Pollution characteristics and health risk assessment of volatile organic compounds in groundwater in a decommissioned oil refinery in Northwest China
-
摘要:
挥发性有机物(VOCs)可长期存在于地下水中,从而对人体产生危害。针对西北某退役炼油厂受有机物污染的浅层地下水,开展了地下水中挥发性有机物的污染特征调查,并对其可能产生的健康风险进行评价。研究结果表明,该场地地下水中共检出18种VOCs,VOC单体检出率范围为6.25%~56.25%。特征污染物以苯和1, 2, 4-三甲苯为主,两者检出率均为56.25%,对照我国《地下水质量标准》(GB/T14848-2017)的Ⅲ类标准,苯和1, 2, 4-三甲苯超标率均达到50%。场地内污染物主要来自原液化气储罐区和原柴油灌区的垂向渗漏,表明这两个区域可能为该场地地下水的主要污染源,且污染物分布会受水文地质条件和地下水流向的综合影响,对场地下游地下水造成污染。健康风险评价结果表明,通过饮水途径造成的健康风险占据主导。83.3%的点位致癌风险值(
CR )大于10-6,可能存在致癌风险,其中位于渣油罐区GW11点位的致癌风险值大于10-4,具有致癌风险;50%的点位危害商(HQ )大于1,会产生非致癌风险,对人体造成一定影响。因此,今后应加强对区域饮水问题的关注和管控。Abstract:Objective Volatile organic compounds (VOCs) can exist in groundwater for a long time, thus causing harm to human body.
Methods To characterize the volatile organic compounds (VOCs) pollution in the organic-contaminated phreatic zone beneath a decommissioned oil refinery in Northwest China, investigations and sample testing were carried out and possible health risks were assessed in the study area.
Results A total of 18 VOCs were detected in the groundwater at the site, with detection rates ranging from 6.25% to 56.25%. Benzene and 1, 2, 4-trimethylbenzene were the main characteristic pollutants, with adetection rate being 56.25%, both of which exceeded the class Ⅲ standard of the Groundwater Quality Standard (GB/T14848-2017) in China by 50%. The pollutants at the site mainly originated from the vertical seepage from the former liquefied gas storage tank area and the former diesel oil irrigation area, indicating that these two areas may be the main pollution sources of groundwater at the site. The distribution of pollutants was influenced by hydrogeological conditions and groundwater flow direction, with pollution occurring in groundwater downstream of the site.The results of the health risk assessment showed a predominant health risk posed by drinking water. 83.3% of the points had a cancer risk (
CR ) value greater than 10-6, indicating a possible cancer risk. TheCR value for GW11 located in the residual oil tank area was greater than 10-4, indicating a significant cancer risk. 50% of the points had a hazard quotient (HQ ) greater than 1, which would pose a noncarcinogenic risk and influence human health.Conclusion Therefore, the attention and control of regional drinking water issues should be strengthened in the future.
-
表 1 采样点地下水现场水质监测指标
Table 1. Monitoring indices of groundwater quality in situ at the sampling points
编号 地下水水位埋深/m pH 氧化还原电位/mV 电导率/(mS·cm-1) GW1 8.5 7.34 110.6 2.90 GW2 8.5 7.27 177.0 2.23 GW3 7.5 7.38 -120.8 2.71 GW4 6.7 7.38 -120.4 3.01 GW5 7.3 7.39 -41.6 2.35 GW6 8.0 — — — GW7 8.0 7.03 177.4 2.83 GW8 8.3 7.64 159.8 2.33 GW9 7.5 7.44 135.2 3.38 GW10 8.5 7.45 -100.6 2.68 GW11 7.0 7.41 -65.2 3.07 GW12 6.5 7.59 -89.0 2.58 GW13 6.8 7.33 18.8 2.21 GW14 7.5 7.37 -89.9 2.65 GW15 7.5 7.36 132.7 2.94 GW16 8.0 7.28 88.3 4.75 W1 18.0 7.63 129.5 2.42 W2 30.0 7.72 131.3 1.02 W3 15.5 7.42 138.8 3.22 W4 6.8 7.59 133.5 1.75 W5 - 8.44 55.0 4.59 注:“—”表示未测得相关数据 表 2 污染物暴露参数
Table 2. Pollutant exposure parameters
参数符号 参数名称 单位 数值 U 日饮用水量 L/d 1 TF 煮沸后VOCs的残留比 无量纲 0.3[28] EF 暴露频率 d/a 250 ED 暴露期 a 25 BW 个人体重 kg 61.8 AT 致癌、非致癌效应平均时间 d 27 740,2 190 SA 人体表面积 cm2 15 859 PC 皮肤吸附参数 cm/h 0.001 ET 暴露时间 h/d 0.5 CF 转换系数 1 L/(1 000 cm3) 1 DAIR 每日空气呼吸量 m3/d 14.5 EFO 室外暴露频率 d/a 62.5 EFI 室内暴露频率 d/a 187.5 WAF 暴露于地下水的参考剂量分配比例 无量纲 0.33 ABSgi 消化道吸收效率因子 无量纲 1 SF 致癌斜率因子 (kg·d)/mg 见表 3 RfD 非致癌参考剂量 mg/(kg·d) 见表 3 IUR 呼吸吸入单位致癌因子 m3/mg 见表 3 RfC 呼吸吸入参考浓度 mg/m3 见表 3 ACR 可接受致癌风险 无量纲 10-6 AHQ 可接受危害商 无量纲 1 表 3 污染物毒性参数[29]
Table 3. Pollutant toxicity parameters
VOCs SFo/(kg·d·mg-1) RfDo/(mg·kg-1·d-1) IUR/(m3·mg-1) RfC/(mg·m-3) 苯 0.055 0.004 0.007 8 0.030 甲苯 — 0.080 — 5.0 乙苯 0.011 0.100 0.002 5 1 对、间-二甲苯 — 0.200 — 0.1 苯乙烯 — 0.200 — 1 邻-二甲苯 — 0.200 — 0.1 异丙苯 — — — — 正丙苯 — — — — 1, 3, 5-三甲苯 — 0.010 — — 4-异丙基甲苯 — — — — 正丁基苯 — — — — 1, 2, 4-三甲苯 — — — — 1, 2-二氯乙烷 0.091 0.006 0.026 0.007 1, 1, 2-三氯乙烷 0.057 0.004 0.016 0.000 2 1, 1, 2, 2-四氯乙烷 0.200 0.020 0.058 — 1, 2, 3-三氯丙烷 30.000 0.004 — 0.000 3 2-氯甲苯 — — — — 萘 — 0.020 0.034 0.003 注:“—”表示暂无相关参数;下标o为经口摄入 表 4 研究区有机污染物检出和超标情况
Table 4. Detection and exceedance of organic pollutants in the study area
测试指标 检出率/% 最小质量浓度/(μg·L-1)* 最大质量浓度/(μg·L-1) GB/T14848-2017 Ⅲ类标准值/(μg·L-1) 超标点位数 超标率/% 最大超标倍数 苯 56.25 1.60 1 580.00 10 8 50.00 158.00 甲苯 37.50 5.00 205.00 700 0 0.00 0.29 乙苯 50.00 41.30 179.00 300 0 0.00 0.60 对、间-二甲苯 43.75 88.50 333.00 500 0 0.00 0.67 苯乙烯 6.25 14.90 14.90 20 0 0.00 0.75 邻-二甲苯 50.00 6.00 157.00 — — 0.00 — 异丙苯 50.00 7.70 46.60 — — 0.00 — 正丙苯 50.00 14.50 59.20 — — 0.00 — 1, 3, 5-三甲苯 37.50 5.60 143.00 60 4 25.00 2.38 4-异丙基甲苯 37.50 3.00 18.00 — — 0.00 — 正丁基苯 25.00 4.10 22.70 — — 0.00 — 1, 2, 4-三甲苯 56.25 15.40 921.00 56 8 50.00 16.45 1, 2-二氯乙烷 6.25 151.00 151.00 30 1 6.25 5.03 1, 1, 2-三氯乙烷 6.25 11.40 11.40 5 1 6.25 2.28 1, 1, 2, 2-四氯乙烷 31.25 0.33 24.80 — — 0.00 — 1, 2, 3-三氯丙烷 6.25 3.90 3.90 — — 0.00 — 2-氯甲苯 18.75 2.70 25.70 — — 0.00 — 萘 50.00 2.10 473.00 100 3 18.75 4.73 注:*为已检出点位中的最小值;“—”表示暂无相关参数,下同 表 5 研究区超标有机污染物质量浓度
Table 5. Concentration of excessive organic pollutants in the study area
ρB/(μg·L-1) 超标点位 苯 1, 3, 5-三甲苯 1, 2, 4-三甲苯 1, 2-二氯乙烷 1, 1, 2-三氯乙烷 萘 GW4 510 72.2 316 151 / 109 GW5 422 115.0 921 / / 473 GW6 232 143.0 427 / / 296 GW10 51.8 / 613 / / / GW11 / / 171 / / / GW12 / / 197 / / / GW13 277 / / / / / GW14 1 580 / / / 11.4 / GW15 1 480 132.0 301 / / / GW16 64.6 / 159 / / / 注:“/”表示未超标 表 6 基于饮水途径的地下水风险控制值
Table 6. Groundwater risk control values based on the drinking water pathway
污染物 地下水风险控制值/(mg·L-1) 致癌效应 非致癌效应 苯 1.66×10-2 0.10 甲苯 — 1.91 乙苯 8.31×10-2 2.38 对、间-二甲苯 — 4.76 苯乙烯 — 4.76 邻-二甲苯 — 4.76 1, 3, 5-三甲苯 — 0.24 1, 2-二氯乙烷 1.00×10-2 0.14 1, 1, 2-三氯乙烷 1.60×10-2 0.10 1, 1, 2, 2-四氯乙烷 4.57×10-3 0.48 1, 2, 3-三氯丙烷 3.05×10-5 0.10 萘 — 0.48 -
[1] 生态环境部. HJ1019-2019: 地块土壤和地下水中挥发性有机物采样技术导则[S]. 北京: 中国环境出版集团, 2019.Ministry of Ecology and Environment. HJ1019-2019: Technical guideline for site soil and groundwater sampling of volatile organic compounds[S]. Beijing: China Environmental Publishing Group, 2019. (in Chinese) [2] CAO F M, QIN P, LU S Y, et al. Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake, China[J]. Ecotoxicology and Environmental Safety, 2018, 165: 645-653. doi: 10.1016/j.ecoenv.2018.08.108 [3] LI H Y, WANG Y S, LIU F, et al. Volatile organic compounds in stormwater from a community of Beijing, China[J]. Environmental Pollution, 2018, 239: 554-561. doi: 10.1016/j.envpol.2018.04.065 [4] CHEN X C, LUO Q, WANG D H, et al. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China[J]. Environmental Pollution, 2015, 206: 64-72. doi: 10.1016/j.envpol.2015.06.027 [5] MORAKINYO O M, MOKGOBU M I, MUKHOLA M S, et al. Health risk assessment of exposure to ambient concentrations of benzene, toluene and xylene in Pretoria West, South Africa[J]. African Journal of Science Technology Innovation and Development, 2017, 9(4): 1-8. [6] UETA I, MITSUMORI T, SUZUKI Y, et al. Determination of very volatile organic compounds in water samples by purge and trap analysis with a needle-type extraction device[J]. Journal of Chromatography A, 2015, 1397: 27-31. doi: 10.1016/j.chroma.2015.04.016 [7] SMITH M T, ZHANG L P, MCHALE C M, et al. Benzene, the exposome and future investigations of leukemia etiology[J]. Chemico-Biological Interactions, 2011, 192(1/2): 155-159. [8] GAO S, ZHANG Z T, WANG Q M, et al. Emissions and health risk assessment of process-based volatile organic compounds of a representative petrochemical enterprise in East China[J]. Air Quality Atmosphere and Health, 2022, 15(6): 1095-1109. doi: 10.1007/s11869-021-01117-4 [9] 饶志, 储小东, 颜春, 等. 鄱阳湖平原浅层地下水有机污染物含量特征与健康风险评价[J]. 地球与环境, 2019, 47(5): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201905011.htmRAO Z, CHU X D, YAN C, et al. Content characteristics and health risk assessment of organic pollutants in shallow groundwater of Poyang Lake Plain[J]. Earth and Environment, 2019, 47(5): 662-670. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201905011.htm [10] XU H M, FENG R, WANG Z X, et al. Environmental and health risks of VOCs in the longest inner-city tunnel in Xi'an, Northwest China: Implication of impact from new energy vehicles[J]. Environmental Pollution, 2021, 282: 117057. doi: 10.1016/j.envpol.2021.117057 [11] MO Z W, LU S H, SHAO M. Volatile organic compound (VOC) emissions and health risk assessment in paint and coatings industry in the Yangtze River Delta, China[J]. Environmental Pollution, 2021, 269: 115740. doi: 10.1016/j.envpol.2020.115740 [12] LI Q Q, SU G J, LI C Q, et al. Emission profiles, ozone formation potential and health-risk assessment of volatile organic compounds in rubber footwear industries in China[J]. Journal of Hazardous Materials, 2019, 375: 52-60. doi: 10.1016/j.jhazmat.2019.04.064 [13] FENG Y X, DING D W, XIAO A S, et al. Characteristics, influence factors, and health risk assessment of volatile organic compounds through one year of high-resolution measurement at a refinery[J]. Chemosphere, 2022, 296: 134004. doi: 10.1016/j.chemosphere.2022.134004 [14] SQUILLACE P J, MORAN M J, PRICE C V. VOCs in shallow groundwater in new residential/commercial areas of the United States[J]. Environmental Science & Technology, 2004, 38(20): 5327-5338. [15] 朱辉, 叶淑君, 吴吉春, 等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021, 28(5): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105004.htmZHU H, YE S J, WU J C, et al. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers, 2021, 28(5): 26-34. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105004.htm [16] 汪健. 可挥发性致癌物污染场地周边人群健康风险研究[D]. 兰州: 兰州大学, 2015.WANG J. Research on volatile carcinogen contaminated site surrounding crowd health risk[D]. Lanzhou: Lanzhou University, 2015. (in Chinese with English abstract) [17] LABIANCA C, GISI S D E, PICARDI F, et al. Remediation of a petroleum hydrocarbon-contaminated site by soil vapor extraction: A full-scale case study[J]. Applied Sciences-Basel, 2020, 10(12): 4261. doi: 10.3390/app10124261 [18] LI X, JIAO W, XIAO R, et al. Contaminated sites in China: Countermeasures of provincial governments[J]. Journal of Cleaner Production, 2017, 147: 485-496. doi: 10.1016/j.jclepro.2017.01.107 [19] 李书鹏. 土壤与地下水修复行业2019年发展报告[R]. 北京: 北京建工环境修复股份有限公司, 2020: 211-246.LI S P. Soil and groundwater remediation industry 2019 development report[R]. Beijing: Beijing Construction Engineering Environmental Remediation Co., Ltd., 2020: 211-246. (in Chinese) [20] 葛锋, 张转霞. 扶恒, 等. 我国有机污染场地现状分析及展望[J]. 土壤, 2021, 53(6): 1132-1141. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202106005.htmGE F, ZHANG C X, FU H, et al. Distribution of organic contaminated sites in China: Statu quo and prospect[J]. Soils, 2021, 53(6): 1132-1141. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TURA202106005.htm [21] 夏凤英. 石油类场地典型挥发/半挥发性污染物分布及环境风险研究[D]. 北京: 北京工商大学, 2010.XIA F Y. Distribution analysis and environmental risk assessment of VOCs/SVOCs in petroleum oil contaminated sites[D]. Beijing: Beijing Technology and Business University, 2010. (in Chinese with English abstract) [22] 周子航, 邓也, 周小玲, 等. 成都市工业挥发性有机物排源成分谱[J]. 环境科学, 2020, 41(7): 3042-3055. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202007008.htmZHOU Z H, DENG Y, ZHOU X L, et al. Source profiles of industrial emission-based VOCs in Chengdu[J]. Environmental Science, 2020, 41(7): 3042-3055. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202007008.htm [23] LIU H J, WANG L S, ZHANG J, et al. Mechanistic insights into and modeling the effects of relative humidity on low-concentration VOCs adsorption on hyper-cross-linked polymeric resin by inverse gas chromatography[J]. Journal of Hazardous Materials, 2021, 418: 126335. doi: 10.1016/j.jhazmat.2021.126335 [24] 邓一荣, 陆海建, 董敏刚, 等. 粤港澳大湾区典型化工场地苯系物污染特征及迁移规律[J]. 环境科学, 2019, 40(12): 5615-5622. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201912046.htmDENG Y R, LU H J, DONG M G, et al. Pollution characteristics and migration of BTEX at a chemical contaminated site in the Guangdong-Hong Kong-Macau Greater Bay Area[J]. Environmental Science, 2019, 40(12): 5615-5622. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201912046.htm [25] NRC. Risk assessment in the federal government[M]. Washington DC: National Academies Press, 1983. [26] 杨明星, 杨悦锁, 杜新强, 等. 石油污染地下水有机污染组分特征及其环境指示效应[J]. 中国环境科学, 2013, 33(6): 1025-1032. doi: 10.3969/j.issn.1000-6923.2013.06.010YANG M X, YANG Y S, DU X Q, et al. Organic fractions and environmental implications of petroleum contaminated groundwater[J]. China Environmental Science, 2013, 33(6): 1025-1032. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2013.06.010 [27] 于潇, 鞠振宇, 廉欢. 某化工污染地块地下水中挥发性有机物污染特征及来源分析[J]. 广东化工, 2019, 46(21): 99-101. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201921043.htmYU X, JU Z Y, LIAN H. Contamination characteristics and causes of volatile organic compounds in the groundwater at a chemical contaminated site[J]. Guangdong Chemical, 2019, 46(21): 99-101. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201921043.htm [28] 张坤锋, 昌盛, 赵少延, 等. 克鲁伦河流域地下水饮用水水源中挥发性有机物的污染特征与风险评价[J]. 环境工程技术学报, 2021, 11(6): 1083-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202106006.htmZHANG K F, CHANG S, ZHAO S Y, et al. Pollution characteristics and risk assessment of volatile organic compounds in groundwater drinking water sources in Klulun River Basin[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1083-1091. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HKWZ202106006.htm [29] 生态环境部. HJ25.3-2019: 建设用地土壤污染风险评估技术导则[S]. 北京: 中国环境出版集团, 2019.Ministry of Ecology and Environment. HJ25.3-2019: Technical guidelines for risk assessment of soil contamination of land for construction[S]. Beijing: China Environmental Publishing Group, 2019. (in Chinese) [30] 环境保护部. HJ 639-2012: 水质-挥发性有机物的测定: 吹扫捕集/气相色谱-质谱法[S]. 北京: 中国环境科学出版社, 2012.Ministry of Environmental Protection. HJ 639-2012: Water quality-determination of volatile organic compounds-purge and trap/gas chromatography-mass spectrometer[S]. Beijing: China Environmental Science Press, 2012. (in Chinese) [31] KUMAR M, RAMANATHAN A L, TRIPATHI R, et al. A study of trace element contamination using multivariate statistical techniques and health risk assessment in groundwater of Chhaprola Industrial area, Gautam Buddha Nagar, Uttar Pradesh, India[J]. Chemosphere, 2017, 166: 135-145. doi: 10.1016/j.chemosphere.2016.09.086 [32] 谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. doi: 10.19509/j.cnki.dzkq.2020.0104XIE X J, LIU H X, GAO S, et al. Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0104 [33] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103LIANG X, ZHANG J W, LAN K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0103 [34] 吕晓立, 邵景力, 刘景涛, 等. 某石油化工污染场地地下水中挥发性有机物污染特征及成因分析[J]. 水文地质工程地质, 2012, 39(6): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201206021.htmLÜ X L, SHAO J L, LIU J T, et al. Pollution characteristics and cause analysis of volatile organic compounds in groundwater of a petrochemical contaminated site[J]. Hydrogeology Engineering Geology, 2012, 39(6): 97-102. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201206021.htm [35] 李煜婷, 许德刚, 李巨峰, 等. 典型石油炼制厂地下水中优先控制污染物识别方法的建立和验证[J]. 环境工程学报, 2019, 13(11): 2770-2780. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201911029.htmLI Y T, XU D G, LI J F, et al. Establishment and verification of the recognition method of the priority pollutants in groundwater of the typical petroleum refining enterprise[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2770-2780. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201911029.htm [36] 郭永丽, 肖琼, 章程, 等. 石油类污染的岩溶地下水环境特征: 以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202302037.htmGUO Y L, XIAO Q, ZHANG C, et al. Characteristics of karst groundwater environment polluted by petroleum hydrocarbons: A case study of Dawu groundwater source in Zibo City, North China[J]. Earth Science Frontiers, 2023, 30(2): 1-11. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202302037.htm [37] 于紫玲, 侯云波, 马瑞雪, 等. 保护人体健康的萘水质基准研究[J]. 中国环境科学, 2020, 40(7): 3010-3019. doi: 10.3969/j.issn.1000-6923.2020.07.026YU Z L, HOU Y B, MA R X, et al. Development of human health ambient water quality criteria for naphthalene in China[J]. China Environmental Science, 2020, 40(7): 3010-3019. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2020.07.026 [38] QIAO X C, ZHENG B H, LI X, et al. Influencing factors and health risk assessment of polycyclic aromatic hydrocarbons in groundwater in China[J]. Journal of Hazardous Materials, 2021, 402(15): 123419. [39] 陈昌照, 宋权威, 高春阳, 等. 膜界面探针在炼厂油罐区场地环境调查中的应用[J]. 油气田环境保护, 2019, 29(2): 49-52. doi: 10.3969/j.issn.1005-3158.2019.02.013CHEN C Z, SONG Q W, GAO C Y, et al. Application of membrane interface probe in site environmental investigation of refinery oil tank area[J]. Environmental Protection of Oil & Gas Fields, 2019, 29(2): 49-52. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-3158.2019.02.013 [40] QI S Q, LUO J, O'CONNOR D, et al. Influence of groundwater table fluctuation on the non-equilibrium transport of volatile organic contaminants in the vadose zone[J]. Journal of Hydrology, 2020, 580: 124353. doi: 10.1016/j.jhydrol.2019.124353 [41] 宁航, 王宗星, 柳富田, 等. 基于系统空间特征识别的岩溶地下水污染成因分析[J]. 地质科技通报, 2022, 41(5): 1-10. doi: 10.19509/j.cnki.dzkq.2022.0187NING H, WANG Z X, LIU F T, et al. Genesis of karst groundwater contamination based on system spatial feature recognition[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 1-10. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0187 [42] 赵丽, 张韵, 郭劲松, 等. 重庆市加油站周边浅层地下水中石油烃污染调查与特征分析[J]. 环境工程学报, 2016, 10(1): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201601022.htmZHAO L, ZHANG Y, GUO J S, et al. Investigation on pollution characteristics of petroleum hydrocarbon in shallow groundwater around gas stations[J]. Chinese Journal of Environmental Engineering, 2016, 10(1): 131-136. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201601022.htm [43] SUN Y C, XIE Z L, WU K Y, et al. Speciation, distribution and migration pathways of polycyclic aromatic hydrocarbons in a typical underground river system in Southwest China[J]. Journal of Hydrology, 2021, 596: 125690. doi: 10.1016/j.jhydrol.2020.125690 [44] 王刘炜, 杨小东, 侯德义. 裂隙介质VOCs赋存迁移特征与场地修复难点[J]. 中国环境科学, 2022, 42(10): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202210036.htmWANG L W, YANG X D, HOU D Y. VOCs in fractured aquifers: Presence, migration characteristics, and implications for contaminated site remediation[J]. China Environmental Science, 2022, 42(10): 1-12. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202210036.htm [45] ZHANG Q, WANG G C, SUGIURA N, et al. Distribution of petroleum hydrocarbons in soils and the underlying unsaturated subsurface at an abandoned petrochemical site, North China[J]. Hydrological Processes, 2014, 28(4): 2185-2191. [46] 李丽君, 王海娇, 马健生. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价[J]. 岩矿测试, 2021, 40(6): 930-943. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202106014.htmLI L J, WANG H J, MA J S. Pollution characteristics and health risk assessment of volatile organic compounds in groundwater in the lower Liaohe River Plain[J]. Rock and Mineral Analysis, 2021, 40(6): 930-943. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202106014.htm [47] CARON-BEAUDOIN L, WHYTE K P, BOUCHARD M F, et al. Volatile organic compounds (VOCs) in indoor air and tap water samples in residences of pregnant women living in an area of unconventional natural gas operations: Findings from the EXPERIVA study[J]. Science of the Total Environment, 2022, 805: 150242. [48] FAN C, WANG G S, CHEN Y C, et al. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan[J]. Science of the Total Environment, 2009, 407: 2165-2174.