA C Z, ZOU C N, LI J Z, et al. Evaluation criteria, main types, basic characteristics and resource prospects of tight oil in China[J]. Journal of Petroleum, 2012, 33(3): 343-350. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm
    [2] 张林晔, 李钜源, 李政, 等. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展, 2014, 29(6): 700-711. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201406008.htm

    ZHANG L Y, LI J Y, LI Z, et al. Research progress of shale oil and gas in North America and consideration on continental shale oil and gas exploration in China[J] Progress in Earth Science, 2014, 29(6): 700-711. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201406008.htm
    [3] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm

    LI M W, JIN Z J, DONG M Z, et al. Research progress on formation and evolution of continental shale and shale oil enrichment mechanism[J]. Petroleum Experimental Geology, 2020, 42(4): 489-505. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm
    [4] 金之钧, 王冠平, 刘光祥, 等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报, 2021, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm

    JIN Z J, WANG G P, LIU G X, et al. Research progress and key scientific issues of continental shale oil in China[J]. Journal of Petroleum, 2021, 42(7): 821-835. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm
    [5] 傅成玉. 非常规油气资源勘探开发[M]. 北京: 中国石化出版社, 2015.

    FU C Y. Exploration and development of unconventional oil and gas resources[M] Beijing: SINOPEC Press, 2015. (in Chinese)
    [6] 孙焕泉, 周德华, 赵培荣, 等. 中国石化地质工程一体化发展方向[J]. 油气藏评价与开发, 2021, 11(3): 269-280. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103001.htm

    SUN H Q, ZHOU D H, ZHAO P R, et al. Development direction of SINOPEC geological engineering integration[J]. Oil and Gas Reservoir Evaluation and Development, 2021, 11(3): 269-280. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103001.htm
    [7] BOHACS K M, CARROLL A R, NEAL J E, et al. Lake-basin type, source potential, and hydrocarbon character: An integrated sequence stratigraphic geochemical framework[J]. AAPG Studies in Geology, 2000, 46: 3-34.
    [8] CHAMBERLAIN C P, WAN X, GRAHAM S A, et al. Stable isotopic evidence for climate and basin evolution of the Late Cretaceous Songliao Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385(3): 106-124.
    [9] DOEBBERT A C, CARROLL A R, MULCH A, et al. Geomorphic controls on lacustrine isotopic compositions: Evidence from the Laney Member, Green River Formation, Wyoming[J]. Geological Society of America Bulletin, 2010, 122: 236-252. doi: 10.1130/B26522.1
    [10] 马义权, 刘惠民, 张守鹏, 等. 济阳坳陷细粒混积岩类型与湖盆演化的耦合关系[J]. 地球科学, 2020, 45(10): 3633-3644. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202010010.htm

    MA Y Q, LIU H M, ZHANG S P, et al. Coupling relationship between types of fine-grained migmatites and lake basin evolution in Jiyang Depression[J] Earth Science, 2020, 45(10): 3633-3644. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202010010.htm
    [11] 付小平, 杨滔. 川东北地区下侏罗统自流井组陆相页岩储层孔隙结构特征[J]. 石油实验地质, 2021, 43(4): 589-598. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104005.htm

    FU X P, YANG T. Pore structure characteristics of continental shale reservoir of Lower Jurassic Ziliujing Formation in Northeast Sichuan[J] Petroleum Experimental Geology, 2021, 43(4): 589-598. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104005.htm
    [12] 张顺, 刘惠民, 王永诗, 等. 陆相页岩储集空间微观组合类型及成因[J]. 地质评论, 2019, 65(4): 203-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2019S1099.htm

    ZHANG S, LIU H M, WANG Y S, et al. Types and genesis of spatial micro assemblages of continental shale reservoirs[J]. Geological Review, 2019, 65(4): 203-204. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2019S1099.htm
    [13] 俞雨溪, 罗晓容, 雷裕红, 等. 陆相页岩孔隙结构特征研究: 以鄂尔多斯盆地延长组页岩为例[J]. 天然气地球科学, 2016, 27(4): 716-726. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201604017.htm

    YU Y X, LUO X R, LEI Y H, et al. Study on pore structure characteristics of continental shale: Taking shale of Yanchang Formation in Ordos Basin as an example[J]. Natural Gas Geoscience, 2016, 27(4): 716-726. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201604017.htm
    [14] 郭旭升, 赵永强, 张文涛, 等. 四川盆地元坝地区千佛崖组页岩油气富集特征与主控因素[J]. 石油实验地质, 2021, 43(5): 749-757. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105004.htm

    GUO X S, ZHAO Y Q, ZHANG W T, et al. Oil and gas enrichment characteristics and main controlling factors of Qianfoya Formation shale in Yuanba area, Sichuan Basin[J]. Petroleum Experimental Geology, 2021, 43(5): 749-757. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105004.htm
    [15] LOUCKS R G, RUPPEL S C. Mississippian Barnett shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. doi: 10.1306/11020606059
    [16] MITRA A, WARRINGTON D S, SOMMER A. Application of lithofacies models to characterize unconventional shale gas reservoirs and identify optimal completion intervals: SPE 2010[A]//Anon. Proceedings of SPE Western Regional Meeting in Anaheim[C]. [S. l.]: SPE, 2010: 132513.
    [17] MICHALZIK D. Lithofacies, diagenetic spectra and sedimentary cycles of Messinian(Late Miocene) evaporites in SE Spain[J]. Sedimentary Geology, 1996, 106(3): 203-222.
    [18] WANG G C, CARR T R. Marcellus shale lithofacies prediction by multiclass neural network classification in the Appalachian Basin[J]. Mathematical Geosciences, 2012, 44(8): 975-1004. doi: 10.1007/s11004-012-9421-6
    [19] BRUNER K R, WALKER-MILANI M, SMOSNA R. Lithofacies of the Devonian Marcellus shale in the eastern Appalachian Basin, U.S. A[J]. Journal of Sedimentary Research, 2015, 85: 937-954. doi: 10.2110/jsr.2015.62
    [20] CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103(1): 606-616.
    [21] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004
    [22] CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119. doi: 10.1306/10171111052
    [23] SHU Y, LU Y H, HU Q H, et al. Geochemical, petrographic and reservoir characteristics of the transgressive systems tract of Lower Silurian black shale in Jiaoshiba area, southwest China[J]. Marine and Petroleum Geology, 2021, 129: 105014. doi: 10.1016/j.marpetgeo.2021.105014
    [24] 杨巍, 陈国俊, 吕成福, 等. 鄂尔多斯盆地东南部延长组长7段富有机质页岩孔隙特征[J]. 天然气地球科学, 2015, 26(3): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503004.htm

    YANG W, CHEN G J, LÜ C F, et al. Pore characteristics of organic rich shale in Chang 7 Member of Yanchang Formation in the southeast of Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(3): 418-426. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503004.htm
    [25] 王香增, 刘国恒, 黄志龙, 等. 鄂尔多斯盆地东南部延长组长7段泥页岩储层特征[J]. 天然气地球科学, 2015, 26(7): 1385-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507022.htm

    WANG X Z, LIU G H, HUANG Z L, et al. Characteristics of shale reservoirs in Chang 7 Member of Yanchang Formation in the southeast of Ordos Basin[J] Natural Gas Geoscience, 2015, 26(7): 1385-1394. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507022.htm
    [26] 王香增, 范柏江, 张丽霞, 等. 陆相页岩气的储集空间特征及赋存过程: 以鄂尔多斯盆地陕北斜坡构造带延长探区延长组长7段为例[J]. 石油与天然气地质, 2015, 36(4): 651-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504016.htm

    WANG X Z, FAN B J, ZHANG L X, et al Reservoir space characteristics and occurrence process of continental shale gas: Take Chang 7 Member of Yanchang exploration area of Shanbei slope structural belt in Ordos Basin as an example[J] Oil and Gas Geology, 2015, 36(4): 651-659. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504016.htm
    [27] 王香增, 张丽霞, 李宗田, 等. 鄂尔多斯盆地延长组陆相页岩孔隙类型划分方案及其油气地质意义[J]. 石油与天然气地质, 2016, 37(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601002.htm

    WANG X Z, ZHANG L X, LI Z T, et al. Pore type classification scheme of continental shale of Yanchang Formation in Ordos Basin and its petroleum geological significance[J] Oil and Gas Geology, 2016, 37(1): 1-7. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601002.htm
    [28] 康积伦, 王家豪, 马强, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组细粒湖底扇沉积及其页岩油储层意义[J]. 地质科技通报, 2022, 41(5): 82-93. doi: 10.19509/j.cnki.dzkq.2022.0074

    KANG J L, WANG J H, MA Q, et al. Fine-grain sublacustrine fan deposits and their significance of shale oil reservoirs in the Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 82-93. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0074
    [29] 曾宏斌, 王芙蓉, 罗京, 等. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征[J]. 地质科技通报, 2021, 40(5): 242-252. doi: 10.19509/j.cnki.dzkq.2021.0022

    ZENG H B, WANG F R, LUO J, et al. Characterization of pore structure characteristics of intersalt shale oil reservoirs in Qianjiang Sag based on low-temperature nitrogen adsorption and high-pressure mercury injection[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 242-252. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0022
    [30] 蔡振家, 雷裕红, 罗晓容, 等. 鄂尔多斯盆地东南部延长组7段页岩有机孔发育特征及其影响因素[J]. 石油与天然气地质, 2020, 41(2): 367-379. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002014.htm

    CAI Z J, LEI Y H, LUO X R, et al. Development characteristics and influencing factors of organic pores in shale of Member 7 of Yanchang Formation in the southeast of Ordos Basin[J]. Petroleum and Natural Gas Geology, 2020, 41(2): 367-379. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002014.htm
    [31] 胡文瑄, 姚素平, 陆现彩, 等. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质, 2019, 40(5): 947-956. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905001.htm

    HU W X, YAO S P, LU X C, et al. The influence of organic matter evolution on reservoir property during diagenesis of typical continental shale oil layer series[J]. Petroleum and Natural Gas Geology, 2019, 40(5): 947-956. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905001.htm
    [32] 高凤琳, 宋岩, 梁志凯, 等. 陆相页岩有机质孔隙发育特征及其成因: 以松辽盆地长岭断陷沙河子组页岩为例[J]. 石油学报, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm

    GAO F L, SONG Y, LIANG Z K, et al. Pore development characteristics and genesis of organic matter in continental shale: Taking Shahezi Formation shale in Changling fault depression of Songliao Basin as an example[J]. Journal of Petroleum, 2019, 40(9): 1030-1044. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm
    [33] 曹香妮, 姜振学, 朱德宇, 等. 川东北地区自流井组陆相页岩岩相类型及储层发育特征[J]. 天然气地球科学, 2019, 30(12): 1782-1793. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912012.htm

    CAO X N, JIANG Z X, ZHU D Y, et al. Lithofacies types and reservoir development characteristics of continental shale of Ziliujing Formation in northeastern Sichuan[J]. Natural Gas Geoscience, 2019, 30(12): 1782-1793. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912012.htm
    [34] 姜涛, 金之均, 刘光祥, 等. 四川盆地元坝地区自流井组页岩储层孔隙结构特征[J]. 2021, 42(4): 909-918.

    JIANG T, JIN Z J, LIU G X, et al. Pore structure characteristics of Ziliujing Formation shale reservoir in Yuanba area, Sichuan Basin[J] 2021, 42(4): 909-918. (in Chinese with English abstract)
    [35] 刘忠宝, 胡宗全, 刘光祥, 等. 陆相页岩源-储耦合特征及发育模式: 以四川盆地侏罗系自流井组为例[J]. 2021, 27(3): 271-280.

    LIU Z B, HU Z Q, LIU G X, et al. Source reservoir coupling characteristics and development mode of continental shale: Take the Jurassic Ziliujing Formation in Sichuan Basin as an example[J] 2021, 27(3): 271-280. (in Chinese with English abstract)
    [36] CAO T T, SONG Z G, WANG S B, et al. Characteristics the pore structure in the Silurian and Permian shales of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2015, 61: 410-150.
    [37] 杨超, 张金川, 李婉君, 等. 辽河坳陷沙三、沙四段泥页岩微观孔隙特征及其成藏意义[J]. 石油与天然气地质, 2014, 35(2): 286-294. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402020.htm

    YANG C, ZHANG J C, LI W J, et al. Micro pore characteristics and reservoir forming significance of shales in the Third and Fourth Members of Shahejie Formation in Liaohe Depression[J]. Petroleum and Natural Gas Geology, 2014, 35(2): 286-294. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402020.htm
    [38] 管全中, 董大忠, 王淑芳, 等. 海相和陆相页岩储层微观结构差异性分析[J]. 天然气地球科学, 2016, 27(3): 524-531. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603019.htm

    GUAN Q Z, DONG D Z, WANG S F, et al. Analysis of the difference between the microstructure of marine and continental shale reservoirs[J]. Natural Gas Geoscience, 2016, 27(3): 524-531. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603019.htm
    [39] EHRENBERG S N, WALDERHAUG O, BJERLYKKE K. Carbonate porosity creation bymesogenetic dissolution: Reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-225.
    [40] LABANI M M, REZAEE R, SAEEDI A, et al. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, western Australia[J]. Journal of Petroleum Science Engineering, 2013, 112: 7-16.
    [41] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
    [42] 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019, 40(1): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901006.htm

    WANG H, HE Z L, ZHANG Y G, et al. Types of microfractures in marine shale reservoirs in Sichuan Basin and their effects on reservoir physical properties[J]. Petroleum and Natural Gas Geology, 2019, 40(1): 41-49. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901006.htm
    [43] ROSS D J K, MARC-BUSTIN R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26: 916-927.
    [44] DING W, LI C, LI C, et al. Fracture development in shale and its relationship to gas accumulation[J]. Geoscience Frontiers, 2012, 3(1): 97-105.
    [45] 舒志国, 周林, 李雄, 等. 四川盆地东部复兴地区侏罗系自流井组东岳庙段陆相页岩凝析气藏地质特征及勘探开发前景[J]. 石油与天然气地质, 2021, 42(1): 212-223. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101019.htm

    SHU Z G, ZHOU L, LI X, et al Geological characteristics and exploration and development prospects of continental shale condensate gas reservoirs in Dongyuemiao section of Jurassic Ziliujing Formation in Fuxing area, eastern Sichuan Basin[J]. Petroleum and Natural Gas Geology, 2021, 42(1): 212-223. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101019.htm
    [46] 胡德高, 舒志国, 郭战峰, 等. 川东复兴地区侏罗系(涪页10HF井)发现国内首个页岩凝析气藏[J]. 中国地质, 2021, 48(6): 1980-1981. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202106025.htm

    HU D G, SHU Z G, GUO Z F, et al. Discovery of the first shale condensate gas reservoir in China in the Jurassic System (Well Fuye 10HF) in Fuxing area of eastern Sichuan[J]. Geology of China, 2021, 48(6): 1980-1981. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202106025.htm
    [47] 蔡进功, 宋明水, 卢龙飞, 等. 烃源岩中有机黏粒复合体: 天然的生烃母质[J]. 海洋地质与第四纪地质, 2013, 33(3): 123-131. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201303017.htm

    CAI J G, SONG M S, LU L F, et al. Organic clay particle complex in hydrocarbon source rock: Natural hydrocarbon generating parent material[J]. Marine Geology and Quaternary Geology, 2013, 33(3): 123-131. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201303017.htm
    [48] 王行信, 万玉兰. 有机黏土复合体在石油生成中的意义[J]. 中国海上油气, 1993, 7(2): 27-33.

    WANG X X, WAN Y L. Significance of organic clay complex in petroleum generation[J]. China Offshore Oil and Gas, 1993, 7(2): 27-33. (in Chinese with English abstract)
    [49] 王行信, 蔡进功. 有机黏土复合体与油气[M]. 北京: 石油工业出版社, 2006.

    WANG X X, CAI J G. Organic clay complex and oil and gas[M]. Beijing: Petroleum Industry Press, 2006. (in Chinese)
    [50] 余和中, 谢锦龙, 王行信, 等. 有机黏土复合体与油气生成[J]. 地学前缘, 2006, 13(4): 274-281.

    YU H Z, XIE J L, WANG X X, et al. Organic clay complexes and hydrocarbon generation[J]. Geoscience Frontier, 2006, 13(4): 274-281. (in Chinese with English abstract)
    [51] 王行信. 用有机黏土化学研究生油理论[J]. 海相油气地质, 1996, 1(4): 33-39.

    WANG X X. Study on oil generation theory by organic clay chemistry[J]. Marine Oil and Gas Geology, 1996, 1(4): 33-39. (in Chinese with English abstract)
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  608
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 录用日期:  2022-11-07
  • 修回日期:  2022-10-25

目录

    /

    返回文章
    返回