Field model tests of soil reconstruction in ecological restoration of open-pit mines
-
摘要:
针对甘肃临洮县张家沟石灰岩矿Ⅳ矿区的地质环境破坏问题, 采用喷播复绿工艺对试验矿区进行了生态恢复治理。结合在露天矿试验区和实验室同时选择6种不同配比生态土(客土+有机营养土+土壤改良材料复合肥及其他)进行了种植, 分析了在不同湿度下4种草本植物和2种灌木不同混合比例的生长特征。试验结果表明: 不同配比的生态土影响植物生长过程, 其中在6种不同配比生态土中, 生态土配比为客土(40%)+有机营养土(36%)+土壤改良材料(20%)+复合肥及其他(4%)+草籽(草本、灌木)的环境状态下的植被生长更趋于稳定; 在湿度为17%~ 30%的环境条件下, 草本植物与灌木比例为40∶1的植被生长更趋于稳定, 而在湿度为30%~ 44%的环境条件下, 草本植物与灌木比例为20∶1的植被生长更趋于稳定。研究结果揭示了在不同生态土配比下植被的生长规律特征, 可为露天矿山的生态修复治理提供参考。
Abstract:Objective To address the problem of geological environment destruction in the Ⅳ mining area of Zhangjiagou Limestone Mine in Lintao County, Gansu Province, the spraying regreening technology was used to carry out ecological restoration and management in the test mining area.
Methods In this study, 6 kinds of ecological soils with different formulations of foreign soil, organic nutrient soil, soil improvement material compound, and fertilizer and others were selected for planting experiments conducted in the open-pit mine test area and laboratory at the same time, so as to analyse plant growth characteristics under different humidity levels and different mixing ratios of 4 herbs and 2 shrubs.
Results The results showed that the formulation of ecological soil affected the growth process of plants.The plant community was more stable when the percentage of foreign soil, organic nutrient soil, soil improvement material compound, and fertilizer and others were 40%, 36%, 20% and 4%, respectively, of the ecological soil and the grass seeds were planted. The plant community with a herb to shrub ratio of 40∶1 was more stable under environmental conditions of 17% to 30% humidity, while the plant community with a herb to shrub ratio of 20∶1 was more stable under the environmental conditions of 30% to 44% humidity.
Conclusion The research results can provide a reference for ecological restoration and management of open-pit mines.
-
Key words:
- open-pit mine /
- soil reconstruction /
- plant community /
- model test /
- ecological restoration
-
表 1 6个不同生态土配比类型的试验盒详细配比
Table 1. Statistics on the detailed ratio of 6 experiment boxes with different ecological soil ratio typeswB/%
生态土配料 试验盒编号 1 2 3 4 5 6 客土 100 50 45 50 50 40 有机营养土 0 50 35 48 30 36 土壤改良材料 0 0 20 0 18 20 多含量复合肥 0 0 0 1.4 1.4 2.8 保水剂 0 0 0 0.5 0.5 1.0 团粒剂 0 0 0 0.05 0.05 0.1 微生物菌剂 0 0 0 0.05 0.05 0.1 表 2 三易矿山现场进行模型试验田的划分情况
Table 2. Division of the model test field at the Sanyi mine site
试验田编号 1 2 3 4 5 6 7 8 ①自然不浇水 ①-1 ①-2 ①-3 ①-4 ①-5 ①-6 ①-7 ①-8 ②17%~30%湿度 ②-1 ②-2 ②-3 ②-4 ②-5 ②-6 ②-7 ②-8 ③30%~44%湿度 ③-1 ③-2 ③-3 ③-4 ③-5 ③-6 ③-7 ③-8 表 3 6个试验盒中草本植物生长的平均高度与种群密度
Table 3. Mean height and population density of herbaceous plants in six boxes
试验盒编号 平均高度/cm 种群密度/(个·m-2) 1 18.1 418 2 21.5 442 3 27.3 635 4 32.4 521 5 38.2 766 6 43.5 897 表 4 不同湿度条件下试验田植物生长80 d平均高度和种群密度
Table 4. Mean height and population density of plants in the experimental field during 80 days of growth under different humidity conditions
试验田编号 自然不浇水 17%~30%湿度 30%~44%湿度 高度/cm 种群密度/(个·m-2) 高度/cm 种群密度/(个·m-2) 高度/cm 种群密度/(个·m-2) 1 20.1 348 26.4 445 31.5 423 2 22.7 364 31.7 463 35.9 483 3 27.5 478 39.3 673 41.2 653 4 32.1 432 44.6 568 47.1 575 5 34.8 584 50.2 766 53.6 821 6 37.4 642 53.6 865 56.9 884 7 41.3 725 69.2 975 67.7 906 8 44.6 746 63.7 924 69.8 948 -
[1] 罗明, 白中科, 刘喜韬, 等. 土地复垦潜力调查评价研究[M]. 北京: 中国农业科技出版社, 2013: 74-78.Luo M, Bai Z K, Liu X T, et al. Investigation and evaluation of land reclamation potential[M]. Beijing: China Agricultural Science and Technology Press, 2013: 74-78(in Chinese). [2] 白中科, 周伟, 王金满, 等. 再论矿区生态系统恢复重建[J]. 中国土地科学, 2018, 32(11): 1-9.Bai Z K, Zhou W, Wang J M, et al. Rethink on ecosystem restoration and rehabilitation of mining areas[J]. China Land Science, 2018, 32(11): 1-9(in Chinese with English abstract). [3] 翟淑花, 于家烁, 齐干, 等. 降雨入渗条件下堆积体边坡致灾因子试验分析[J]. 地质科技通报, 2023, 42(3): 9-15. doi: 10.19509/j.cnki.dzkq.tb20220488Zhai S H, Yu J S, Qi G, et al. Triggering factor analysis of deposit slope under rainfall infiltration based on laboratory experiments[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 9-15(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.tb20220488 [4] 牛星. 伊敏露天煤矿废弃地植被恢复及其效果研究[D]. 呼和浩特: 内蒙古农业大学, 2013.Niu X. Studies on revegetation and restoration effects of Yimin opencast mining wasteland[D]. Hohhot: Inner Mongolia Agricultural University, 2013(in Chinese with English abstract). [5] 胡振琪, 肖武, 赵艳玲. 再论煤矿区生态环境"边采边复"[J]. 煤炭学报, 2020, 45(1): 351-359. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001035.htmHu Z Q, Xiao W, Zhao Y L. Re-discussion on coal mine eco-environment concurrent mining and reclamation[J]. Journal of China Coal Society, 2020, 45(1): 351-359(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001035.htm [6] 刘英. 半干旱煤矿区受损植被引导型恢复研究[D]. 江苏徐州: 中国矿业大学, 2020.Liu Y. Study on guided restoration of damaged vegetation in semi-arid coal mine area[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2020 (in Chinese with English abstract). [7] 冯昶栋, 郭小平, 罗超, 等. 干旱矿区不同干扰强度下土壤种子库特征[J]. 草业科学, 2021, 38(3): 443-452. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX202103005.htmFeng C D, Guo X P, Luo C, et al. Characteristics of the soil seed bank under different disturbance intensities in an arid mining area[J]. Pratacultural Science, 2021, 38(3): 443-452(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX202103005.htm [8] 杜华栋, 曹祎晨, 聂文杰, 等. 黄土沟壑区采煤塌陷地人工与自然植被恢复下土壤性质演变特征[J]. 煤炭学报, 2021, 46(5): 1641-1649.Du H D, Cao Y C, Nie W J, et al. Evolution of soil properties under artificial and natural revegetation in loess gully coal mining subsidence area[J]. Journal of China Coal Society, 2021, 46(5): 1641-1649(in Chinese with English abstract). [9] 毕银丽, 彭苏萍, 杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报, 2021, 46(5): 1355-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202105002.htmBi Y L, Peng S P, Du S Z. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi-arid areas of western China[J]. Journal of China Coal Society, 2021, 46(5): 1355-1364(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202105002.htm [10] 张根, 闫杰. 露天矿建设对生态环境影响评价及生态恢复研究[J]. 露天采矿技术, 2017, 32(9): 80-83.Zhang G, Yan J. Study on the impact evaluation of open-pit mine construction on ecological environment and ecological restoration[J]. Opencast Mining Technology, 2017, 32(9): 80-83(in Chinese with English abstract). [11] Singh A N, Singh J S. Experiments on ecological restoration of coal mine spoil using native trees in a dry tropical environment, India: A synthesis[J]. New Forests, 2006, 31(1): 25-39. doi: 10.1007/s11056-004-6795-4 [12] Benvenuti M, Mascaro I, Corsini F, et al. Mine waste dumps and heavy metal pollution in abandoned mining district of Boccheggiano (Southern Tuscany, Italy)[J]. Environmental Geology, 1997, 30(3/4): 238-243. [13] Miao Z, Marrs R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China[J]. Journal of Environmental Management, 2000, 59(3): 205-215. https://www.sciencedirect.com/science/article/pii/S0301479700903530 [14] Vibhash R, Phalguni S, Dheeraj K, et al. A review on dump slope stabilization by revegetation with reference to indigenous plant[J]. Ecological Processes, 2015, 4(1): 1-11. [15] Leavitt K J, Fernandez G C J, Nowak R S. Plant establishment on angle of repose mine waste dumps[J]. Journal of Range Management, 2000, 53(4): 442-452. [16] Mathiyazhagan N, Natarajan D. Impact of mine waste dumps on growth and biomass of economically important crops[J]. Journal of Environmental Biology, 2012, 33(6): 1069-1074. [17] Vetluzhskikh N V. Flora and vegetation of gold mining waste dumps in Mariinskaya Taiga[J]. Russian Journal of Ecology, 2010, 41(3): 269-271. [18] Pirrone A, Castagnetti C, Mariella J, et al. Yeast flora in oropharyngeal and rectal mucous membranes of healthy and critically ill neonatal foals[J]. Journal of Equine Veterinary Science, 2011, 32(2): 93-98. [19] Park S, Kim M, Cheon M, et al. MP-08.19 prevalence of antimicrobial resistance in rectal normal flora of patients undergoing transrectal ultrasonography-guided prostate biopsy in Korea[J]. Urology, 2011, 78(3): S92. [20] 郭婷婷. 矿区不同重构方式下土壤水文性质研究[D]. 太原: 山西大学, 2020.Guo T T. Study onproperties of soil hydrological under different reconstruction patterns in mining area[D]. Taiyuan: Shanxi University, 2020(in Chinese with English abstract). [21] 王强民, 赵明, 彭鸿杰, 等. 旱区不同层状结构土壤的水分运移过程与模拟[J]. 水文地质工程地质, 2023, 50(4): 84-94.Wang Q M, Zhao M, Peng H J, et al. Water transport process and simulation of layered soils with different configurations in an arid region[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 84-94(in Chinese with English abstract). [22] 郭志萍, 李斌, 孙西欢, 等. 不同生态修复模式下土壤水文性质及其对溶质运移的影响[J]. 环境科学学报, 2019, 39(12): 4251-4260. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201912034.htmGuo Z P, Li B, Sun X H, et al. Soil hydrological properties and their effects on solute transport under different ecological restoration models in coal mining area[J]. Journal of Environmental Sciences, 2019, 39(12): 4251-4260(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201912034.htm [23] 福纳德. 中国东部草原区露天矿排土场土壤构建与改良研究[D]. 江苏徐州: 中国矿业大学, 2019.Fernand N A A. Construction and improvement of open pit mine dumped soil structure in China eastern grassland area[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2019(in Chinese with English abstract).