留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密砂岩气藏不同岩石相孔喉结构对气水相渗特征控制机理:以鄂尔多斯盆地东胜气田J72井区下石盒子组储层为例

赵丁丁 侯加根 王秀杰 刘钰铭 陈儒贤 张占杨

赵丁丁, 侯加根, 王秀杰, 刘钰铭, 陈儒贤, 张占杨. 致密砂岩气藏不同岩石相孔喉结构对气水相渗特征控制机理:以鄂尔多斯盆地东胜气田J72井区下石盒子组储层为例[J]. 地质科技通报, 2023, 42(3): 163-174. doi: 10.19509/j.cnki.dzkq.tb20220517
引用本文: 赵丁丁, 侯加根, 王秀杰, 刘钰铭, 陈儒贤, 张占杨. 致密砂岩气藏不同岩石相孔喉结构对气水相渗特征控制机理:以鄂尔多斯盆地东胜气田J72井区下石盒子组储层为例[J]. 地质科技通报, 2023, 42(3): 163-174. doi: 10.19509/j.cnki.dzkq.tb20220517
Zhao Dingding, Hou Jiagen, Wang Xiujie, Liu Yuming, Chen Ruxian, Zhang Zhanyang. Controlling mechanism of pore-throat structure of different lithofacies on gas-water relative permeability characteristics of tight sandstone gas reservoir: A case study of the Lower Shihezi Formation in the Well J72 block of the Dongsheng Gas Field, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 163-174. doi: 10.19509/j.cnki.dzkq.tb20220517
Citation: Zhao Dingding, Hou Jiagen, Wang Xiujie, Liu Yuming, Chen Ruxian, Zhang Zhanyang. Controlling mechanism of pore-throat structure of different lithofacies on gas-water relative permeability characteristics of tight sandstone gas reservoir: A case study of the Lower Shihezi Formation in the Well J72 block of the Dongsheng Gas Field, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 163-174. doi: 10.19509/j.cnki.dzkq.tb20220517

致密砂岩气藏不同岩石相孔喉结构对气水相渗特征控制机理:以鄂尔多斯盆地东胜气田J72井区下石盒子组储层为例

doi: 10.19509/j.cnki.dzkq.tb20220517
基金项目: 

国家自然科学基金项目 42172154

详细信息
    作者简介:

    赵丁丁(1994—),男,现正攻读地质资源与地质工程专业博士学位,主要从事油气田开发地质方面的研究工作。E-mail: zddcuper187@sina.com

    通讯作者:

    侯加根(1963—),男,教授,主要从事油气田开发地质方面的研究工作。E-mail: jghou63@hotmail.com

  • 中图分类号: P618.130.2+1

Controlling mechanism of pore-throat structure of different lithofacies on gas-water relative permeability characteristics of tight sandstone gas reservoir: A case study of the Lower Shihezi Formation in the Well J72 block of the Dongsheng Gas Field, Ordos Basin

  • 摘要:

    为了明确致密砂岩气藏储层微观孔喉对气水相渗特征的控制机理,更好地指导气田增储上产,以东胜气田J72井区下石盒子组储层为研究对象,综合多种分析化验资料并细分岩石相探究了微观孔喉参数对气水渗流能力的影响,揭示了不同岩石相对含气性及产能的控制作用。研究结果表明:J72井区下石盒子组岩石相可以归纳为砾岩相、砾质砂岩相、含砾粗砂岩相、中细砂岩相、泥岩相五大类,其中含砾粗砂岩相、砾质砂岩相为优质岩石相;孔隙类型主要为次生粒间溶孔,平均占比达48.5%,含砾粗砂岩相、砾质砂岩相、中细砂岩相的粒间溶孔比例依次减少,三类岩石相均具有多重分形的特征,大孔比例逐渐降低,其中优质岩石相的物性好、综合分形维数小;优质岩石相的黏土矿物含量低、平均孔喉半径大,气体渗流时的可动气体孔隙度和最大有效气相渗透率较大,含气性好。综合研究认为优质岩石相是控制气井高产稳产的关键因素,深入剖析岩石相的微观特征可以为致密砂岩气藏的高效开发提供有力指导。

     

  • 图 1  研究区构造位置(a)及地层综合柱状图(b)

    Figure 1.  Tectonic location (a) and comprehensive stratigraphic histogram (b) of the study area

    图 2  东胜气田J72井区不同岩石相典型照片及测井相特征

    a.块状砾岩相,J21井,2 936.21 m,盒1段;b.块状砾质砂岩相,J116井,2 979.86 m,盒1段;c.块状含砾粗砂岩相,J116井,2 982.06 m,盒1段;d.槽状交错层理中粗砂岩相,J7井,2 823.41 m,盒1段;e.块状层理中粗砂岩相,J53井,2 894.10 m,盒1段;f.平行层理中细砂岩相,J72井,2 946.42 m,盒1段;g.块状泥岩相,J69井,2 952.47 m,盒1段;h.块状砾岩相,J7井,2 838.41 m,盒1段;i.块状砾质砂岩相,J54井,2 885.06 m,盒1段;j.块状含砾粗砂岩相,J116井,2 985.70 m,盒1段;k.槽状交错层理中粗砂岩相,J91井,3 005.60 m,盒1段;l.块状层理中粗砂岩相,J88井,3 002.32 m,盒1段;m.平行层理中细砂岩相,J72井,2 963.76 m,盒1段;n.块状泥岩相,J7井,2 746.95 m,盒3段

    Figure 2.  Typical images and logging facies characteristics of different lithofacies in the J72 well block of the Dongsheng Gas Field

    图 3  东胜气田J72井区不同孔隙类型所占百分比

    Figure 3.  Percentages of different pore types in the J72 well block of the Dongsheng Gas Field

    图 4  东胜气田J72井区下石盒子组不同孔隙类型照片

    a.残余粒间孔、粒间溶孔,J32井,2 942.24 m,含砾粗砂岩相,铸体薄片;b.铸模孔,J90井,2 969.7 m,含砾粗砂岩相,铸体薄片;c.残余粒间孔、粒间溶孔,J93井,3 021.81 m,含砾粗砂岩相,铸体薄片;d.粒间溶孔,J92井,3 066.1 m,含砾粗砂岩相,扫描电镜;e.粒间溶孔、粒内溶孔,J48井,2 534.92 m,砾质砂岩相,铸体薄片;f.粒间溶孔、粒内溶孔,J93井,3 060.93 m,砾质砂岩相,铸体薄片;g.粒内溶孔,J91井,2 985.02 m,砾质砂岩相,铸体薄片;h.粒间溶孔、微孔,J89井,3 087.05 m,砾质砂岩相,扫描电镜;i.微孔,J70井,2 907.93 m,中细砂岩相,铸体薄片;j.粒内溶孔,J21井,2 875.03 m,中细砂岩相,铸体薄片;k.微裂缝,J72井,2 950.13 m,中细砂岩相,铸体薄片;l.微孔,J9井,2 990.66 m,中细砂岩相,扫描电镜

    Figure 4.  Images of different pore types of the Lower Shihezi Formation in the J72 well block of the Dongsheng Gas Field

    图 5  不同类型岩石相毛细管压力曲线及孔喉分布

    a.3类岩石相8块样品毛细管压力曲线;b.含砾粗砂岩相典型样品孔喉分布曲线,J91井,2 984.14 m,孔隙度为12.2%,渗透率为4.4×10-3 μm2;c.砾质砂岩相典型样品孔喉分布曲线,J72井,2 952.56 m,孔隙度为6.5%,渗透率为1.3×10-3 μm2;d.中细砂岩相典型样品孔喉分布曲线,J90井,2 988.36 m,孔隙度为5.5%,渗透率为0.43×10-3 μm2

    Figure 5.  Capillary pressure curves and pore-throat radius distributions of different lithofacies

    图 6  不同类型岩石相典型样品分形特征曲线

    a.含砾粗砂岩相典型样品,J91井,2 984.14 m;b.砾质砂岩相典型样品,J72井,2 952.56 m;c.中细砂岩相典型样品,J90井,2 988.36 m

    Figure 6.  Fractal characteristic curves of typical samples from different lithofacies

    图 7  不同类型岩石相气水相渗曲线

    Krw.水相相对渗透率;Krg.气相相对渗透率;Sw.含水饱和度

    Figure 7.  Gas-water relative permeability curves of different lithofacies

    图 8  研究区下石盒子组压汞参数与气水相渗参数交会图

    Figure 8.  Crossplot of mercury injection parameters and gas-water relative permeability parameters of the Lower Shihezi Formation in the study area

    图 9  不同类型岩石相黏土矿物含量直方图

    Figure 9.  Histograms of clay minerals content in different lithofacies

    图 10  黏土矿物含量与气水相渗参数交会图

    Figure 10.  Crossplot of clay minerals content and gas-water relative permeability parameters

    图 11  JX井下石盒子组不同岩石相含气性测井响应综合图

    Figure 11.  Comprehensive logging response of gas-bearing capacities of different lithofacies in the Lower Shihezi Formation of Well JX

    图 12  研究区下石盒子组有利岩石相厚度与累计产气量交会图

    Figure 12.  Crossplot of favorable lithofacies thickness and accumulative gas production of the Lower Shihezi Formation in the study area

    表  1  东胜气田J72井区下石盒子组岩石相归类

    Table  1.   Lithofacies classification of the Lower Shihezi Formation in the J72 well block of the Dongsheng Gas Field

    岩石相亚类 砾岩相 砾质砂岩相 含砾粗砂岩相 中细砂岩相 泥岩相
    岩石相类型 块状砾岩相 块状砾质砂岩相 块状含砾粗砂岩相槽状交错层理中粗砂岩相块状层理中粗砂岩相 平行层理中细砂岩相 块状泥岩相
    下载: 导出CSV

    表  2  不同岩石相高压压汞及气水相渗曲线参数

    Table  2.   Mercury injection and gas-water relative permeability curve parameters of different lithofacies

    井名 深度/m 岩石相 孔隙度/% 渗透率/10-3μm2 高压压汞曲线参数 气水相渗曲线参数/%
    排驱压力/MPa 最大孔喉半径/μm 平均孔喉半径/μm 最大进汞饱和度/% 分选系数 束缚水处含水饱和度 残余气处含水饱和度 等渗点相对渗透率 两相共渗区范围
    J91 2 984.14 含砾粗砂岩 12.20 4.40 0.22 3.41 0.36 85.65 0.51 47.27 70.91 0.03 23.64
    J72 2 942.93 含砾粗砂岩 11.10 1.47 0.29 2.52 0.38 91.53 0.41 55.95 84.58 0.03 28.63
    J93 3 036.49 含砾粗砂岩 12.90 0.84 0.19 3.95 0.55 93.36 0.66 66.49 84.54 0.02 18.05
    J72 2 952.56 砾质砂岩 6.50 1.30 0.43 1.73 0.08 86.12 0.16 67.74 83.87 0.02 16.13
    J90 2 986.61 砾质砂岩 6.10 0.90 0.83 0.90 0.12 74.12 0.10 63.86 81.93 0.03 18.07
    J93 3 022.34 砾质砂岩 8.70 0.20 0.54 1.37 0.19 85.12 0.18 57.79 74.03 0.02 16.24
    J90 2 988.36 中细砂岩 5.50 0.43 1.20 0.62 0.08 67.61 0.06 63.77 78.26 0.02 14.49
    J91 2 953.41 中细砂岩 3.90 0.69 2.58 0.16 0.03 41.18 0.02 65.24 78.61 0.02 13.37
    下载: 导出CSV
  • [1] 贾爱林, 何东博, 位云生, 等. 未来十五年中国天然气发展趋势预测[J]. 天然气地球科学, 2021, 32(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101002.htm

    Jia A L, He D B, Wei Y S, et al. Predictions on natural gas development trend in China for the next fifteen years[J]. Natural Gas Geoscience, 2021, 32(1): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101002.htm
    [2] 张威, 曹强, 陆永潮, 等. 克拉通盆地盆缘致密气藏封堵模式: 以鄂尔多斯盆地北缘杭锦旗地区盒1段为例[J]. 地质科技通报, 2022, 41(3): 122-131. doi: 10.19509/j.cnki.dzkq.2022.0075

    Zhang W, Cao Q, Lu Y C, et al. Sealing model of tight gas reservoirs in the edge of Claraton Basin: A case study from the First Member of Lower Shihezi Formation in Hangjinqi area of the northern margin of the Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 122-131(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0075
    [3] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 575-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804005.htm

    Zou C N, Yang Z, He D B, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 575-587(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804005.htm
    [4] 何发岐, 王付斌, 张威, 等. 鄂尔多斯盆地北缘勘探思路转变与天然气领域重大突破[J]. 中国石油勘探, 2020, 25(6): 39-49. doi: 10.3969/j.issn.1672-7703.2020.06.004

    He F Q, Wang F B, Zhang W, et al. Transformation of exploration ideas and major breakthrough in natural gas discovery in the northern margin of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(6): 39-49(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.06.004
    [5] 蔡宁波, 何磊, 王晓龙, 等. 川西坳陷须三段致密砂岩气藏源储特征及成藏模式[J]. 地质科技通报, 2021, 40(6): 1-14. doi: 10.19509/j.cnki.dzkq.2021.0528

    Cai N B, He L, Wang X L, et al. Characteristics of reservoir-source rock and hydrocarbon accumulation model of tight sandstone gas reservoirs in the Third Member of Xujiahe Formation in western Sichuan Depression[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 1-14(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0528
    [6] 计玮. 致密砂岩气储层气水相渗特征及其影响因素: 以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报: 地球科学版, 2019, 49(6): 1540-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201906004.htm

    Ji W. Gas water relative flow of tight sandstone gas reservoirs and its influencing factors: Case study of Member 8 of Permian Xiashihezi Formation and Member 1 of Permian Shanxi Formation in Shaan Well 234-235 area of Sulige Gas-Field in Ordos Basin[J]. Journal of Jilin University: Earth Science Edition, 2019, 49(6): 1540-1551(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201906004.htm
    [7] Fu J G, Su Y L, Li L, et al. Productivity model with mechanisms of multiple seepage in tight gas reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109825. doi: 10.1016/j.petrol.2021.109825
    [8] 刘登科, 孙卫, 任大忠, 等. 致密砂岩气藏孔喉结构与可动流体赋存规律: 以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12): 2136-2146. doi: 10.11764/j.issn.1672-1926.2016.12.2136

    Liu D K, Sun W, Ren D Z, et al. Features of pore-throat structures and movable fluid in tight gas reservoir: A case from the 8th Member of Permian Xiashihezi Formation and the 1st Member of Permian Shanxi Formation in the western area of Sulige Gasfield, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(12): 2136-2146(in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2016.12.2136
    [9] Yin X D, Shu J, Li Y L, et al. Impact of pore structure and clay content on the water-gas relative permeability curve within tight sandstones: A case study from the LS block, eastern Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103418. doi: 10.1016/j.jngse.2020.103418
    [10] 赵丁丁, 孙卫, 杜堃, 等. 特低-超低渗透砂岩储层微观水驱油特征及影响因素: 以鄂尔多斯盆地马岭油田长81储层为例[J]. 地质科技情报, 2019, 38(3): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903016.htm

    Zhao D D, Sun W, Du K, et al. Microscopic water flooding characteristics of extra-ultra low permeability sandstone reservoir and its influence factors: A case from the Chang 81 reservoir in Maling Oilfield in Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(3): 157-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903016.htm
    [11] Zhang F, Jiang Z X, Sun W, et al. Effect of microscopic pore-throat heterogeneity on gas-phase percolation capacity of tight sandstone reservoirs[J]. Energy & Fuels, 2020, 34(10): 12399-12416. doi: 10.1021/acs.energyfuels.0c02393
    [12] Zhang F, Xiao H M, Jiang Z X, et al. Influence of pore throat structure and the multiphases fluid seepage on mobility of tight oil reservoir[J]. Lithosphere, 2021, 2021(S1): 5525670. http://www.researchgate.net/publication/352367202_Influence_of_Pore_Throat_Structure_and_the_Multiphases_Fluid_Seepage_on_Mobility_of_Tight_Oil_Reservoir
    [13] Miall A D. Lithofacies types and vertical profile models in braided river deposits: A summary[C]//Miall A D. Fluvial sedimentology. [S. l. ]: AAPG Memoir 5, 1977: 597-604.
    [14] 刘君龙, 刘忠群, 肖开华, 等. 四川盆地新场地区三叠系须家河组二段致密砂岩有利岩石相表征及油气地质意义[J]. 石油勘探与开发, 2020, 47(6): 1111-1121. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006007.htm

    Liu J L, Liu Z Q, Xiao K H, et al. Characterization of favorable lithofacies in tight sandstone reservoirs and its significance for gas exploration and exploitation: A case study of the 2nd Member of Triassic Xujiahe Formation in the Xinchang area, Sichuan Basin[J]. Petroleum Exploration and Development, 2020, 47(6): 1111-1121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006007.htm
    [15] Xue C Q, Wu J G, Qiu L W, et al. Lithofacies classification and its controls on the pore structure distribution in Permian transitional shale in the northeastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107657. http://www.sciencedirect.com/science/article/pii/S0920410520307245
    [16] Feng C Y, Melnyk S, Ross C, et al. Lithofacies-dependent pore-throat radii and reservoir properties in the Lower Triassic Montney Formation, Puskwaskau Field, Alberta[J]. Marine and Petroleum Geology, 2021, 131: 105157. http://www.sciencedirect.com/science/article/pii/S0264817221002609
    [17] Yang W Z, Hou J G, Liu Y M, et al. The pore structures of different lithofacies in low-permeability sandy conglomerate reservoirs and their diagenetic impacts: A case study from the Es4 Member of the northern steep slope in Dongying Depression, Bohai Bay Basin, NE China[J]. Marine and Petroleum Geology, 2022, 136: 105481. http://www.nstl.gov.cn/paper_detail.html?id=e65d984480d06d0d905f969a3839e37b
    [18] Cao B F, Sun W, Li J. Reservoir petrofacies: A tool for characterization of reservoir quality and pore structures in a tight sandstone reservoir: A study from the sixth member of Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108294. http://www.sciencedirect.com/science/article/pii/S0920410520313486
    [19] 齐荣, 李良, 秦雪霏. 鄂尔多斯盆地北缘近源砂砾质辫状河砂体构型与含气性[J]. 石油实验地质, 2019, 41(5): 682-690. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201905009.htm

    Qi R, Li L, Qin X F. Sand body configuration and gas-bearing properties of near source sand-gravel braided river on the northern margin of Ordos Basin[J]. Petroleum Geology & Experiment, 2019, 41(5): 682-690(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201905009.htm
    [20] Xu Q H, Shi W Z, Xie X Y, et al. Inversion and propagation of the Late Paleozoic Porjianghaizi fault(North Ordos Basin, China): Controls on sedimentation and gas accumulations[J]. Marine and Petroleum Geology, 2018, 91: 706-722. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0264817218300473&originContentFamily=serial&_origin=article&_ts=1518229711&md5=990a3b8171d6d9e8486fb1d669905b5c
    [21] 朱宗良, 李文厚, 李克永, 等. 杭锦旗地区上古生界层序及沉积体系发育特征[J]. 西北大学学报: 自然科学版, 2010, 40(6): 1050-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201006026.htm

    Zhu Z L, Li W H, Li K Y, et al. The characteristic of sequence stratigraphy and sedimentary systems of Taiyuan-Xiashihezi Formation in Hangjinqi area[J]. Journal of Northwest University: Natural Science Edition, 2010, 40(6): 1050-1054(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201006026.htm
    [22] 刘凯, 王任, 石万忠, 等. 鄂尔多斯盆地北部杭锦旗地区下石盒子组多物源体系: 来自矿物学及碎屑锆石U-Pb年代学的证据[J]. 地球科学, 2021, 46(2): 540-554. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102011.htm

    Liu K, Wang R, Shi W Z, et al. Multiple provenance system of Lower Shihezi Formation in the Hangjinqi area, northern Ordos Basin: Evidence from mineralogy and detrital zircon U-Pb chronology[J]. Earth Science, 2021, 46(2): 540-554(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102011.htm
    [23] 崔明明, 李进步, 王宗秀, 等. 辫状河三角洲前缘致密砂岩储层特征及优质储层控制因素: 以苏里格气田西南部石盒子组8段为例[J]. 石油学报, 2019, 40(3): 279-294. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201903003.htm

    Cui M M, Li J B, Wang Z X, et al. Characteristics of tight sand reservoir and controlling factors of high-quality reservoir at braided delta front: A case study from Member 8 of Shihezi Formation in southwestern Sulige Gas Field[J]. Acta Petrolei Sinica, 2019, 40(3): 279-294(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201903003.htm
    [24] Li Z, Wu S H, Xia D L, et al. An investigation into pore structure and petrophysical property in tight sandstones: A case of the Yanchang Formation in the southern Ordos Basin, China[J]. Marine and Petroleum Geology, 2018, 97: 390-406. http://www.sciencedirect.com/science/article/pii/S0264817218302927
    [25] Wang J J, Wu S H, Li Q, et al. Characterization of the pore-throat size of tight oil reservoirs and its control on reservoir physical properties: A case study of the Triassic tight sandstone of the sediment gravity flow in the Ordos Basin, China[J]. Journal of Petroleum Science & Engineering, 2020, 186: 106701.
    [26] 任晓霞, 李爱芬, 王永政, 等. 致密砂岩储层孔隙结构及其对渗流的影响: 以鄂尔多斯盆地马岭油田长8储层为例[J]. 石油与天然气地质, 2015, 36(5): 774-779. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201505009.htm

    Ren X X, Li A F, Wang Y Z, et al. Pore structure of tight sand reservoir and its influence on percolation: Taking the Chang 8 reservoir in Maling Oilfield in Ordos Basin as an example[J]. Oil & Gas Geology, 2015, 36(5): 774-779(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201505009.htm
    [27] Lai J, Wang G W, Wang Z Y, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457. http://www.researchgate.net/profile/Jin_Lai/publication/321711035_A_review_on_pore_structure_characterization_in_tight_sandstones/links/5ba9138ba6fdccd3cb6f8327/A-review-on-pore-structure-characterization-in-tight-sandstones.pdf
    [28] Wang X X, Hou J G, Song S H, et al. Combining pressure-controlled porosimetry and rate-controlled porosimetry to investigate the fractal characteristics of full-range pores in tight oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 171: 353-361. http://www.sciencedirect.com/science/article/pii/S0920410518306259
    [29] Song Z Z, Liu G D, Yang W W, et al. Multi-fractal distribution analysis for pore structure characterization of tight sandston: A case study of the Upper Paleozoic tight formations in the Longdong district, Ordos Basin[J]. Marine and Petroleum Geology, 2018, 92: 842-854.
    [30] Qu Y Q, Sun W, Tao R D, et al. Pore-throat structure and fractal characteristics of tight sandstones in Yanchang Formation, Ordos Basin[J]. Marine and Petroleum Geology, 2020, 120: 104573.
    [31] Ma X, Guo S B, Shi D S, et al. Investigation of pore structure and fractal characteristics of marine-continental transitional shales from Longtan Formation using MICP, gas adsorption, and NMR(Guizhou, China)[J]. Marine and Petroleum Geology, 2019, 107: 555-571. http://www.sciencedirect.com/science/article/pii/S0264817219302235
    [32] Li P, Zheng M, Bi H, et al. Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 149: 665-674. http://smartsearch.nstl.gov.cn/paper_detail.html?id=e1e1c83708089bdfbd6156921ebfb254
    [33] Huang H X, Chen L, Sun W, et al. Pore-throat structure and fractal characteristics of Shihezi Formation tight gas sandstone in the Ordos Basin, China[J]. Fractals, 2018, 26(2): 1840005. http://www.nstl.gov.cn/paper_detail.html?id=8ff991e7bb9b636e88908d877337a523
    [34] 罗顺社, 彭宇慧, 魏新善, 等. 苏里格气田致密砂岩气水相渗曲线特征与分类[J]. 西安石油大学学报: 自然科学版, 2015, 30(6): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201506010.htm

    Luo S S, Peng Y H, Wei X S, et al. Characteristics and classification of gas-water relative permeability curves of tight sandstone reservoirs in Sulige Gas Field[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2015, 30(6): 55-61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201506010.htm
    [35] Qiao J C, Zeng J H, Jiang S, et al. Insights into the pore structure and implications for fluid flow capacity of tight gas sandstone: A case study in the Upper Paleozoic of the Ordos Basin[J]. Marine and Petroleum Geology, 2020, 118: 104439. http://www.sciencedirect.com/science/article/pii/S0264817220302221
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  394
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09

目录

    /

    返回文章
    返回