留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S-SARⅡ技术的崩塌临灾应急监测原理及其应用

刘冀昆 杨晓琳 王成虎

刘冀昆, 杨晓琳, 王成虎. S-SARⅡ技术的崩塌临灾应急监测原理及其应用[J]. 地质科技通报, 2023, 42(1): 42-51. doi: 10.19509/j.cnki.dzkq.tb20220495
引用本文: 刘冀昆, 杨晓琳, 王成虎. S-SARⅡ技术的崩塌临灾应急监测原理及其应用[J]. 地质科技通报, 2023, 42(1): 42-51. doi: 10.19509/j.cnki.dzkq.tb20220495
Liu Jikun, Yang Xiaolin, Wang Chenghu. Principle and application of S-SARⅡ technology for collapse emergency monitoring[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 42-51. doi: 10.19509/j.cnki.dzkq.tb20220495
Citation: Liu Jikun, Yang Xiaolin, Wang Chenghu. Principle and application of S-SARⅡ technology for collapse emergency monitoring[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 42-51. doi: 10.19509/j.cnki.dzkq.tb20220495

S-SARⅡ技术的崩塌临灾应急监测原理及其应用

doi: 10.19509/j.cnki.dzkq.tb20220495
基金项目: 

国家重点研发计划 2021YFC3001901

详细信息
    作者简介:

    刘冀昆(1997-), 男, 现正攻读土木工程专业硕士学位, 主要从事崩塌地质灾害研究工作。E-mail: 2232215900@qq.com

    通讯作者:

    杨晓琳(1985-), 男, 正高级工程师, 主要从事雷达边坡预警监测的研究工作。E-mail: yangxl@chinasafety.ac.cn

    王成虎(1978-), 男, 研究员, 主要从事地应力与地质力学、断层力学等研究工作。E-mail: huchengwang@163.com

  • 中图分类号: P642.2

Principle and application of S-SARⅡ technology for collapse emergency monitoring

  • 摘要:

    崩塌灾害具有高隐蔽性、强突发性、重危害性等特点, 其预警监测是各类重大基础工程准备阶段以及施工期间的重要研究工作, 同时也是崩塌临灾监测救援现场指挥工作的重要科学依据。结合地基合成孔径干涉雷达技术(GB-InSAR)和最新的MIMO技术, 将应急边坡救援雷达S-SARⅡ的系统量程扩大了60倍, 并通过监测内蒙古某矿场主矿坑西南帮崩塌隐患点生成雷达形变图, 结合三维高程模型DEM以及多种预测模型预测崩塌发生时间。结果表明, S-SARⅡ精准地确定了形变区域及形变量, 并预测崩塌发生时间为8月29日9∶32-10∶27之间, 最终崩塌发生时间为8月29日10点26分。因此, S-SARⅡ准确预测了崩塌灾害的发生时间, 最大程度地保障了矿区的生产安全, 并通过实际应用分析证明, 优化后的S-SARⅡ的系统量程得到了数量级提升, 满足崩塌监测的需要, 且以S-SARⅡ为代表的遥测预警技术在地质灾害险情处置和应急救援中具有明显的技术优势。

     

  • 图 1  S-SARⅡ工作原理

    Figure 1.  Principle of S-SARⅡ

    图 2  S-SARⅡ应急救援边坡雷达基本组成单元

    Figure 2.  Basic components of S-SARⅡ emergency rescue slope radar

    图 3  应急救援边坡雷达拖车平台

    Figure 3.  Trailer platform of the emergency rescue slope radar

    图 4  某矿场主矿坑西南帮失稳边坡监测示意图

    Figure 4.  Schematic diagram of unstable slope monitoring of southwest slope of main pit of Barun stope

    图 5  监测区域雷达强度影像

    Figure 5.  Radar intensity image of monitoring area

    图 6  形变图(a)、雷达图(b)和相干系数图(c)

    Figure 6.  Deformation diagram (a), radar image (b) and coherence coefficient diagram (c)

    图 7  雷达形变图和三维DEM配准结果

    Figure 7.  Radar deformation map and 3D DEM registration results

    图 8  崩塌灾害的时间预测模型(P1为累计变形量最大的点)

    Figure 8.  Time prediction model of collapse disaster

    图 9  S-SARⅡ边坡雷达监测变形云图(a)及崩塌区域位移变形曲线(b)

    Figure 9.  Deformation contour(a) and collapse deformation curve generated by S-SARⅡ emergency rescue slope radar(b)

    图 10  崩塌发生后的现场图像

    Figure 10.  Site image after collapse

    表  1  S-SARⅡ与其他监测技术的优势对比

    Table  1.   Comparison of the performance between S-SARⅡand other monitoring technologies

    对比对象 对比对象的技术特性 S-SARⅡ的技术优势
    GPS、全站仪等传统的监测手段 离散点形变量监测 大范围空间连续覆盖
    埋置式监测,需要人员进入 远程监测
    受天气、视通条件等限制 全天时全天候实时监测
    激光扫描仪等遥测手段 测量距离为2 km 测量距离为5 km
    测量精度为毫米量级 测量精度为亚毫米量级
    需要人工多次跑点测量 全自动测量,无需人工参与
    星载、机载雷达 重复观测周期最短需要11 d,难以实现定点连续观测 重复观测周期最短可达几分钟甚至几十毫秒,可以实现对形变区域的定点连续监测
    时间和空间分辨率低,不适合获取小区域形变信息 可以获得很高的空间分辨率和测量精度
    运行轨道固定、观测周期固定,易受地形、观测视角等影响 可根据监测目标特性选择观测时间基线
    实孔径雷达 受极端天气影响较大 更强的环境适应性,搭配应急救援拖车平台,受环境影响小
    每个分辨单元在每次扫描过程中只能被进行一次采样 每个分辨单元在每次扫描过程中可以被上百次采样,数据采集更全面
    下载: 导出CSV

    表  2  S-SAR Ⅱ监测参数

    Table  2.   S-SARⅡ monitoring parameters

    精度 ±0.1 mm视线方向 发射功率 30 dBm
    空间分辨率 距离向:0.25 m
    方位向:4/8 mrad
    发射带宽/MH 600
    波束宽度/(°) 水平向:60
    俯仰向:30
    监测距离/m 30~5 000
    极化方式 水平极化 监测周期/min < 10
    工作温度/℃ -40~+55 防护等级 IP65
    工作频段/GHz 17.2~17.8 功耗/W < 120
    下载: 导出CSV
  • [1] 王彤. 应急管理部发布2021年全国自然灾害基本情况[J]. 中国减灾, 2022(3): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJI202203023.htm

    Wang T. Ministry of Emergency Management released the basic information of national natural disasters in 2021[J]. Disaster Reduction in China, 2022(3): 7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJI202203023.htm
    [2] 杜岩, 谢谟文, 蒋宇静, 等. 岩体崩塌灾害成因机制与早期预警研究综述[J]. 金属矿山, 2021(1): 106-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202101009.htm

    Du Y, Xie M W, Jiang Y J, et al. Review on the formation mechanism and early warning of rock collapse[J]. Metal Mine, 2021(1): 106-119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202101009.htm
    [3] 吴星辉, 马海涛, 张杰. 地基合成孔径雷达的发展现状及应用[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 1073-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907013.htm

    Wu X H, Ma H T, Zhang J. Development status and application of ground based synthetic aperture radar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1073-1081(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907013.htm
    [4] 黄健, 巨能攀, 何朝阳, 等. 基于新一代信息技术的地质灾害监测预警系统建设[J]. 工程地质学报, 2015, 23(1): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501026.htm

    Huang J, Ju N P, He C Y, et al. Establishment of early geohazard warning system using modern information technology[J]. Journal of Engineering Geology, 2015, 23(1): 140-147(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501026.htm
    [5] 黄跃文, 牛广利, 李端有, 等. 大坝安全监测智能感知与智慧管理技术研究及应用[J]. 长江科学院院报, 2021, 38(10): 180-185, 198. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202110033.htm

    Huang Y W, Niu G L, Li D Y, et al. Research and application of intelligent perception and intelligent management technology for dam safety monitoring[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 180-185, 198(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202110033.htm
    [6] 何满潮, 韩雪, 张斌, 等. 滑坡地质灾害远程实时监测预报技术与工程应用[J]. 黑龙江科技学院学报, 2012, 22(4): 337-342. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201204005.htm

    He M C, Han X, Zhang B, et al. Realtime remote monitoring and forecasting technology for landslide disasters based on sliding force variation and its engineering application[J]. Journal of Heilongjiang Institute of Science and Technology, 2012, 22(4): 337-342(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI201204005.htm
    [7] 靳玉鹏, 胡庆忠, 覃事河. 微芯桩监测在猴子岩水电站开顶滑坡体中的应用[J]. 四川水力发电, 2020, 39(2): 119-121, 127. https://www.cnki.com.cn/Article/CJFDTOTAL-SCSL202002034.htm

    Jin Y P, Hu Q Z, Qin S H. The application of micro core pile monitory in the opentop landslide body of Houziyan Hydropower Station[J]. Sichuan Water Power, 2020, 39(2): 119-121, 127(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCSL202002034.htm
    [8] Janeras M, Jara J A, Roya' N M J, et al. Multitechnique approach to rockfall monitoring in the Montserrat massif (Catalonia, NE Spain)[J]. Engineering Geology, 2017, 219: 420.
    [9] Zhang J Y, Li H B, Yang X G, et al. Quantitative assessment of rockfall hazard in postlandslide high rock slope through terrestrial laser scanning[J]. Bulletin of Engineering Geology & the Environment, 2021, 80(10): 1-17.
    [10] Marija L, Martin Z, Jordan A, et al. Rockfall susceptibility and runout in the Valley of the Kings[J]. Natural Hazards, 2021, 110: 451-485.
    [11] Du Y, Wu Z X, Xie M W, et al. Early warning method of rock collapse and its experimental verification[J]. Journal of the China Coal Society, 2019, 44(10): 3069-3075.
    [12] Miles C, Gomez F, Rosenblad B L, et al. Quantifying measurement capabilities of ground based interferometric radar for rockfall hazard applications[J]. Geotechnical Testing Journal, 2020, 43(4): 985-1002.
    [13] Ali M F, Biswajeet P. A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS[J]. Catena, 2019, 172: 435-450. doi: 10.1016/j.catena.2018.09.012
    [14] Herlan D, Pamungkas Y, Afif R, et al. Dynamic velocity and seismic characteristics of gravitational rockfalls at the Merapi lava dome[J]. Journal of Volcanology & Geothermal Research, 2020, 404: 107010.
    [15] Albert P V, Jordi C, Nieves L, et al. Capturing rockfall kinematic and fragmentation parameters using highspeed camera system[J]. Engineering Geology, 2022, 302: 106629. doi: 10.1016/j.enggeo.2022.106629
    [16] Gili J A, Ruiz C R, Matas G, et al. Rockfalls: Analysis of the block fragmentation through field experiments[J]. Landslides, 2022, 19(5): 1009-1029. doi: 10.1007/s10346-021-01837-9
    [17] Hu J, Li S, Shi S, et al. Development and application of a model test system for rockfall disaster study on tunnel heading slope[J]. Environmental Earth Sciences, 2019, 78(14): 391.
    [18] Wu H, Pai L, Wang F, et al. Research on the dynamic response of rockfall with different structure to impact on slope[J]. Journal of Railway Engineering Society, 2020, 37(7): 13-17, 28.
    [19] Xu Q, Dong X, Li W. Integrated space air ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966.
    [20] Crosta G B, Agliardi F, Rivolta C, et al. Longterm evolution and early warning strategies for complex rockslides by realtime monitoring[J]. Landslides, 2017, 14(5): 1615-1632.
    [21] Osasan K S, Stacey T R. Automatic prediction of time to failure of open pit mine slopes based on radar monitoring and inverse velocity method[J]. International Journal of Mining Science and Technology, 2014, 24(2): 275-280.
    [22] Lauren N, Federico D, Estelle C, et al. Monitoring volcano slope instability with Synthetic Aperture Radar: A review and new data from Pacaya (Guatemala) and Stromboli (Italy) volcanoes[J]. Earth Science Reviews, 2019, 92: 236-257.
    [23] 林德才, 马海涛, 宋宝宏. 边坡雷达在滑坡应急救援行动中的应用[J]. 中国安全生产科学技术, 2016, 12(增刊1): 284-289. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK2016S1051.htm

    Lin D C, Ma H T, Song B H. Application of slope radar in emergency rescue of landslide[J]. Journal of Safety Science and Technology, 2016, 12(S1): 284-289(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK2016S1051.htm
    [24] 吕权儒, 曾斌, 孟小军, 等. 基于无人机倾斜摄影技术的崩塌隐患早期识别及影响区划分方法[J]. 地质科技通报, 2021, 40(6): 313-325, 334. doi: 10.19509/j.cnki.dzkq.2021.0631

    Lü Q R, Zeng B, Meng X J, et al. Early identification and influence range division method of collapse hazards based on UAV oblique photography technology[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 313-325, 334(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0631
    [25] 岳发政, 郭金城, 汪娟, 等. GBInSAR技术在山体崩塌残余危岩体监测中的应用[J]. 中国地质灾害与防治学报, 2018, 29(5): 78-80, 88.

    Yue F Z, Guo J C, Wang J, et al. The application of GBInSAR technique in monitoring of residual body of rock avalanch[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 78-80, 88(in Chinese with English abstract).
    [26] 赵东寅, 申其鸿, 马海涛, 等. 国产地基合成孔径雷达监测预警系统在紫金山金铜矿露天采场边坡位移监测的应用[J]. 中国安全生产科学技术, 2015, 11(4): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201504010.htm

    Zhao D Y, Shen Q H, Ma H T, et al. Application of domestic ground based synthetic aperture radar monitoring and warning system in slope displacement monitoring on open pit of Zijinshan gold/copper mine[J]. Journal of Safety Science and Technology, 2015, 11(4): 54-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201504010.htm
    [27] 郭延辉, 杨溢, 杨志全, 等. 国产GBInSAR在特大型水库滑坡变形监测中的应用[J]. 中国地质灾害与防治学报, 2021, 32(2): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202102009.htm

    Guo Y H, Yang Y, Yang Z Q, et al. Application of GBInSAR in deformation monitoring of huge landslide in reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 66-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202102009.htm
    [28] 马海涛, 张亦海, 于正兴. 滑坡速度倒数法预测模型加速开始点识别及临滑时间预测研究[J]. 岩石力学与工程学报, 2021, 40(2): 355-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102011.htm

    Ma H T, Zhang Y H, Yu Z X. Research on the identification of acceleration starting point in inverse velocity method and the prediction of sliding time[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 355-364(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102011.htm
    [29] 王治华, 贾伟洁. 基于数字滑坡技术的三峡新滩滑坡研究[J]. 工程地质学报, 2017, 25(3): 762-771. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703024.htm

    Wang Z H, Jia W J. Study on xintan landslide in three gorgebased on digital landslide technique[J]. Journal of Engineering Geology, 2017, 25(3): 762-771(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703024.htm
    [30] 李聪, 朱杰兵, 汪斌, 等. 滑坡不同变形阶段演化规律与变形速率预警判据研究[J]. 岩石力学与工程学报, 2016, 35(7): 1407-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607011.htm

    Li C, Zhu J B, Wang B, et al. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1407-1414(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607011.htm
    [31] Du Y, Xie M W, Jiang Y J, et al. Research progress on dynamic monitoring index for early warning of rock collapse: Review[J]. Chinese Journal of Engineering, 2019, 41(4): 427-435.
    [32] Li Y. MIMO radar waveform design: An overview[J]. Journal of Beijing Institute of Technology, 2021, 30(1): 44-59.
    [33] Assaf H. Discussion "An empirical model of fatalities and injuries due to floods in Japan" by Guofang Zhai, Teruki Fukuzono, and Saburo Ikeda[J]. JAWRA Journal of the American Water Resources Association, 2007, 43(5): 1344-1346.
    [34] Qin H N, Ma H T, Yu Z X. Analysis method of landslide early warning and prediction supported by ground based SAR technology[J]. Geomatics & Information Science of Wuhan University, 2020, 45(11): 1697-1706.
    [35] 中华人民共和国国土资源部. 崩塌、滑坡、泥石流监测规范: DZ/T 02212006[S]. 北京: 中华人民共和国国土资源部, 2006.

    Ministry of Land and Resources of the People's Republic of China. Code for professional monitoring of rockfall, landslideand debris flow: DZ/T 02212006[S]. Beijing: Ministry of Land and Resources of the People's Republic of China, 2006(in Chinese).
    [36] 朱冬雪, 许强, 李松林. 三峡库区大型特大型层状岩质滑坡成因模式及地质特征分析[J]. 地质科技通报, 2020, 39(2): 158-167. doi: 10.19509/j.cnki.dzkq.2020.0217

    Zhu D X, Xu Q, Li S L. Genetic types and geological features of large scale and extralarge scale layered landslides in the Three Gorges Reservoir Area[J]. Geological Science and Technology Information, 2020, 39(2): 158-167(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0217
    [37] 文广超, 苏林雪, 谢洪波, 等. "5·12"汶川地震前后四川省主要地质灾害时空发育规律[J]. 地质科技通报, 2021, 40(4): 143-152. doi: 10.19509/j.cnki.dzkq.2021.0430

    Wen G C, Su L X, Xie H B, et al. Spatio-temporal development characteristics of major geohazards in Sichuan Province around "5· 12" Wenchuan earthquake[J]. Bulletin of Geological Science and Technology, 2021.40(4): 143-152(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0430
    [38] 温鑫, 范宣梅, 陈兰, 等. 基于信息量模型的地质灾害易发性评价: 以川东南古蔺县为例[J]. 地质科技通报, 2022, 41(2): 290-299. doi: 10.19509/j.cnki.dzkq.2022.0054

    Wen X, Fan X M, Chen L, et al. Susceptibility assessment of geological disasters based on an information value model: A case of Gulin County in Southeast Sichuan[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 290-299(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0054
    [39] 刘宇, 刘明鑫, 徐湘涛. 基于非连续变形分析的贵州典型崩塌研究[J]. 山地学报, 2015, 33(1): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201501013.htm

    Liu Y, Liu M X, Xu X T. Research on the typical collapse of Guizhou based on the discontinues deformation analysis[J]. Mountain Research, 2015, 33(1): 94-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201501013.htm
    [40] 冯振, 李滨, 贺凯. 近水平厚层高陡斜坡崩塌机制研究[J]. 地质力学学报, 2014, 20(2): 123-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201402003.htm

    Feng Z, Li B, He K. Rock collapse mechanism on highsteep slope failure in subhorizontal thick bedded mountains[J]. Journal of Geomechanics, 2014, 20(2): 123-131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201402003.htm
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  903
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02

目录

    /

    返回文章
    返回