Influence of frozen soil on the seismic responses of bridge structures considering the effect of temperature
-
摘要:
近年来冻土区实际桥梁结构的震害已经表明, 冻土的存在会增加桥梁基础的土体侧向刚度, 可能会使桥梁结构出现更为严重的地震损伤, 然而目前缺乏关于地震作用下冻土桥梁结构的冻土-桩相互作用效应以及相应地震响应规律的研究。基于所提出的高效非线性数值模型来考虑地震作用下的冻土-桩基础相互作用效应, 推导了冻土深度与地表温度的关系, 给出了冻土层的
p -y 弹簧非线性数值模拟方法, 并选择了多条地震实测记录, 研究了地震作用下不同冻土深度对规则桥梁墩柱以及支座地震响应的影响规律。结果表明, 本研究所采用的高效非线性数值模型较好地模拟了冻土下桥梁结构的抗震性能, 且所建立的冻土p -y 弹簧曲线具有很好的准确性。当峰值加速度(PGA )较小时, 冻土对于桥墩墩底曲率的增幅达20%, 而当PGA 较大时, 冻土可增加桥墩曲率响应(达185%), 使桥墩更易进入屈服。当冻土深度较小(温度等于-5℃)时, 支座位移有较大的增加, 增加了地震作用下主梁的落梁风险, 且冻土可使地震作用下结构体系的最不利部位发生转移。研究结果可为我国冻土桥梁结构的抗震性能与相应的抗震设计方法研究提供必要的理论基础与数据支持, 这一基础性工作对于推动我国冻土区桥梁工程防灾减灾的发展与工程应用具有重要意义。Abstract:Objective Recently, the seismic damage of an actual bridge structure in a frozen soil area has shown that the presence of frozen soil will increase the lateral stiffness of the bridge foundation, which may cause more serious seismic damage to the bridge structure, but there is a lack of research on the frozen soil-pile interaction effect of frozen soil bridge structures under seismic loadings and the corresponding seismic responses.
Methods The present paper proposed efficient nonlinear numerical models to consider the effect of the frozen soil-pile interaction on the seismic responses of structures. First, the relationship between the depth of frozen soil and surface temperature was constructed. Then, the
p -y spring modelling approach was presented to simulate the seismic behavior of frozen soil. Several as-recorded ground motions were selected as the seismic input. The seismic responses of piers and bearings of regular bridges with different depths of frozen soil under seismic loadings were investigated.Results The results show that the proposed efficient nonlinear numerical model can be adopted to model the seismic behavior of bridges considering frozen soil. And the proposed
p -y curves for frozen soil can accurately predict thep -y relationship from the existing tests. When thePGA is relatively small, the pier curvature increases slightly; by contrast, in the case of largePGA , frozen soil can significantly increase the curvature demands, which can make the pier enter into the inelastic behavior. When the depth of frozen soil is small (the temperature is -5℃), the bearing displacement increases significantly, which increases the probability of unseating under seismic loadings. Moreover, frozen soil can transfer to the adverse locations of structural systems under seismic loadings.Conclusion Therefore, the conclusions of this paper can provide the necessary theoretical basis and data support for studying the seismic performance and corresponding seismic design methods of frozen soil bridge structures in China, which is of great significance for promoting the development and engineering application of disaster prevention and mitigation of bridge engineering in frozen soil areas in China.
-
Key words:
- seasonal frozen soil /
- bridge structure /
- numerical simulation /
- seismic responses /
- temperature effect
-
表 1 选取的7条地震动时程信息
Table 1. Information on the seven selected ground motion records
序号 地震名称 年份 震级 测站 PGA/g PGV/(cm·s-1) E1 Imperial valley-06 1979 6.5 Brawley Airport 0.22 72.98 E2 EC County Center FF 0.20 53.17 E3 Supersition hill 1987 6.6 El Centro Imp.Co.Cent 0.33 32.85 E4 Parachute Test Site 0.27 44.58 E5 LomaPrieta 1989 7.0 Gilroy-Gavilan Coll. 0.46 37.97 E6 Gilroy Array #1 0.37 46.37 E7 Landers 1992 7.3 Gilroy Array #3 0.32 58.33 -
[1] Sritharan S, Suleiman M T, White D J. Effects of seasonal freezing on bridge column-foundation-soil interaction and their implications[J]. Earthquake Spectra, 2007, 23(1), 199-222. doi: 10.1193/1.2423071 [2] 马巍, 周国庆, 牛富俊, 等. 青藏高原重大冻土工程的基础研究进展与展望[J]. 中国基础科学, 2016, 18(6): 9-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201606002.htmMa W, Zhou G Q, Niu F J, et al. Progress and prospect of the basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. China Basic Science, 2016, 18(6): 9-19 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201606002.htm [3] 张昊宇, 黄勇, 汪云龙, 等. 基于倾斜摄影的野马滩大桥震害位移评价[J]. 地震工程与工程振动, 2022, 42(2): 89-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202202010.htmZhang H Y, Huang Y, Wang Y L, et al. Oblique photography modeling displacement estimation of Yematan Bridges[J]. Earthquake Engineering and Engineering Vibration, 2022, 42(2): 89-103(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202202010.htm [4] 李永乐, 陈宇, 彭成山, 等. 地震作用下的灰坝液化特征及其动力稳定性分析: 以安阳电厂为例[J]. 地质科技情报, 2002, 21(1): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201021.htmLi Y L, Chen Y, Peng C S, et al. Liquefied characters and dynamic stability of ash dam of the Anyang Power Plant under the action of earthquake[J]. Geological Science and Technology Information, 2002, 21(1): 83-86 (in Chinese with English abstract https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201021.htm [5] 付鑫, 杜晓峰, 官大勇, 等. 地震沉积学在河流-浅水三角洲沉积相研究中的应用: 以渤海海域蓬莱A构造区馆陶组为例[J]. 地质科技通报, 2021, 40(3): 96-108. doi: 10.19509/j.cnki.dzkq.2021.0304Fu X, Du X F, Guan D Y, et al. Application of seismic sedimentology in reservoir prediction in fluvial to shallow water delta facies: A case study in Guantao Formation from the Penglai A structure area in Bohai Bay[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 96-108 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0304 [6] 高运, 徐若时, 孙文静. 考虑土-结构相互作用下基岩深度对核反应堆厂房基础地震响应的影响[J]. 地质科技通报, 2022, 41(2): 154-164. doi: 10.19509/j.cnki.dzkq.2022.0043Gao Y, Xu R S, Sun W J. Influence of bedrock depth on the seismic response of a nuclear reactor building foundation considering soil structure interaction[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 154-164(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0043 [7] Yang Z J, Li Q, Horazdovsky J, et al. Performance and design of laterally loaded piles in frozen ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 143(5): 31-36 [8] Wotherspoon L, Sritharan S, Pender M, et al. Investigation on the impact of seasonally frozen soil on seismic response of bridge columns[J]. Journal of Bridge Engineering, 2010, 24(5): 473-481. [9] Shelman A, Tantalla J, Sritharan S, et al. Characterization of seasonally frozen soils for seismic design of foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 27(8): 04014031. [10] Yang Z J, Still B, Ge X. Mechanical properties of seasonally frozen and permafrost soils at high strain rate[J]. Cold Regions Science and Technology, 2015, 113: 12-19. [11] Gu Q, Yang Z, Peng Y. Parameters affecting laterally loaded piles in frozen soils by an efficient sensitivity analysis method[J]. Cold Regions Science and Technology, 2016, 121: 42-51. [12] Wang X, Shafieezadeh A, Ye A. Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground[J]. Bulletin of Earthquake Engineering, 2018, 16(1): 229-257. [13] Wang X, Pang Y, Ye A. Probabilistic seismic response analysis of coastal highway bridges under scour and liquefaction conditions: Does the hydrodynamic effect matter?[J]. Advances in Bridge Engineering, 2020, 1(1): 1-15. [14] Wang X, Luo F, Su Z, et al. Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization[J]. International Journal of Geomechanics, 2017, 2: 1-16. [15] 庞于涛, 袁万城, 党新志, 等. 考虑材料劣变过程的桥梁地震易损性分析[J]. 同济大学学报: 自然科学版, 2013, 41(3): 348-354. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201303005.htmPang Y T, Yuan W C, Dang X Z, et al. Stochastic fragility analysis of bridges with a consideration of material deterioration[J]. Journal of Tongji Univeristy: Natural Science, 2013, 41(3): 348-354(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201303005.htm [16] Pang Y, He W, Zhong J. Risk-based design and optimization of shape memory alloy restrained sliding bearings for highway bridges under near-fault ground motions[J]. Engineering Structures, 2021, 241: 112421. http://www.sciencedirect.com/science/article/pii/S014102962100571X [17] Haynes F D, Karalius J A. Effect of temperature on the strength of frozen silt[R]. Hanover, NH: CRREL Rep. No. 77-3, Cold Regions Research and Engineering Laboratory, 1977. [18] Li Q, Yang Z (Joey). P-y approach for laterally loaded piles in frozen silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143: 4017001.