留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔里木盆地库车坳陷博孜区块超深层致密砂岩储层裂缝特征及其对油气产能的影响

张冠杰 张滨鑫 徐珂 沈传波 张辉 尹国庆 王海应 王志民 刘敬寿

张冠杰, 张滨鑫, 徐珂, 沈传波, 张辉, 尹国庆, 王海应, 王志民, 刘敬寿. 塔里木盆地库车坳陷博孜区块超深层致密砂岩储层裂缝特征及其对油气产能的影响[J]. 地质科技通报, 2024, 43(2): 75-86. doi: 10.19509/j.cnki.dzkq.tb20220454
引用本文: 张冠杰, 张滨鑫, 徐珂, 沈传波, 张辉, 尹国庆, 王海应, 王志民, 刘敬寿. 塔里木盆地库车坳陷博孜区块超深层致密砂岩储层裂缝特征及其对油气产能的影响[J]. 地质科技通报, 2024, 43(2): 75-86. doi: 10.19509/j.cnki.dzkq.tb20220454
ZHANG Guanjie, ZHANG Binxin, XU Ke, SHEN Chuanbo, ZHANG Hui, YIN Guoqing, WANG Haiying, WANG Zhimin, LIU Jingshou. Fracture characteristics of ultra-deep tight sandstone reservoirs in the Bozi Block, Kuqa Depression of Tarim Basin, and effects on oil-gas production[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 75-86. doi: 10.19509/j.cnki.dzkq.tb20220454
Citation: ZHANG Guanjie, ZHANG Binxin, XU Ke, SHEN Chuanbo, ZHANG Hui, YIN Guoqing, WANG Haiying, WANG Zhimin, LIU Jingshou. Fracture characteristics of ultra-deep tight sandstone reservoirs in the Bozi Block, Kuqa Depression of Tarim Basin, and effects on oil-gas production[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 75-86. doi: 10.19509/j.cnki.dzkq.tb20220454

塔里木盆地库车坳陷博孜区块超深层致密砂岩储层裂缝特征及其对油气产能的影响

doi: 10.19509/j.cnki.dzkq.tb20220454
基金项目: 

国家自然科学基金项目 42102156

山东省自然科学基金项目 ZR2020QD035

中国地质大学(武汉)“地大学者”人才岗位科研启动经费 2022046

详细信息
    作者简介:

    张冠杰, E-mail: zgj199688@163.com

    通讯作者:

    徐珂, E-mail: xukee0505@163.com

  • 中图分类号: P618.130.2+1

Fracture characteristics of ultra-deep tight sandstone reservoirs in the Bozi Block, Kuqa Depression of Tarim Basin, and effects on oil-gas production

More Information
  • 摘要:

    天然裂缝是深层致密砂岩储层重要的油气运移通道和储集空间,对库车坳陷博孜区块油气产能具有重要意义。利用岩心、薄片、成像测井以及实际生产资料,在明确塔里木盆地库车坳陷博孜区块超深层致密砂岩储层天然裂缝发育特征的基础上,厘定了天然裂缝对油气产能的影响。研究结果表明:库车坳陷博孜区块超深层储层构造裂缝发育,其中主要发育未充填-半充填的高角度剪切缝,局部发育半充填-全充填张性缝,受多期构造运动影响,区内主要发育N-S向和NW-SE向天然裂缝,部分呈近EW向;裂缝是研究区重要的储集空间和渗流通道,通过成像测井资料和试油资料构建了裂缝发育系数和裂缝有效系数用以定量表征裂缝对油气产能的影响,并建立了这两项表征参数和油气产能的定量评价图版,通过验证说明裂缝发育系数和裂缝有效系数可以较好地评价研究区裂缝的有效性,实现了通过裂缝参数对裂缝性储层品质的分类预测。研究成果不仅为研究区油气高效勘探开发提供了地质依据,同时提供了一个致密砂岩储层裂缝对油气产能影响的实例。

     

  • 图 1  库车坳陷克拉苏构造带区域位置与区段划分图

    Figure 1.  Regional location and section division map in the Kelasu tectonic belt of the Kuqa Depression

    图 2  库车坳陷博孜区块目的层地层对比图(图中地层代号说明见正文)

    Figure 2.  Stratigraphic comparison map of the target strata of the Bozi Block, Kuqa Depression

    图 3  博孜区块超深储层岩心裂缝特征

    a.B17井,6 056.1 m,垂直剪裂缝; b.B17井, 6 058.1 m,高角度剪裂缝; c.B106井,6 798.2 m,砂岩中见高角度未充填-半充填斜交缝; d.B15井,6 280.0 m,张性缝

    Figure 3.  Core fracture characteristics of the ultra-deep reservoir in the Bozi block

    图 4  博孜区块超深储层镜下微裂缝特征

    a.B7井,单偏光,7 547.02 m,砂质细-中砾岩,砂砾状结构,砾石边缘见微裂缝; b.B17井,单偏光,6 171.09 m,含砂细-中砾岩,砂砾状结构,砾石内和砾石边缘见微裂缝; c.B301井,单偏光,5 855.61 m,含膏细粒长石岩屑砂岩,薄片中见一条构造缝,由硬石膏、白云石全充填; d.B302井,单偏光,6 185.59 m,含砂细-中砾岩,岩石中见少量粒间溶孔,粒缘缝及一条不规则溶蚀缝

    Figure 4.  Microscopic characteristics of microfractures of the ultra-deep reservoir in the Bozi Block

    图 5  博孜区块超深储层FMI图像裂缝发育特征

    a.B104井,6 843~6 847 m,一组平行的高角度裂缝; b.B24井,7 320~7 324 m,高角度裂缝和中高角度裂缝组成的网状缝; c.B17井,6 058~6 062 m,一组近于平行的裂缝; d.B1201井,6 767~6 771 m,一组近于平行的裂缝和网状缝

    Figure 5.  FMI images fracture development characteristics of the ultra-deep reservoir in the Bozi Block

    图 6  博孜区块超深储层FMI图像裂缝产状统计图

    a.裂缝走向玫瑰花图; b.裂缝倾角频率分布图

    Figure 6.  FMI image fracture occurrence statistics of the ultra-deep reservoir in the Bozi Block

    图 7  B22井巴什基奇克组产气层段裂缝发育情况

    Figure 7.  Fracture development in gas-producing sections of the Bashijiqike Formation, Well B22

    图 8  博孜区块重点井产气层位产油气量与裂缝参数和裂缝发育系数关系

    Figure 8.  Relationship of oil-gas production with fracture development coefficient in gas-producing horizons of key wells in the Bozi Block

    图 9  博孜区块重点井产气层位产油气量与裂缝有效系数关系

    Figure 9.  Relationship of oil-gas production with the fracture validity coefficient in gas-producing horizons of key wells in the Bozi Block

    图 10  博孜区块裂缝发育系数与裂缝有效系数交会图

    Figure 10.  Cross plots of fracture development coefficient and the fracture valid coefficient in the Bozi Block

    表  1  博孜区块典型井裂缝参数与试油结论

    Table  1.   Fracture parameters and oil test conclusions of typical wells of the Bozi Block

    井号 试油段/m 平均孔隙度/% 裂缝密度/(条·m-1) 裂缝开度/mm 裂缝剪应力与正应力比τ/σ 米产油气量/(104m3·d-1) 试油结论
    B1-1 7 008~7 210 8.0 0.47 0.31 0.33 0.14 低产油气层
    B302 6 185~6 197 6.6 0.42 0.37 0.38 3.40 高产油气层
    B301 5 920~5 938 5.7 0.50 0.17 0.22 0.05 干层
    B104 6 748~6 930 6.7 0.54 0.53 0.33 1.28 高产油气层
    B102-2 6 623~6 778 6.5 0.47 0.78 0.34 1.10 高产油气层
    B102 6 737~6 950 6.7 0.21 0.18 0.23 0.05 干层
    B101-2 6 801~7 108 5.9 0.22 0.27 0.32 1.00 低产油气层
    B101 6 913~7 150 6.6 0.22 0.20 0.23 0.07 干层
    B13 7 016~7 117 6.8 0.58 0.30 0.25 0.31 低产油气层
    B17 6 171~6 189 6.4 0.42 0.60 0.29 0.35 低产油气层
    B17 6 055~6 088 8.5 0.45 0.44 0.36 1.50 高产油气层
    下载: 导出CSV

    表  2  博孜区块裂缝性储层评价标准

    Table  2.   Evaluation standard of the fractured reservoir in the Bozi Block

    储层等级 图版预测结论 图版预测米产油气量/(104m3·d-1) 裂缝发育系数(F1) 裂缝有效系数(F2)
    一级 高产油气层 >1.0 >0.15 >0.32
    二级 低产油气层 [0.1, 1.0] >0.05 >0.23
    三级 干层 <0.1 <0.05 <0.23
    下载: 导出CSV
  • [1] 彭伟, 舒逸, 陈绵琨, 等. 四川盆地复兴地区侏罗系凉高山组致密砂岩储层特征及其主控因素[J]. 地质科技通报, 2023, 42(3): 102-113. doi: 10.19509/j.cnki.dzkq.tb20220282

    PENG W, SHU Y, CHEN M K, et al. Tight sandstone reservoir characteristics and main controlling factors of Jurassic Lianggaoshan Formation in Fuxing area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 102-113. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220282
    [2] 王珂, 张荣虎, 王俊鹏, 等. 超深层致密砂岩储层构造裂缝分布特征及其成因: 以塔里木盆地库车前陆冲断带克深气田为例[J]. 石油与天然气地质, 2021, 42(2): 338-353.

    WANG K, ZHANG R H, WANG J P, et al. Distribution and origin of tectonic fractures in ultra-deep tight sandstone reservoirs: A case study of Keshen gas field, Kuqa foreland thrust belt, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(2): 338-353. (in Chinese with English abstract)
    [3] 刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm

    LIU J S, DING W L, XIAO Z K, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm
    [4] GLAD A C, AMOUR F, WELCH M J, et al. Natural fractures and discontinuities in a Lower Cretaceous chalk-marlstone reservoir, Valdemar Field, Danish North Sea[J]. Marine and Petroleum Geology, 2022, 136: 105445. doi: 10.1016/j.marpetgeo.2021.105445
    [5] BROGI A. Variation in fracture patterns in damage zones related to strike-slip faults interfering with pre-existing fractures in sandstone (Calcione area, southern Tuscany, Italy)[J]. Journal of Structural Geology, 2010, 33(4): 644-661.
    [6] LIU J, DING W, WANG R, et al. Methodology for quantitative prediction of fracture sealing with a case study of the Lower Cambrian Niutitang Formation in the Cen'gong block in South China[J]. Journal of Petroleum Science & Engineering, 2017, 160: 565-581.
    [7] LIU J, DING W, WANG R, et al. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs: A case study of the Niutitang Formation in the Lower Cambrian in the Cen'gong block, South China[J]. Marine and Petroleum Geology, 2017, 84: 289-310. doi: 10.1016/j.marpetgeo.2017.04.004
    [8] WANG Z, XU K, ZHANG H, et al. Fracture effectiveness evaluation of ultra-deep tight sandstone reservoirs: A case study of the Keshen gas field, Tarim Basin, West China[J]. Frontiers in Earth Science, 2022, 10: 883479. doi: 10.3389/feart.2022.883479
    [9] WANG Q, LI Y, YANG W, et al. Finite element simulation of multi-scale bedding fractures in tight sandstone oil reservoir[J/OL]. Energies, 2019, 13(1): 131. doi: 10.3390/em3010131.
    [10] 杨海军, 李勇, 唐雁刚, 等. 塔里木盆地克深气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(3): 399-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202103012.htm

    YANG H J, LI Y, TANG Y G, et al. Accumulation conditions, key exploration and development technologies for Keshen gas field in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(3): 399-414. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202103012.htm
    [11] 鞠玮, 侯贵廷, 黄少英, 等. 库车坳陷依南-吐孜区块下侏罗统阿合组砂岩构造裂缝分布预测[J]. 大地构造与成矿学, 2013, 37(4): 592-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304005.htm

    JU W, HOU G T, HUANG S Y, et al. Structural fracture distribution and prediction of the Lower Jurassic Ahe Formation sandstone in the Yinan-Tuzi area, Kuqa Depression[J]. Geotectonica et Metallogenia, 2013, 37(4): 592-602. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304005.htm
    [12] 王珂, 戴俊生, 王贵文, 等. 库车坳陷克拉A气田储层裂缝走向异常成因[J]. 西安石油大学学报(自然科学版), 2012, 27(5): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201205006.htm

    WANG K, DAI J S, WANG G W, et al. Genesis of abnormal reservoir fracture strike in Kela-A gasfield, Kuqa Depression[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2012, 27(5): 12-16. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201205006.htm
    [13] 高帅, 曾联波, 马世忠, 等. 致密砂岩储层不同方向构造裂缝定量预测[J]. 天然气地球科学, 2015, 26(3): 427-434. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503005.htm

    GAO S, ZENG L B, MA S Z, et al. Quantitative prediction of fractures with different directions in tight sandstone reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 427-434. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503005.htm
    [14] 詹彦, 侯贵廷, 孙雄伟, 等. 库车坳陷东部侏罗系砂岩构造裂缝定量预测[J]. 高校地质学报, 2014, 20(2): 294-302. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201402014.htm

    ZHAN Y, HOU G T, SUN X W, et al. Quantitative prediction of tectonic fractures of Jurassic sandstones in the eastern Kuqa Depression[J]. Geological Journal of China Universities, 2014, 20(2): 294-302. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201402014.htm
    [15] 王珂, 杨海军, 李勇, 等. 库车坳陷克深气田致密砂岩储层构造裂缝形成序列与分布规律[J]. 大地构造与成矿学, 2020, 44(1): 30-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202001003.htm

    WANG K, YANG H J, LI Y, et al. Formation sequence and distribution of structural fractures in compact sandstone reservoir of Keshen gas field in Kuqa Depression, Tarim Basin[J]. Geotectonica et Metallogenia, 2020, 44(1): 30-46. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202001003.htm
    [16] 巩磊, 高铭泽, 曾联波, 等. 影响致密砂岩储层裂缝分布的主控因素分析: 以库车前陆盆地侏罗系—新近系为例[J]. 天然气地球科学, 2017, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm

    GONG L, GAO M Z, ZENG L B, et al. Controlling factors on fracture development in the tight sandstone reservoirs: A case study of Jurassic-Neogene in the Kuqa Foreland Basin[J]. Natural Gas Geoscience, 2017, 28(2): 199-208. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm
    [17] 巩磊, 曾联波, 杜宜静, 等. 构造成岩作用对裂缝有效性的影响: 以库车前陆盆地白垩系致密砂岩储层为例[J]. 中国矿业大学学报, 2015, 44(3): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm

    GONG L, ZENG L B, DU Y J, et al. Influences of structural diagenesis on fracture effectiveness: A case study of the Cretaceous tight sandstone reservoirs of Kuqa Foreland Basin[J]. Journal of China University of Mining & Technology, 2015, 44(3): 514-519. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm
    [18] 巩磊, 程宇琪, 高帅, 等. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素[J]. 地球科学, 2022, 48(7): 2475-2488. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307004.htm

    GONG L, CHENG Y Q, GAO S, et al. Fracture connectivity characterization and its controlling factors in the Lower Jurassic tight sandstone reservoirs of eastern Kuqa[J]. Earth Science, 2022, 48(7): 2475-2488. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307004.htm
    [19] 刘宏坤, 艾勇, 王贵文, 等. 深层、超深层致密砂岩储层成岩相测井定量评价: 以库车坳陷博孜-大北地区为例[J]. 地质科技通报, 2023, 42(1): 299-310. doi: 10.19509/j.cnki.dzkq.2022.0256

    LIU H K, AI Y, WANG G W, et al. Quantitative well logging evaluation of diagenetic facies of deep and ultra deep tight sandstone reservoirs: A case study of Bozi-Dabei area in Kuqa Depression[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 299-310. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0256
    [20] 杨海军, 孙雄伟, 潘杨勇, 等. 塔里木盆地克拉苏构造带西部构造变形规律与油气勘探方向[J]. 天然气工业, 2020, 40(1): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001007.htm

    YANG H J, SUN X W, PAN Y Y, et al. Structural deformation laws and oil & gas exploration direction in the western Kelasu tectonic zone of the Tarim Basin[J]. Natural Gas Industry, 2020, 40(1): 31-37. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001007.htm
    [21] 汤良杰, 李京昌, 余一欣, 等. 库车前陆褶皱-冲断带盐构造差异变形和分段性特征探讨[J]. 地质学报, 2006, 80(3): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603001.htm

    TANG L J, LI J C, YU Y X, et al. Differential salt tectonic deformation and segmentation of the Kuqa Foreland Fold-Thrust Belt, Tarim Basin, Northwest China[J]. Acta Geologica Sinica, 2006, 80(3): 313-320. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603001.htm
    [22] 能源, 谢会文, 孙太荣, 等. 克拉苏构造带克深段构造特征及其石油地质意义[J]. 中国石油勘探, 2013, 18(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201302002.htm

    NENG Y, XIE H W, SUN T R, et al. Structural characteristics of Keshen segmentation in Kelasu structural belt and its petroleum geological significance[J]. China Petroleum Exploration, 2013, 18(2): 1-6. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201302002.htm
    [23] 徐珂, 张辉, 鞠玮, 等. 库车坳陷博孜X区块超深储层有效裂缝分布规律及对天然气产能的影响[J]. 地球科学, 2022, 48(7): 2489-2505. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307005.htm

    XU K, ZHANG H, JU W, et al. Effective fracture distribution and its influence on natural gas productivity of ultra-deep reservoir in Bozi-X block of Kuqa Depression[J]. Earth Science, 2022, 48(7): 2489-2505. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307005.htm
    [24] 高金栋, 周立发, 冯乔, 等. 储层构造裂缝识别及预测研究进展[J]. 地质科技情报, 2018, 37(4): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm

    GAO J D, ZHOU L F, FENG Q, et al. Progress in reservoir structural fracture characterization and prediction[J]. Geological Science and Technology Information, 2018, 37(4): 158-166. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm
    [25] 曾联波, 刘国平, 朱如凯, 等. 库车前陆盆地深层致密砂岩储层构造成岩强度的定量评价方法[J]. 石油学报, 2020, 41(12): 1601-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012012.htm

    ZENG L B, LIU G P, ZHU R K, et al. A quantitative evaluation method of structural diagenetic strength of deep tight sandstone reservoirs in Kuqa Foreland Basin[J]. Acta Petrolei Sinica, 2020, 41(12): 1601-1609. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012012.htm
    [26] 王珂, 杨海军, 张惠良, 等. 超深层致密砂岩储层构造裂缝特征与有效性: 以塔里木盆地库车坳陷克深8气藏为例[J]. 石油与天然气地质, 2018, 39(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804010.htm

    WANG K, YANG H J, ZHANG H L, et al. Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir: A case study of Keshen-8 gas pool in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(4): 719-729. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804010.htm
    [27] 袁静, 杨学君, 袁凌荣, 等. 库车坳陷DB气田白垩系砂岩胶结作用及其与构造裂缝关系[J]. 沉积学报, 2015, 33(4): 754-763. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201504015.htm

    YUAN J, YANG X J, YUAN L R, et al. Cementation and its relationship with tectonic fractures of Cretaceous sandstones in DB gas field of Kuqa Sub-basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 754-763. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201504015.htm
    [28] 王珂, 杨海军, 李勇, 等. 塔里木盆地大北气田超深层致密砂岩储集层构造裂缝发育特征及其影响因素[J]. 矿物岩石地球化学通报, 2018, 37(1): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201801018.htm

    WANG K, YANG H J, LI Y, et al. Characteristics and controlling factors of structural fractures in ultra-deep tight sandstone reservoir, Dabei gas field, Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemis, 2018, 37(1): 111-120. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201801018.htm
    [29] 曾联波, 巩磊, 祖克威, 等. 柴达木盆地西部古近系储层裂缝有效性的影响因素[J]. 地质学报, 2012, 86(11): 1809-1814. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201211011.htm

    ZENG L B, GONG L, ZU K W, et al. Influence factors on fracture validity of the paleogene reservoir, western Qaidam Basin[J]. Acta Geologica Sinica, 2012, 86(11): 1809-1814. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201211011.htm
    [30] 吴伟, 邵广辉, 桂鹏飞, 等. 基于电成像资料的裂缝有效性评价和储集层品质分类: 以鸭儿峡油田白垩系为例[J]. 岩性油气藏, 2019, 31(6): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201906011.htm

    WU W, SHAO G H, GUI P F, et al. Fracture effectiveness evaluation and reservoir quality classification based on electrical imaging data: A case study of Cretaceous in Yaerxia oilfield[J]. Lithologic Reservoirs, 2019, 31(6): 102-108. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201906011.htm
    [31] 冯建伟, 戴俊生, 马占荣, 等. 低渗透砂岩裂缝参数与应力场关系理论模型[J]. 石油学报, 2011, 32(4): 664-671. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104017.htm

    FENG J W, DAI J S, MA Z R, et al. The theoretical model between fracture parameters and stress field of low-permeability sandstones[J]. Acta Petrolei Sinica, 2011, 32(4): 664-671. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104017.htm
    [32] 刘敬寿, 戴俊生, 邹娟, 等. 裂缝性储层渗透率张量定量预测方法[J]. 石油与天然气地质, 2015, 36(6): 1022-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506020.htm

    LIU J S, DAI J S, ZOU J, et al. Quantitative prediction of permeability tensor of fractured reservoirs[J]. Oil & Gas Geology, 2015, 36(6): 1022-1029. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506020.htm
    [33] WILLIS-RICHARDS J, WATANABE K, TAKAHASHI H, et al. Progress toward a stochastic rock mechanics model of engineered geothermal systems[J]. Journal of Geophysical Research(Solid Earth), 1996, 101(B8): 17481-17496.
    [34] JING Z, WILLIS-RICHARDS J, WATANABE K, et al. A new 3D stochastic model for HDR geothermal reservoir in fractured crystalline rock[C]//Anon. Proceedings of the 4th International HDR Forum. Strasbourg: [s. n. ], 1998.
    [35] NELSON R. Eological analysis of naturally fractured reservoirs[M]. Houston: Gulf Publishing Company, 2001: 219-238.
    [36] ZOBACK M D. Reservoir geomechanics[M]. Cambridge: Cambridge University Press, 2007.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  286
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 录用日期:  2022-09-13
  • 修回日期:  2022-08-29

目录

    /

    返回文章
    返回