留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑温度效应下冻土层对桥梁结构地震响应的影响

殷鹏程 孙义贤 庞于涛 王晓伟 朱维元

殷鹏程, 孙义贤, 庞于涛, 王晓伟, 朱维元. 考虑温度效应下冻土层对桥梁结构地震响应的影响[J]. 地质科技通报, 2023, 42(5): 27-35. doi: 10.19509/j.cnki.dzkq.tb20220505
引用本文: 殷鹏程, 孙义贤, 庞于涛, 王晓伟, 朱维元. 考虑温度效应下冻土层对桥梁结构地震响应的影响[J]. 地质科技通报, 2023, 42(5): 27-35. doi: 10.19509/j.cnki.dzkq.tb20220505
Yin Pengcheng, Sun Yixian, Pang Yutao, Wang Xiaowei, Zhu Weiyuan. Influence of frozen soil on the seismic responses of bridge structures considering the effect of temperature[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 27-35. doi: 10.19509/j.cnki.dzkq.tb20220505
Citation: Yin Pengcheng, Sun Yixian, Pang Yutao, Wang Xiaowei, Zhu Weiyuan. Influence of frozen soil on the seismic responses of bridge structures considering the effect of temperature[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 27-35. doi: 10.19509/j.cnki.dzkq.tb20220505

考虑温度效应下冻土层对桥梁结构地震响应的影响

doi: 10.19509/j.cnki.dzkq.tb20220505
基金项目: 

国家自然科学基金项目 51708527

详细信息
    作者简介:

    殷鹏程(1983-), 男, 高级工程师, 主要从事桥梁工程方面工作。E-mail: pcyin0609@163.com

    通讯作者:

    庞于涛(1988-), 男, 副教授, 主要从事桥梁抗震方面工作。E-mail: pangyutao@cug.edu.cn

  • 中图分类号: U445.7+5

Influence of frozen soil on the seismic responses of bridge structures considering the effect of temperature

  • 摘要:

    近年来冻土区实际桥梁结构的震害已经表明, 冻土的存在会增加桥梁基础的土体侧向刚度, 可能会使桥梁结构出现更为严重的地震损伤, 然而目前缺乏关于地震作用下冻土桥梁结构的冻土-桩相互作用效应以及相应地震响应规律的研究。基于所提出的高效非线性数值模型来考虑地震作用下的冻土-桩基础相互作用效应, 推导了冻土深度与地表温度的关系, 给出了冻土层的p-y弹簧非线性数值模拟方法, 并选择了多条地震实测记录, 研究了地震作用下不同冻土深度对规则桥梁墩柱以及支座地震响应的影响规律。结果表明, 本研究所采用的高效非线性数值模型较好地模拟了冻土下桥梁结构的抗震性能, 且所建立的冻土p-y弹簧曲线具有很好的准确性。当峰值加速度(PGA)较小时, 冻土对于桥墩墩底曲率的增幅达20%, 而当PGA较大时, 冻土可增加桥墩曲率响应(达185%), 使桥墩更易进入屈服。当冻土深度较小(温度等于-5℃)时, 支座位移有较大的增加, 增加了地震作用下主梁的落梁风险, 且冻土可使地震作用下结构体系的最不利部位发生转移。研究结果可为我国冻土桥梁结构的抗震性能与相应的抗震设计方法研究提供必要的理论基础与数据支持, 这一基础性工作对于推动我国冻土区桥梁工程防灾减灾的发展与工程应用具有重要意义。

     

  • 图 1  桥梁结构的示意图以及相应尺寸(D.桥墩圆形截面直径;φB.桩基砂粒体积分数)

    Figure 1.  Schematic of the considered bridge structure and the corresponding dimensions

    图 2  基于p-y弹簧的桥梁桩柱式基础高效有限元模型

    Figure 2.  Efficient finite element model of the pile shaft foundation based on the p-y springs

    图 3  纤维单元中钢筋和混凝土力学本构模型

    Figure 3.  Stress-strain relationship of steel and concrete in fiber elements

    图 4  所选取地震波的反应谱:加速度谱(a)和位移谱(b)

    Figure 4.  Response spectra of selected ground motions: acceleration spectra (a) and displacement spectra (b)

    图 5  本研究所采用的冻土的p-y曲线

    Figure 5.  Sketch of the proposed p-y curve for frozen soil

    图 6  本研究建立的冻土p-y曲线与现有文献[18]数据的对比

    Figure 6.  Comparison between the p-y curves for frozen soil in the literature [18] and the realizations in OpenSees in this paper

    图 7  不同冻土深度对桥梁自振周期的影响

    Figure 7.  Effect of frozen soil depth on the vibration period of bridges

    图 8  E3地震波下冻土深度为0,0.5, 2.0 m时的桥墩墩顶位移(a)、墩底剪力(b)以及墩底弯矩(c)

    Figure 8.  Top displacement (a), bottom shear (b) and moment responses (c) of piers under E3 seismic wave when the depth of the frozen soil is selected as 0, 0.5, 2.0 m

    图 9  不同地震动强度与温度作用下冻土对桥墩与支座地震响应的影响:曲率延性系数(a)和支座位移(b)

    Figure 9.  Effect of frozen soil on the seismic responses of columns and bearings at different IM levels and temperatures: curvature ductility factor (a) and bearing displacement (b)

    图 10  不同上部结构质量下不同冻土深度对墩底曲率延性系数(a)与支座位移响应(b)的影响

    Figure 10.  Effect of frozen soil on pier curvature (a) and bearing displacement (b) under different superstructure masses and different depths

    图 11  E1地震波下墩身与桩身不同部位的曲率响应图

    Figure 11.  Curvature responses at different locations of both the pier and pile under the E1 seismic wave

    表  1  选取的7条地震动时程信息

    Table  1.   Information on the seven selected ground motion records

    序号 地震名称 年份 震级 测站 PGA/g PGV/(cm·s-1)
    E1 Imperial valley-06 1979 6.5 Brawley Airport 0.22 72.98
    E2 EC County Center FF 0.20 53.17
    E3 Supersition hill 1987 6.6 El Centro Imp.Co.Cent 0.33 32.85
    E4 Parachute Test Site 0.27 44.58
    E5 LomaPrieta 1989 7.0 Gilroy-Gavilan Coll. 0.46 37.97
    E6 Gilroy Array #1 0.37 46.37
    E7 Landers 1992 7.3 Gilroy Array #3 0.32 58.33
    下载: 导出CSV

    表  2  不同地区的季节性冻土深度Hf与地表温度Ts的关系

    Table  2.   Relationship between seasonal frozen soil depth Hf and surface temperature Ts

    资料来源 地表温度Ts/℃ 冻土深度Hf/m Ts/Hf
    文献[10] -8.0 2.38 -3.36
    文献[11] -15.8 1.45 -10.90
    文献[1] -7.0 0.46 -15.21
    文献[1] -10.0 0.76 -13.16
    均值 -10.66
    下载: 导出CSV
  • [1] Sritharan S, Suleiman M T, White D J. Effects of seasonal freezing on bridge column-foundation-soil interaction and their implications[J]. Earthquake Spectra, 2007, 23(1), 199-222. doi: 10.1193/1.2423071
    [2] 马巍, 周国庆, 牛富俊, 等. 青藏高原重大冻土工程的基础研究进展与展望[J]. 中国基础科学, 2016, 18(6): 9-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201606002.htm

    Ma W, Zhou G Q, Niu F J, et al. Progress and prospect of the basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. China Basic Science, 2016, 18(6): 9-19 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201606002.htm
    [3] 张昊宇, 黄勇, 汪云龙, 等. 基于倾斜摄影的野马滩大桥震害位移评价[J]. 地震工程与工程振动, 2022, 42(2): 89-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202202010.htm

    Zhang H Y, Huang Y, Wang Y L, et al. Oblique photography modeling displacement estimation of Yematan Bridges[J]. Earthquake Engineering and Engineering Vibration, 2022, 42(2): 89-103(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202202010.htm
    [4] 李永乐, 陈宇, 彭成山, 等. 地震作用下的灰坝液化特征及其动力稳定性分析: 以安阳电厂为例[J]. 地质科技情报, 2002, 21(1): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201021.htm

    Li Y L, Chen Y, Peng C S, et al. Liquefied characters and dynamic stability of ash dam of the Anyang Power Plant under the action of earthquake[J]. Geological Science and Technology Information, 2002, 21(1): 83-86 (in Chinese with English abstract https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201021.htm
    [5] 付鑫, 杜晓峰, 官大勇, 等. 地震沉积学在河流-浅水三角洲沉积相研究中的应用: 以渤海海域蓬莱A构造区馆陶组为例[J]. 地质科技通报, 2021, 40(3): 96-108. doi: 10.19509/j.cnki.dzkq.2021.0304

    Fu X, Du X F, Guan D Y, et al. Application of seismic sedimentology in reservoir prediction in fluvial to shallow water delta facies: A case study in Guantao Formation from the Penglai A structure area in Bohai Bay[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 96-108 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0304
    [6] 高运, 徐若时, 孙文静. 考虑土-结构相互作用下基岩深度对核反应堆厂房基础地震响应的影响[J]. 地质科技通报, 2022, 41(2): 154-164. doi: 10.19509/j.cnki.dzkq.2022.0043

    Gao Y, Xu R S, Sun W J. Influence of bedrock depth on the seismic response of a nuclear reactor building foundation considering soil structure interaction[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 154-164(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0043
    [7] Yang Z J, Li Q, Horazdovsky J, et al. Performance and design of laterally loaded piles in frozen ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 143(5): 31-36
    [8] Wotherspoon L, Sritharan S, Pender M, et al. Investigation on the impact of seasonally frozen soil on seismic response of bridge columns[J]. Journal of Bridge Engineering, 2010, 24(5): 473-481.
    [9] Shelman A, Tantalla J, Sritharan S, et al. Characterization of seasonally frozen soils for seismic design of foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 27(8): 04014031.
    [10] Yang Z J, Still B, Ge X. Mechanical properties of seasonally frozen and permafrost soils at high strain rate[J]. Cold Regions Science and Technology, 2015, 113: 12-19.
    [11] Gu Q, Yang Z, Peng Y. Parameters affecting laterally loaded piles in frozen soils by an efficient sensitivity analysis method[J]. Cold Regions Science and Technology, 2016, 121: 42-51.
    [12] Wang X, Shafieezadeh A, Ye A. Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground[J]. Bulletin of Earthquake Engineering, 2018, 16(1): 229-257.
    [13] Wang X, Pang Y, Ye A. Probabilistic seismic response analysis of coastal highway bridges under scour and liquefaction conditions: Does the hydrodynamic effect matter?[J]. Advances in Bridge Engineering, 2020, 1(1): 1-15.
    [14] Wang X, Luo F, Su Z, et al. Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization[J]. International Journal of Geomechanics, 2017, 2: 1-16.
    [15] 庞于涛, 袁万城, 党新志, 等. 考虑材料劣变过程的桥梁地震易损性分析[J]. 同济大学学报: 自然科学版, 2013, 41(3): 348-354. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201303005.htm

    Pang Y T, Yuan W C, Dang X Z, et al. Stochastic fragility analysis of bridges with a consideration of material deterioration[J]. Journal of Tongji Univeristy: Natural Science, 2013, 41(3): 348-354(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201303005.htm
    [16] Pang Y, He W, Zhong J. Risk-based design and optimization of shape memory alloy restrained sliding bearings for highway bridges under near-fault ground motions[J]. Engineering Structures, 2021, 241: 112421. http://www.sciencedirect.com/science/article/pii/S014102962100571X
    [17] Haynes F D, Karalius J A. Effect of temperature on the strength of frozen silt[R]. Hanover, NH: CRREL Rep. No. 77-3, Cold Regions Research and Engineering Laboratory, 1977.
    [18] Li Q, Yang Z (Joey). P-y approach for laterally loaded piles in frozen silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143: 4017001.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  568
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 录用日期:  2023-02-13
  • 修回日期:  2023-02-06

目录

    /

    返回文章
    返回