留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖南铜山岭层状钨多金属矽卡岩形成时代、成因机制及其找矿启示

谭富诚 孔华 刘飚 吴堑虹 刘玉国 杨齐智

谭富诚, 孔华, 刘飚, 吴堑虹, 刘玉国, 杨齐智. 湖南铜山岭层状钨多金属矽卡岩形成时代、成因机制及其找矿启示[J]. 地质科技通报, 2024, 43(2): 123-142. doi: 10.19509/j.cnki.dzkq.tb20220519
引用本文: 谭富诚, 孔华, 刘飚, 吴堑虹, 刘玉国, 杨齐智. 湖南铜山岭层状钨多金属矽卡岩形成时代、成因机制及其找矿启示[J]. 地质科技通报, 2024, 43(2): 123-142. doi: 10.19509/j.cnki.dzkq.tb20220519
TAN Fucheng, KONG Hua, LIU Biao, WU Qianhong, LIU Yuguo, YANG Qizhi. Timing and genesis of the Tongshanling stratiform W-Mo skarn deposit in Hunan Province: Implications for exploration[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 123-142. doi: 10.19509/j.cnki.dzkq.tb20220519
Citation: TAN Fucheng, KONG Hua, LIU Biao, WU Qianhong, LIU Yuguo, YANG Qizhi. Timing and genesis of the Tongshanling stratiform W-Mo skarn deposit in Hunan Province: Implications for exploration[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 123-142. doi: 10.19509/j.cnki.dzkq.tb20220519

湖南铜山岭层状钨多金属矽卡岩形成时代、成因机制及其找矿启示

doi: 10.19509/j.cnki.dzkq.tb20220519
基金项目: 

国家重点研发计划 2018YFC0603901

中南大学研究生自主创新项目 2022ZZTS0458

详细信息
    作者简介:

    谭富诚, E-mail: Tanfucheng@csu.edu.cn

    通讯作者:

    孔华, E-mail: konghua@csu.edu.cn

  • 中图分类号: P618.6

Timing and genesis of the Tongshanling stratiform W-Mo skarn deposit in Hunan Province: Implications for exploration

More Information
  • 摘要:

    湖南铜山岭矿床位于南岭成矿带西段, 是与Ⅰ型花岗闪长岩有关的矽卡岩型铜多金属矿床。近年在远离花岗闪长岩体的棋梓桥组灰岩地层中发现了厚层状矽卡岩型钨钼矿体, 其地质特征、矿物组合与金属类型均与岩体接触带型矿体不同。通过系统的野外观察、显微鉴定、石榴石原位U-Pb定年、白钨矿LA-ICP-MS微量元素分析对该矿床矽卡岩形成时代、成因机制进行了研究。结果表明: (1)矽卡岩成矿作用可划分为石榴石矽卡岩、绿帘石绿泥石矽卡岩、石英硫化物、石英方解石4个阶段; (2)石榴石U-Pb谐和年龄为(160.4±4.2) Ma(MSWD=0.79), 明显晚于花岗闪长岩体(约167 Ma), 与花岗斑岩(约161 Ma)的年龄一致; (3)核部石榴石稀土元素配分型式为轻稀土元素富集、重稀土元素平坦型, 与花岗斑岩全岩稀土元素配分型式相似, 边缘石榴石的稀土元素配分型式为轻稀土元素亏损、重稀土元素平坦型, 与接触带矽卡岩中石榴石不同; (4)与绿帘石共生的白钨矿主要可分为3个世代, 3个世代的白钨矿稀土元素配分型式均为轻稀土元素富集、重稀土元素亏损型, 但稀土元素总质量分数从第一阶段(Sch1-a, 332×10-6~353×10-6)到第二阶段(Sch1-b, 144×10-6~301×10-6)到第三阶段(Sch1-c, 4.05×10-6~31.8×10-6)呈显著渐进式下降趋势, 与绿泥石共生的白钨矿(Sch2)稀土元素配分型式显示轻稀土元素富集, 重稀土元素亏损, 稀土元素总质量分数为51.2×10-6~139×10-6; (5)钨钼矿化主要集中在退变质阶段, 其中Sch1-b及Sch2阶段具有较高的氧逸度, 为钨沉淀的主要阶段, Sch1-a与Sch1-c阶段氧逸度较低, 为钼沉淀的主要阶段。综合分析认为, 层状矽卡岩与铜山岭及魏家接触带矽卡岩均不为同一成矿系统, 可能与分异程度更高的花岗斑岩有关, 未来铜山岭矿床深边部找矿应该更加关注晚期花岗斑岩体。

     

  • 图 1  南岭地质简图[4, 7]

    1.侏罗纪-白垩纪地层;2.志留纪-三叠纪地层;3.前奥陶纪地层;4.加里东期花岗岩;5.印支期花岗岩;6.燕山早期花岗岩;7.燕山晚期花岗岩;8.断层;9.铜铅锌矿床;10.钨(锡)矿床;11.研究区;12.城市

    Figure 1.  Simplified geological map of the Nanling Range, South China

    图 2  铜山岭矿床地质图(a)及1301勘探线剖面图(b)[1]

    1.第四系;2.侏罗系-三叠系;3.二叠系;4.石炭系孟公坳组;5.石炭系梓门桥组;6.石炭系测水组;7.石炭系大塘阶;8.石炭系石磴子组;9.泥盆系孟公坳组;10.泥盆系锡矿山组;11.泥盆系佘田桥组;12.泥盆系棋梓桥组;13.石英斑岩;14.花岗闪长岩;15.花岗斑岩;16.矽卡岩;17.断层;18.褶皱;19.矿床;20.勘探线及编号;21.钻孔及编号;22.钨矿体;23.钼矿体;24.采样位置

    Figure 2.  Geological map (a) and cross section along Exploration Line 1301 (b) of the Tongshanling deposit

    图 3  铜山岭矿床层状矽卡岩及岩体宏观特征

    a.石榴石矽卡岩;b.石榴石与石英密切共生;c.石英方解石绿泥石脉穿切石榴石矽卡岩;d.石英绿泥石脉及石榴石;e.黄铁矿脉、方铅矿叠加在矽卡岩上;f.方铅矿、白钨矿及晚期方解石;g.石英方解石共生,可见黄铁矿;h.铜山岭花岗闪长岩;i.层状花岗斑岩;Grt.石榴石;Ep.绿帘石;Q.石英;Chl.绿泥石;Gn.方铅矿;Py.黄铁矿;Sch.白钨矿;Cal.方解石

    Figure 3.  Macroscopic characteristics of the stratiform skarn and rock masses in the Tongshanling deposit

    图 4  铜山岭矿床层状矽卡岩及岩体显微特征

    a.石榴石与石英共生,可见绿帘石及绿泥石等晚期矽卡岩矿物, 单偏光;b.石榴石集合体,可见蚀变, 正交偏光;c.白钨矿及晚期矽卡岩矿物, 单偏光;d.毒砂及少量黄铁矿及黄铜矿, 反射光;e.后期黄铁矿叠加在晚期矽卡岩上, 反射光;f.晚期方解石叠加绿泥石, 单偏光;g.铜山岭花岗闪长岩,可见黑云母、斜长石、石英, 单偏光;h.铜山岭ZK1301孔花岗斑岩,可见石英斑晶, 单偏光;i.铜山岭ZK1301孔花岗斑岩,可见石英、长石斑晶, 单偏光;Q.石英;Ep.绿帘石;Grt.石榴石;Bt.黑云母;Pl.斜长石;Py.黄铁矿;Apy.毒砂;Sch.白钨矿;Cpy.黄铜矿

    Figure 4.  Microscopic characteristics of the stratiform skarn and rock masses in the Tongshanling deposit

    图 5  铜山岭层状矽卡岩中与绿帘石及绿泥石共生的白钨矿颗粒的CL图像

    Sch1-a, Sch1-b, Sch1-c为早期第一、二、三阶段白钨矿;Sch2为晚期白钨矿,下同

    Figure 5.  CL images of scheelite particles associated with epidote and chlorite in the Tongshanling stratiform skarn

    图 6  铜山岭层状矽卡岩中石榴石Tera-Wasserburg图下交点年龄(a)及加权平均年龄(b)图

    Figure 6.  Garnet U-Pb concordia age diagrams (a) and weighted average age diagram (b) of the Tongshanling stratiform skarns

    图 7  铜山岭层状、接触带及魏家接触带矽卡岩中石榴石三角分类图解(铜山岭及魏家接触带石榴石数据来源于文献[3, 40])

    Pyr.镁铝榴石; Spe.锰铝榴石; Alm.铁铝榴石; Gro.钙铝榴石; And.钙铁榴石

    Figure 7.  Triangular classification diagram of garnets in the skarn of Tongshanling layer, contact zone and Weijia contact zone

    图 8  铜山岭层状、接触带及魏家接触带矽卡岩中石榴石及白钨矿稀土元素配分型式图解(b, c, h, i引自文献[3, 40];球粒陨石标准化数值引自文献[41])

    Figure 8.  Chondrite-normalized REE patterns of garnet and scheelite in the skarn of the Tongshanling layer, contact zone and Weijia contact zone

    图 9  铜山岭层状矽卡岩中石榴石地球化学元素图解(球粒陨石标准化数值来源于文献[41])

    Figure 9.  Geochemical element diagram of garnets in the Tongshanling stratiform skarn

    图 10  铜山岭层状矽卡岩中白钨矿地球化学元素图解(球粒陨石标准化数值(N)来源于文献[41])

    Figure 10.  Geochemical element diagram of scheelite in the Tongshanling stratiform skarn

    图 11  铜山岭层状矽卡岩成矿模式图

    Figure 11.  Metallogenic model diagram of the Tongshanling stratiform skarn

    表  1  铜山岭层状矽卡岩中石榴石LA-ICP-MS年龄分析结果

    Table  1.   LA-ICP-MS age analysis results for garnets in the Tongshanling stratiform skarn

    238U 232Th 206Pb 207Pb 208Pb 同位素比值 矫正年龄t/Ma
    wB/10-6 238U/206Pb 1 σ 207Pb/206Pb 1 σ t(207Pb) 1 σ
    16.80 0.29 2.04 1.40 3.41 8.04 0.054 1 0.68 0.004 0 160.4 8.9
    12.40 16.30 2.01 1.47 3.74 5.99 0.056 9 0.74 0.004 7 146.9 13.1
    8.86 0.33 2.25 1.75 4.32 3.84 0.025 1 0.78 0.004 9 139.5 21.4
    4.10 0.17 1.36 1.07 2.63 2.93 0.023 4 0.79 0.004 7 157.0 28.2
    9.35 1.47 2.06 1.56 3.84 4.43 0.030 4 0.76 0.004 3 157.2 17.7
    5.51 0.87 1.17 0.88 2.16 4.60 0.040 8 0.75 0.005 3 158.8 17.9
    14.30 1.14 2.05 1.46 3.59 6.78 0.044 0 0.71 0.003 9 159.3 10.8
    4.15 0.90 1.36 1.07 2.66 2.95 0.038 4 0.79 0.005 5 155.9 29.0
    11.50 0.48 1.95 1.42 3.47 5.71 0.036 1 0.73 0.004 2 161.8 13.3
    12.10 1.42 1.69 1.19 2.92 6.98 0.040 5 0.71 0.004 3 158.7 10.6
    6.33 0.87 2.05 1.60 3.97 3.00 0.020 1 0.78 0.004 7 171.9 27.2
    12.10 0.60 1.96 1.42 3.50 5.99 0.038 8 0.73 0.004 0 158.5 12.5
    7.95 41.60 2.49 1.95 5.19 3.11 0.020 9 0.78 0.004 2 161.3 25.9
    7.27 1.78 2.05 1.59 3.95 3.44 0.024 8 0.77 0.004 5 169.4 23.4
    6.64 0.73 1.50 1.14 2.80 4.32 0.032 1 0.76 0.005 5 149.3 19.4
    8.63 0.54 1.65 1.23 3.04 5.11 0.036 3 0.74 0.005 3 158.9 15.9
    10.10 1.02 1.84 1.35 3.48 5.36 0.051 6 0.74 0.005 0 161.3 14.8
    7.63 0.68 2.06 1.59 3.92 3.64 0.025 2 0.77 0.004 4 157.0 22.1
    5.17 0.34 1.75 1.38 3.41 2.90 0.023 4 0.79 0.005 1 162.3 29.0
    6.09 0.33 1.69 1.32 3.28 3.55 0.027 8 0.78 0.005 1 148.4 23.5
    9.91 0.59 1.62 1.17 2.86 6.04 0.050 7 0.73 0.005 0 157.2 13.0
    19.90 0.29 2.27 1.53 3.73 8.65 0.069 9 0.68 0.004 2 157.2 8.3
    6.85 1.92 1.72 1.31 3.30 3.94 0.036 4 0.76 0.004 5 170.3 20.2
    5.72 0.43 1.74 1.34 3.43 3.25 0.029 0 0.77 0.004 5 177.9 24.7
    8.16 0.63 1.79 1.34 3.32 4.48 0.044 7 0.75 0.004 5 165.8 17.6
    6.21 0.39 1.92 1.50 3.73 3.18 0.032 3 0.78 0.005 2 159.7 26.5
    12.10 0.10 1.55 1.07 2.62 7.72 0.070 7 0.69 0.004 2 161.8 9.4
    17.50 0.37 2.17 1.48 3.63 7.99 0.077 0 0.68 0.004 3 161.4 9.1
    6.52 0.17 1.77 1.38 3.42 3.64 0.037 3 0.78 0.004 6 146.9 22.4
    5.08 0.32 1.49 1.14 2.85 3.35 0.043 3 0.77 0.005 1 176.9 24.8
    5.62 0.41 1.78 1.39 3.45 3.11 0.036 7 0.78 0.005 7 155.1 27.7
    6.71 0.40 1.91 1.49 3.68 3.51 0.035 6 0.78 0.004 9 139.3 23.7
    5.59 0.39 1.90 1.49 3.70 2.93 0.030 1 0.79 0.005 3 157.4 29.0
    5.83 0.65 1.92 1.50 3.84 3.03 0.029 3 0.79 0.005 0 159.0 27.6
    5.60 0.42 1.17 0.88 2.17 4.80 0.050 5 0.76 0.005 9 147.3 17.7
    5.15 0.42 1.32 1.01 2.63 3.86 0.041 3 0.77 0.005 2 159.6 21.5
    5.17 0.12 1.36 1.04 2.55 3.71 0.052 3 0.76 0.005 7 175.6 22.8
    13.10 84.60 1.89 1.33 3.97 6.92 0.068 0 0.70 0.004 7 162.0 11.0
    27.80 233.00 1.96 1.09 4.68 14.20 0.111 0 0.56 0.003 5 161.9 4.3
    10.10 54.50 1.20 0.82 2.48 8.35 0.067 2 0.68 0.005 1 155.3 9.1
    下载: 导出CSV

    表  2  铜山岭层状矽卡岩中石榴石电子探针(EPMA)分析结果及其计算结果

    Table  2.   Results of EPMA analysis and calculation results for garnet in Tongshanling stratiform skarn wB/%

    点号 SiO2 TiO2 Al2O3 TFeO MnO MgO CaO And Pyr Spe Gro
    核部 1 38.6 0.29 14.6 9.39 0.60 0.05 35.5 30.5 0.2 1.31 68
    2 39.1 0.15 14.5 9.12 0.47 0.03 35.7 29.6 0.13 1.02 69.3
    3 38.6 0.14 13.3 10.80 0.67 0.03 35.1 35.3 0.11 1.47 63.1
    4 38.8 0.20 15.1 8.49 0.54 0.06 35.2 27.8 0.23 1.19 70.8
    5 35.0 0.14 12.0 9.02 0.55 0.15 32.4 32.0 0.61 1.32 66.1
    6 38.8 0.19 14.2 9.75 0.47 0.02 35.3 32.0 0.09 1.03 66.9
    7 38.7 0.18 14.0 9.74 0.51 0.06 35.5 31.7 0.24 1.12 66.9
    8 39.1 0.23 14.5 9.68 0.50 0.01 35.3 31.7 0.04 1.11 67.1
    9 38.9 0.22 15.4 8.83 0.42 0.02 35.5 28.9 0.07 0.92 70.2
    10 39.1 0.61 14.2 9.45 0.05 0.22 35.9 30.5 0.86 0.10 68.5
    边部 11 39.5 0.08 16.0 7.79 0.02 0.15 36.2 25.1 0.57 0.03 74.3
    12 39.4 0.17 15.6 8.13 0.02 0.17 35.9 26.3 0.67 0.05 73.0
    13 39.7 0.28 15.5 8.20 0.05 0.17 36.1 26.4 0.64 0.10 72.8
    14 39.6 0.29 15.6 8.22 0.03 0.20 35.6 26.8 0.79 0.06 72.3
    15 39.6 0.60 15.9 7.16 0.03 0.25 35.9 23.1 0.94 0.07 75.9
    16 39.4 0.59 15.7 7.86 0.09 0.13 36.2 25.2 0.50 0.19 74.1
    17 40.1 0.40 14.9 8.55 0.08 0.17 36.0 27.6 0.66 0.17 71.6
    18 39.1 0.42 16.5 6.65 0.21 0.14 35.9 21.5 0.55 0.46 77.5
    19 38.6 0.28 16.0 8.43 0.03 0.08 35.4 26.3 0.31 0.06 72.5
    20 38.9 0.32 15.6 7.91 0.29 0.04 35.7 25.7 0.16 0.63 73.5
    21 36.7 2.54 15.2 3.78 0.11 1.50 35.7 11.7 5.51 0.23 82.6
    22 38.9 0.41 15.9 7.82 0.63 0.04 35.3 25.5 0.14 1.38 73
    注:And.钙铁榴石; Pyr.镁铝榴石; Spe.锰铝榴石; Gro.钙铝榴石
    下载: 导出CSV

    表  3  铜山岭层状矽卡岩中石榴石的LA-ICP-MS分析结果

    Table  3.   Results of LA-ICP-MS analysis of garnet in the Tongshanling stratiform skarn wB/10-6

    元素 Sc V Cr Co Ni Zn Ga Rb Sr Y Zr Nb Cd Cs Ba La Ce Pr
    ZK1301-1 15.2 107 154 0.62 1.91 6.35 27.0 0.03 0.38 21.3 43.3 9.56 5.06 0.01 0.02 0.01 0.03 0.01
    ZK1301-2 5.93 91.5 159 1.28 3.65 10.6 21.0 0.06 1.28 19.77 160 4.2 3.84 0.02 0.05 0.08 0.75 0.22
    ZK1301-3 5.81 86.0 25.1 0.51 2.81 4.4 30.6 0.04 0.25 17.63 31.4 9.24 5.17 0.01 0.04 0.01 0.03 0.02
    ZK1301-4 3.49 59.1 16.0 2.7 9.19 9.96 21.3 0.04 1.17 15.0 170.0 10.9 4.46 0.01 0.03 0.63 5.69 1.44
    ZK1301-5 1.62 21.7 9.42 6.05 14.3 19.98 17.9 0.08 2.06 10.7 66.9 9.61 1.41 0.03 0.07 2.04 15.5 2.87
    ZK1301-6 1.00 22.3 3.8 6.12 17.8 21.7 19.5 0.1 2.32 10.6 73.1 11.6 1.22 0.03 0.06 2.43 17.2 3.33
    ZK1301-7 1.15 21.1 9.04 3.12 10.2 19.9 18.8 0.05 3.20 13.0 78.7 13.0 0.66 0.02 0.03 3.01 19.0 3.28
    ZK1301-8 1.81 29.8 12.4 1.39 2.8 19.4 18.6 0.04 2.85 13.9 39.9 7.50 0.93 0.02 0.04 4.22 15.2 1.88
    ZK1301-9 14.8 265 1419 1.13 3.64 9.54 24.6 0.06 0.81 20.7 77.0 8.73 6.66 0.02 0.06 0.01 0.08 0.03
    ZK1301-10 16.0 112 65.5 0.69 3.31 12.9 21.9 0.05 16.61 19.1 69.2 5.62 5.3 0.02 0.11 2.85 5.79 0.79
    元素 Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Pb Th U
    ZK1301-1 0.15 0.23 0.07 1.03 0.29 2.72 0.73 2.76 0.44 3.57 0.51 2.90 0.76 0.20 0.88 0.01
    ZK1301-2 2.13 1.87 0.28 3.17 0.55 3.79 0.75 2.23 0.31 2.07 0.29 4.43 0.55 0.39 1.07 0.05 0.07
    ZK1301-3 0.17 0.28 0.16 1.12 0.3 2.48 0.61 1.97 0.30 2.25 0.35 2.40 0.75 0.25 1.12 0.01
    ZK1301-4 8.31 2.09 0.35 2.23 0.37 2.51 0.53 1.76 0.22 1.78 0.29 5.11 0.75 0.48 0.88 0.75 0.28
    ZK1301-5 12.6 2.70 0.49 2.17 0.31 1.98 0.34 1.13 0.16 1.18 0.18 1.80 0.47 1.95 1.91 2.35 1.22
    ZK1301-6 14.9 3.12 0.55 2.66 0.35 2.08 0.38 1.13 0.17 1.07 0.17 1.47 0.51 2.39 2.28 3.16 1.34
    ZK1301-7 15.4 3.19 0.57 2.73 0.39 2.39 0.47 1.42 0.2 1.44 0.22 1.87 0.73 4.77 1.27 3.03 1.54
    ZK1301-8 8.14 2.00 0.53 2.00 0.34 2.32 0.49 1.5 0.21 1.67 0.25 1.07 0.58 11.30 1.30 1.96 1.19
    ZK1301-9 0.40 0.51 0.11 1.45 0.38 3.08 0.77 2.65 0.41 2.99 0.43 3.71 0.73 0.85 1.75 0.01 0.01
    ZK1301-10 3.85 1.18 0.21 1.46 0.32 2.60 0.65 2.49 0.42 3.24 0.54 3.17 0.78 0.20 3.77 5.02 0.21
    注:—代表未检测到;0.01代表低于检测线
    下载: 导出CSV

    表  4  铜山岭层状矽卡岩中白钨矿的原位LA-ICP-MS分析结果

    Table  4.   Results of in situ LA-ICP-MS analysis of scheelite in the Tongshanling stratiform skarn wB/10-6

    元素 Ti Fe Cu Zn As Rb Sr Y Zr Nb Mo Sn Ba La Ce
    Sch1-a 0.97 28.7 0.75 1.00 1.7 0.12 655 19.45 2.17 1.13 0.39 0.29 0.06 8.85 77.5
    Sch1-a 1.27 29.3 0.76 1.33 1.68 0.13 592 19.63 2.17 0.28 0.30 0.29 0.06 7.86 74.1
    Sch1-a 1.28 46.5 0.8 0.93 1.69 0.12 702 17.41 0.86 0.21 0.3 0.05 9.37 80.5
    Sch1-a 1.24 30.6 0.82 1.09 1.77 0.13 710 19.14 4.49 0.58 0.22 0.31 0.07 9.17 83.5
    Sch1-a 1.43 37.6 0.94 1.35 2.15 0.16 674 28.30 8.53 1.1 0.12 0.37 0.06 13.6 119
    Sch1-a 1.68 38.8 1.2 1.29 2.20 0.16 633 27.17 2.83 0.2 0.39 0.09 14.2 128
    Sch1-b 1.21 28.7 0.74 0.94 2.76 0.12 432 0.56 5.03 16.62 3 212 0.28 0.08 28 114.6
    Sch1-b 1.62 29.9 0.78 1.67 12.04 0.13 501 4.79 2.24 84.17 3 184 0.31 0.13 23.7 90.1
    Sch1-b 1.47 31.1 0.83 1.03 7.89 0.13 508 0.98 4.35 74.97 2 983 0.3 0.06 21.2 82.5
    Sch1-b 1.22 31.7 0.78 1.06 11.55 0.12 461 0.81 2.27 70.46 3 081 0.47 0.13 19.7 78.2
    Sch1-b 1.27 30.3 0.83 1.06 2.67 0.13 380 6.28 11.46 0.29 21 0.30 0.04 7.02 39.1
    Sch1-b 1.22 30.3 0.81 1.13 12.02 0.13 391 0.80 83.17 2 726 0.30 0.06 21.7 80.4
    Sch1-b 1.36 30.4 0.83 1.05 7.19 0.13 433 1.21 6.48 95.22 2 584 0.29 0.08 23 84.6
    Sch1-b 1.27 31.2 0.81 1.12 9.21 0.13 465 0.78 90.63 2 822 0.29 0.07 26.4 94.8
    Sch1-b 1.46 34.3 0.86 1.23 3.46 0.15 367 1.11 18.98 2 984 0.33 0.08 20.3 78.8
    Sch1-b 1.33 37.1 0.98 1.28 4.27 0.16 377 0.23 2.77 19.39 3 309 0.59 0.08 20 75.2
    Sch1-b 1.73 37.8 0.99 1.43 5.56 0.19 360 0.58 5.45 15.94 3 161 0.51 0.07 14.5 58.8
    Sch1-b 1.48 36.4 0.96 1.15 3.74 0.15 401 0.69 5.39 18.16 2 977 0.34 0.09 28.6 107
    Sch1-b 1.93 37.1 0.98 1.21 2.05 0.16 374 0.92 24.26 2 774 0.36 0.09 28.9 110
    Sch1-c 1.53 36.7 0.95 1.17 2.04 0.16 99.5 1.78 1.42 102 0.36 0.05 0.19 1.9
    Sch1-c 1.67 35.9 0.93 1.21 2.05 0.15 117 1.90 5.51 0.99 104 0.37 0.1 0.31 3.44
    Sch1-c 1.66 35.8 0.97 1.25 3.13 0.15 83.5 0.79 5.27 2.04 110 0.36 0.08 0.06 0.42
    Sch1-c 1.51 36.7 0.95 1.3 6.98 0.15 88.8 0.50 10.41 4.70 92.8 0.35 0.04 0.02 0.36
    Sch1-c 1.25 31.3 0.85 1.06 2.11 0.13 75 0.85 4.13 94.5 0.30 0.07 0.05 0.61
    Sch1-c 1.18 31.8 0.87 1.00 1.75 0.13 117 2.00 0.29 91.6 0.31 0.07 0.33 2.87
    Sch1-c 1.22 31.0 0.82 1.02 1.76 0.13 93.4 1.78 4.47 0.29 102 0.30 0.05 0.14 1.47
    Sch1-c 1.41 31.5 0.74 1.07 3.97 0.13 94.6 0.73 4.54 5.25 112 0.31 0.06 0.06 0.67
    Sch1-c 1.76 37.3 0.95 1.18 2.11 0.16 111 3.88 6.39 1.75 113 0.36 0.05 0.38 3.98
    Sch1-c 1.67 35.1 1.1 1.57 4.77 0.15 106 4.03 0.33 115 0.34 0.06 0.38 4.08
    Sch1-c 1.64 36.0 0.91 1.21 15.87 0.15 114 1.64 8.04 5.13 108 0.49 0.09 0.16 1.71
    Sch1-c 1.16 35.5 0.98 1.29 1.86 0.15 93.7 2.00 5.42 0.35 107 0.34 0.09 0.36 3.73
    Sch2 2.79 45.6 0.88 0.89 3.13 0.11 223 1.83 3.16 5.42 2 243 0.28 0.15 8.21 39.3
    Sch2 2.75 45.8 0.92 0.77 3.12 0.11 227 0.82 4.75 4.42 2 248 0.27 0.17 9.32 43
    Sch2 2.72 46.1 0.87 0.77 3.23 0.10 220 4.72 3.17 3.79 2 246 0.28 0.41 11.2 52
    Sch2 2.93 49.8 1.00 0.82 3.50 0.11 226 5.71 3.91 4.52 2 558 0.36 0.24 12.2 49.3
    Sch2 2.76 48.2 0.93 0.86 3.31 0.12 233 2.77 3.29 4.61 2 018 0.29 0.16 6.51 29.3
    Sch2 2.67 47.5 0.87 0.82 3.23 0.11 270 1.50 4.92 3.06 3 028 0.28 0.21 11.2 35.4
    Sch2 2.81 49.7 1.56 0.95 3.24 0.18 243 3.34 8.41 3.82 2 076 0.29 0.17 11.1 45.5
    Sch2 2.95 51.6 1.03 0.93 3.86 0.12 235 1.10 3.42 2.06 2 169 0.29 0.28 9.03 41
    Sch2 2.57 46.1 0.91 0.87 3.07 0.11 219 1.59 6.13 17.45 2 434 0.26 0.13 11.8 41.7
    Sch2 2.90 46.8 0.87 0.87 3.02 0.1 225 0.47 7.76 18.1 2 301 0.26 0.15 12.7 45.8
    Sch2 2.50 46.9 0.87 0.89 3.15 0.1 220 0.67 4.61 18.9 2 266 0.26 0.13 13.6 47.8
    Sch2 2.55 46.1 0.88 0.87 3.10 0.11 203 0.58 6.51 2 085 0.26 0.3 11.3 43.7
    Sch2 2.50 47.0 0.84 0.84 5.93 0.11 227 0.86 4.63 6.01 2 166 0.26 0.15 13.3 51.3
    Sch2 4.14 4189 0.98 10.34 3.55 0.12 193 7.38 1.81 0.98 1 712 2.1 0.65 5.22 18
    Sch2 3.22 59.3 1.07 1.08 4.82 0.13 194 4.82 1.91 2.34 1 951 0.31 0.37 5.2 19.3
    Sch2 3.11 56.4 1.00 1.00 5.14 0.12 193 1.58 5.06 1 836 0.3 0.2 6.5 23.5
    Sch2 3.02 56.3 0.97 1.02 3.48 0.13 206 3.20 1.78 3.13 1 882 0.3 0.34 6.19 23.3
    Sch1-a 22.6 159 28.3 4.43 15.91 1.85 9.23 1.37 2.84 0.19 0.75 0.04 0.01 24.6
    Sch1-a 22.8 172 34.6 4.53 22.19 2.46 11.80 1.76 3.11 0.22 0.71 0.05 0.01 12.1
    Sch1-a 23.4 160 28.7 4.38 15.48 1.77 8.56 1.33 2.53 0.2 0.62 0.05 0.01 12.9
    Sch1-a 24.7 176 33.8 3.47 18.69 2.28 11.20 1.57 2.80 0.18 0.78 0.06 0.01 12.6
    Sch1-a 32.7 217 37.0 3.78 21.93 2.47 13.40 2.16 4.35 0.38 1.40 0.10 8.21
    Sch1-a 36.0 251 45.8 5.30 27.99 3.22 16.20 2.34 4.79 0.35 1.04 0.12 6.54
    Sch1-b 22.3 120 12.1 1.49 2.5 0.12 0.25 0.03 0.04 0.01 0 0.01 7.66
    Sch1-b 17.2 89.3 9.99 1.41 3.27 0.32 1.68 0.27 0.63 0.08 0.32 0.04 0.01 0.33 10.1
    Sch1-b 15.9 86.0 9.06 1.17 2.42 0.15 0.59 0.06 0.12 0.01 0.03 0.01 0.48 13.0
    Sch1-b 14.7 75.9 8.28 0.91 2.17 0.13 0.47 0.06 0.12 0.01 0.02 0.01 0.25 10.5
    Sch1-b 8.90 56.4 11.2 2.07 7.16 0.7.0 3.04 0.39 0.70 0.05 0.15 0.01 0.01 5.69
    Sch1-b 14.4 72.8 6.78 0.8 2.11 0.18 0.55 0.07 0.14 0.02 0.01 0.24 15.1
    Sch1-b 14.8 75.2 6.48 0.78 1.8 0.12 0.47 0.07 0.22 0.01 0.06 0.01 0.24 11.3
    Sch1-b 16.9 81.8 7.42 1.12 1.95 0.13 0.41 0.04 0.08 0.02 0.34 9.38
    Sch1-b 14.1 70.1 6.75 0.94 1.72 0.14 0.72 0.08 0.19 0.02 0.06 0 11.4
    Sch1-b 12.5 60.1 5.23 0.68 1.16 0.06 0.10 0.01 0.01 0.01 0.01 0 11.5
    Sch1-b 10.9 53.2 4.76 0.67 1.18 0.07 0.27 0.04 0.05 0.04 0.01 0 11.1
    Sch1-b 19.2 94.7 8.64 0.92 2.01 0.11 0.44 0.07 0.09 0.01 0.03 0 0.30 10.3
    Sch1-b 20.4 100 9.19 1.03 2.32 0.14 0.55 0.07 0.10 0.01 0.03 0.01 0.20 10.8
    Sch1-c 0.74 6.30 1.52 0.16 1.06 0.15 1.03 0.15 0.35 0.02 0.16 0.01 3.68
    Sch1-c 1.29 10.7 2.53 0.13 1.51 0.18 0.99 0.18 0.39 0.03 0.11 0.01 0.01 3.09
    Sch1-c 0.16 1.78 0.43 0.05 0.42 0.06 0.34 0.05 0.22 0.01 0.04 0.01 0.01 0.84
    Sch1-c 0.20 1.97 0.61 0.05 0.43 0.06 0.34 0.07 0.10 0.01 0.05 0.01 3.44
    Sch1-c 0.27 2.64 0.84 0.07 0.65 0.07 0.38 0.08 0.22 0.02 0.05 0.01 0.01 0.88
    Sch1-c 1.01 8.68 2.14 0.19 1.10 0.18 0.97 0.17 0.36 0.03 0.08 0.01 3.54
    Sch1-c 0.63 6.18 1.61 0.11 1.24 0.16 0.99 0.18 0.35 0.03 0.10 0.01 0.01 0.94
    Sch1-c 0.27 3.36 0.97 0.09 0.69 0.08 0.48 0.09 0.17 0.01 0.06 1.25
    Sch1-c 1.50 15.1 3.50 0.10 2.52 0.37 1.93 0.33 0.70 0.07 0.24 0.02 0.01 1.60
    Sch1-c 1.56 14.8 3.97 0.11 2.85 0.41 2.16 0.35 0.74 0.07 0.27 0.03 0.01 1.34
    Sch1-c 0.77 7.8 2.12 0.12 1.5 0.21 0.96 0.19 0.36 0.02 0.09 0.02 0.01 4.46
    Sch1-c 1.31 13.2 2.8 0.14 1.81 0.21 1.25 0.23 0.34 0.03 0.09 0.01 1.30
    Sch2 8.03 41 4.99 1.26 2.42 0.19 0.73 0.10 0.17 0.01 0.09 0.01 7.68
    Sch2 8.97 43.9 4.30 0.63 1.53 0.10 0.31 0.04 0.07 0.01 0.02 7.36
    Sch2 10.5 50.1 6.31 1.95 3.37 0.28 1.33 0.21 0.35 0.05 0.23 0.03 0.13 8.71
    Sch2 9.80 48.9 7.59 2.92 4.68 0.53 2.18 0.33 0.43 0.06 0.25 0.02 0.01 8.64
    Sch2 6.29 34.8 4.53 1.96 2.74 0.30 1.37 0.19 0.29 0.04 0.14 0.01 5.41
    Sch2 5.96 25.6 2.74 0.85 1.11 0.12 0.52 0.10 0.15 0.02 0.08 9.10
    Sch2 8.79 42.5 4.86 1.69 1.99 0.18 1.00 0.15 0.21 0.03 0.15 0.01 8.80
    Sch2 8.54 42.2 4.14 1.08 1.19 0.10 0.32 0.05 0.12 0.02 0.05 0.01 12.1
    Sch2 7.12 30.4 3.15 0.68 1.71 0.16 0.74 0.10 0.15 0.02 0.12 0 9.93
    Sch2 7.93 32.1 3.04 0.37 1.08 0.05 0.19 0.01 0.01 0.01 0.01 0.06 10.5
    Sch2 8.31 34.7 3.44 0.52 1.32 0.08 0.27 0.03 0.05 0.01 0.02 0.11 8.15
    Sch2 8.28 35.9 3.45 0.68 1.30 0.07 0.20 0.02 0.03 0.01 0.01 7.04
    Sch2 9.64 42.7 4.08 0.84 1.50 0.10 0.33 0.05 0.06 0.01 0.03 0.01 10.3
    Sch2 3.44 17.2 3.39 2.04 2.80 0.34 1.83 0.3 0.52 0.07 0.46 0.05 0.01 9.42
    Sch2 3.54 16.0 2.29 1.25 1.64 0.18 0.99 0.16 0.37 0.06 0.27 0.02 11.2
    Sch2 4.20 19.0 1.95 0.71 0.85 0.13 0.63 0.12 0.18 0.02 0.07 0.01 0.01 11.5
    Sch2 4.27 19.5 2.44 1.09 1.33 0.16 0.73 0.14 0.24 0.03 0.17 0.02 6.69
    注:—代表未检测到;0.01代表低于检测线
    下载: 导出CSV
  • [1] ZHAO P L, YUAN S D, MAO J W, et al. Geochronological and petrogeochemical constraints on the skarn deposits in Tongshanling ore district, southern Hunan Province: Implications for Jurassic Cu and W metallogenic events in South China[J]. Ore Geology Reviews, 2016, 78: 120-137. doi: 10.1016/j.oregeorev.2016.03.004
    [2] 李剑锋, 付建明, 马昌前, 等. 南岭金鸡岭岩体锆石U-Pb年龄、地球化学特征及地质意义[J]. 地球科学, 2021, 46(4): 1231-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104006.htm

    LI J F, FU J M, MA C Q, et al. Zircon U-Pb ages, geochemical characteristics and geological significance of Jinjiling pluton in Nanling[J]. Earth Science, 2021, 46(4): 1231-1247. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104006.htm
    [3] LIU B, KONG H, WU Q H, et al. Origin and evolution of W mineralization in the Tongshanling Cu-polymetallic ore field, South China: Constraints from scheelite microstructure, geochemistry, and Nd-O isotope evidence[J]. Ore Geology Reviews, 2022, 143: 164764.
    [4] 陈骏, 王汝成, 朱金初, 等. 南岭多时代花岗岩的钨锡成矿作用[J]. 中国科学(地球科学), 2014, 44(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401012.htm

    CHEN J, WANG R C, ZHU J C, et al. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China[J]. Science China(Earth Sciences), 2014, 44(1): 111-121. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401012.htm
    [5] MAO J W, CHEN Y B, CHEN M H, et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48(3): 267-294. doi: 10.1007/s00126-012-0446-z
    [6] 黄旭栋, 陆建军, STANISLAS S, 等. 南岭中-晚侏罗世含铜铅锌与含钨花岗岩的成因差异: 以湘南铜山岭和魏家矿床为例[J]. 中国科学(地球科学), 2017, 47(7): 766-782. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707002.htm

    HUANG X D, LU J J, STANISLAS S, et al. Petrogenetic differences between the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, South China: A case study of the Tongshanling and Weijia deposits in southern Hunan Province[J]. Science China(Earth Science), 2017, 47(7): 766-782. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707002.htm
    [7] 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10): 2329-2338. doi: 10.3969/j.issn.1000-0569.2007.10.002

    MAO J W, XIE G Q, GUO C L, et al. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic progress[J]. Acta Petrologica Sinica, 2007, 23(10): 2329-2338. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0569.2007.10.002
    [8] 魏道芳, 鲍征宇, 付建明. 湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年[J]. 大地构造与成矿学, 2007, 31(4): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200704014.htm

    WEI D F, BAO Z Y, FU J M. Geochemical characetristics and ziron SHRIMP U-Pb dating of the Tongshanling granite in Hunan Province, South China[J]. Geotectonica et Metallogenia, 2007, (4): 482-489. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200704014.htm
    [9] 全铁军, 王高, 钟江临, 等. 湖南铜山岭矿区花岗闪长岩岩石成因: 岩石地球化学, U-Pb年代学及Hf同位素制约[J]. 矿物岩石, 2013, 33(1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201301007.htm

    QUAN T J, WANG G, ZHONG J L, et al. Petrogenesis of granodiiorites in Tongshanling deposit of Hunan Province: Constraints from petrogeochemistry, zircon U-Pb chronology and Hf isotope[J]. J. Mineral Petrol., 2013, 33(1): 43-52. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201301007.htm
    [10] 黄文海, 严彦, 杨齐智, 等. 湖南铜山岭矿区地质特征及边部找矿前景分析[J]. 矿产勘查, 2019, 10(2): 231-237. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201902011.htm

    HUANG W H, YAN Y, YANG Q Z, et al. Geological characetristics and prospecting potential of Tongshanling mining area in Hunan[J]. Mineral Exploration, 2019, 10(2): 231-237. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201902011.htm
    [11] SU Q W, MAO J W, WU S H, et al. Geochronology and geochemistry of the granitoids and ore-forming age in the Xiaoyao tungsten polymetallic skarn deposit in the Jiangnan massif tungsten belt, China: Implications for their petrogenesis, geodynamic setting, and mineralization[J]. Lithos, 2018, 296/299: 365-381. doi: 10.1016/j.lithos.2017.11.007
    [12] 肖鑫, 周涛发, 袁峰, 等. 安徽青阳高家塝钨钼矿床成岩成矿时代及其地质意义[J]. 岩石学报, 2017, 33(3): 859-872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703014.htm

    XIAO X, ZHOU T F, YUAN F, et al. The geochronology of the Qingyang Gaojiabang tungsten-molybdenum deposit and its geological significance, Anhui Province, East China[J]. Acta Petrologica Sinica, 2017, 33(3): 859-872(in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703014.htm
    [13] BARRIE C T. U-Pb garnet and titanite age for the Bristol Township lamprophyre suite, western Abitibi subprovince, Canada[J]. Canadian Journal of Earth Sciences, 1990, 27(11): 1451-1456. doi: 10.1139/e90-153
    [14] MEINERT L D, DIPPLE G M, NICOLESCU S. World skarndeposits[J]. Economic Geology, 2005, 100: 299-336.
    [15] GEVEDON M, SEMEN S, BARNES J D, et al. Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet[J]. Earth and Planetary Science Letters, 2018, 498: 237-246. doi: 10.1016/j.epsl.2018.06.036
    [16] CHEN J, HALLS C, STANLEY C J. Tin-bearing skarns of South China: Geologicalsetting and mineralogy[J]. Ore Geology Reviews, 1992, 7: 225-248. doi: 10.1016/0169-1368(92)90006-7
    [17] CHANG Z S, MEINERT L D. The Empire Cu-Zn mine, Idaho: Exploration implications of unusual skarn features related to high fluorine activity[J]. Econmic Geology, 2008, 103: 909-938. doi: 10.2113/gsecongeo.103.5.909
    [18] TIAN Z D, LENG C B, ZHANG X C, et al. Chemical composition, genesis and exploration implication of garnet from the Hongshan Cu-Mo skarn deposit, SW China[J]. Ore Geology Reviews, 2008, 112: 103016.
    [19] MEZGER K, HANSON G, BOHLEN S. U-Pb systematics of garnet: Dating the growth of garnet in the Late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lakes, Manitoba, Canada[J]. Contributions to Mineralogy and Petrology, 1989, 101: 136-148. doi: 10.1007/BF00375301
    [20] DENG X D, LI J W, LUO T, et al. Dating magmatic and hydrothermal processes using andradite rich garnet U-Pb geochronometry[J]. Contributions to Mineralogy and Petrology, 2017, 172: 1-11. doi: 10.1007/s00410-016-1318-9
    [21] YUDINTSEV S V, LAPINA M I, PTASHKIN A G, et al. Accommodation of uranium into the garnet structure[J]. MRS Online Proceedings Library Archive, 2002, 713: 1128. doi: 10.1557/PROC-713-JJ11.28
    [22] DEWOLF C P, ZEISSLER C J, HALLIDAY A N, et al. The role of inclusions in U-Pb and Sm-Nd garnet geochronology: Stepwise dissolution experiments and trace uranium mapping by fission track analysis[J]. Geochimica et Cosmochimica Acta, 1996, 60(1): 121-134. doi: 10.1016/0016-7037(95)00367-3
    [23] DUAN Z, GLEESON S A, GAO W S, et al. Garnet U-Pb dating of the Yinan Au-Cu skarn deposi, Luxi District, North China Craton: Implications for district-wide coeval Au-Cu and Fe skarn mineralization[J]. Ore Geology Reviews, 2020, 118: 103-310.
    [24] LIMA S M, CORFU F, NEIVA A M R, et al. U-Pb ID-TIMS dating applied to U-rich inclusions in garnet[J]. American Mineralogist, 2012, 97(5/6): 800-806.
    [25] 张小波, 张世涛, 陈华勇, 等. 石榴子石U-Pb定年在矽卡岩矿床中的应用: 以鄂东南高椅山硅灰石(-铜)矿床为例[J]. 地球科学, 2020, 45(3): 856-868. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003013.htm

    ZHANG X B, ZHANG S T, CHEN H Y, et al. Application of garnet U-Pb dating in the skarn deposit: A case study of Gaoyishan Wo(-Cu) deposit in southeast Hubei Province[J]. Earth Science, 2020 45(3): 856-868. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003013.htm
    [26] SEMAN S, STOCKLI D F, MCLEAN N M. U-Pb geochronology of Grossular-Andradite garnet[J]. Chemical Geology, 2017, 460: 106-116. doi: 10.1016/j.chemgeo.2017.04.020
    [27] 刘益, 孔志岗, 陈港, 等. 滇东南官房钨矿床石榴子石原位LA-SF-ICP-MS U-Pb定年及地质意义[J]. 岩石学报, 2021, 37(3): 847-864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103013.htm

    LIU Y, KONG Z G, CHEN G, et al. In-situ LA-SF-ICP-MS U-Pb dating of garnet from Guanfang tungsten deposit in southeastern Yunnan Province and its geological significance[J]. Acta Petrologica Sinica, 2021, 37(3): 847-864. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103013.htm
    [28] BRUGGER J, ETSCHMANN B, POWNCEBY M, et al. Oxidation state of europium in scheelite tracking fluid-rock interaction in gold deposits[J]. Chemical Geology, 2008, 257(1/2): 26-33.
    [29] POULIN R S, KONTAK D J, MCDONALD A M, et al. Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry geochemistry of scheelite from diverse ore-deposits[J]. Can. Mineral., 2018, 56(3): 265-302. doi: 10.3749/canmin.1800005
    [30] GHADERI M, PALIN J M, CAMPBELL I H, et al. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie Norseman region, western Australia[J]. Econmic Geology, 1999, 94: 423-438. doi: 10.2113/gsecongeo.94.3.423
    [31] BRUGGER J, LAHAYE Y, COSTA S, et al. Inhomogeneous distribution of REE in scheelite and dynamics of Archean hydrothermal systems(Mt. Charlotte and Drysdale gold deposits, western Australia)[J]. Contributions to Mineralogy and Petrology, 2000, 139: 251-264. doi: 10.1007/s004100000135
    [32] CHEN B, SUN K K. Trace elements and Sr-Nd isotopes ofscheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China[J]. American Mineralogist, 2017, 102(5): 1114-1128.
    [33] JIANG Y H, JIANG S Y, DAI B Z, et al. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province, Southeast China: Implications for a continental arc to rifting[J]. Lithos, 2009, 107(3/4): 185-204.
    [34] LIU B, WU J H, LI H, et al. Geochronology, geochemistry and petrogenesis of the Dengfuxian lamprophyres: Implications for the Early Cretaceous tectonic evolution of the South China Block[J]. Geochemistry, 2020, 80(2): 125598. doi: 10.1016/j.chemer.2020.125598
    [35] 王云峰, 杨红梅, 张利国, 等. 湘东南铜山岭铅锌多金属矿床成矿时代与成矿物质来源: Sm-Nd等时线年龄和Pb同位素证据[J]. 地质通报, 2017, 36(5): 875-884. doi: 10.3969/j.issn.1671-2552.2017.05.019

    WANG Y F, YANG H M, ZHANG L G, et al. Metallogenic epoch and ore-forming material source of the Tongshanling Pb-Zn polymetallic deposit in southeastern Hunan Province: Evidence from Sm-Nd isochron age and Pb isotope[J]. Geological Bulletin of China, 2017, 36(5): 875-884. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2017.05.019
    [36] 徐峰嵘. 铜山岭岩体基本特征及其与矿产的关系[J]. 西部探矿工程, 2010, 22(5): 94-96. doi: 10.3969/j.issn.1004-5716.2010.05.036

    XU F R. Basic characteristics of Tongshanling rock mass and its relationship with minerals[J]. West-China Exploration Engineering, 2010, 22(5): 94-96. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-5716.2010.05.036
    [37] DING T, MA D S, LU J J, et al. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shihang zone, China: Implications for petrogenesis and metallogenesis[J]. Ore Geology Reviews, 2015, 69: 104-117. doi: 10.1016/j.oregeorev.2015.02.004
    [38] WU J H, KONG H, LI H, et al. Multiple metal sources of coupled Cu-Sn deposits: Insights from the Tongshanling polymetallic deposit in the Nanling Range, South China[J]. Ore Geology Reviews, 2021, 139: 104521. doi: 10.1016/j.oregeorev.2021.104521
    [39] MEFFRE S, LARGE R R, SCOTT R, et al. Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia[J]. Geochimica et Cosmochimica Acta, 2008, 72: 2377-2391. doi: 10.1016/j.gca.2008.03.005
    [40] LIU B, KONG H, WU Q H, et al. Tungsten mineralization process and oxygen fugacity evolution in the Weijia W deposit, South China: Constraints from the microstructures, geochemistry, and oxygen isotopes of scheelite, garnet, and calcite[J]. Ore Geology Reviews, 2022, 143: 104952.
    [41] SUN S S, McDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [42] 宋世伟, 毛景文, 谢桂青, 等. 矽卡岩型钨矿床成矿相关岩体识别: 以江西景德镇朱溪超大型矽卡岩型钨矿床为例[J]. 矿床地质, 2018, 37(5): 940-960. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201805003.htm

    SONG S W, MAO J W, XIE G Q, et al. Identification of ore-related granitic intrusions in W skarn deposits: A case study of giant Zhuxi W skarn deposit[J]. Mineral Deposits, 2018, 37(5): 940-960. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201805003.htm
    [43] JAMTVEIT B, WOGELIUS R A, FRASER D G. Zonation patterns of skarn garnets-records of hydrothermal system evolution[J]. Geology, 1993, 21(2): 113-116. doi: 10.1130/0091-7613(1993)021<0113:ZPOSGR>2.3.CO;2
    [44] SMITH M, HENDERSON P, JEFFRIE T, et al. The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constraints on processes in a dynamic hydrothermal system[J]. Journal of Petrology, 2004, 45(3): 457-484. doi: 10.1093/petrology/egg087
    [45] 王岳军, 范蔚茗, 郭锋, 等. 湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示[J]. 中国科学(地球科学), 2001, 31(9): 745-751. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200109005.htm

    WANG Y J, FAN W M, GUO F, et al. Geochemistry of Early Mesozoic potassium-rich diorite-granodiorites in southeastern Hunan Province, South China: Petrogenesis and tectonic implications[J]. Science China(Earth Sciences), 2001, 31(9): 745-751. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200109005.htm
    [46] 卢友月, 付建明, 程顺波, 等. 湘南铜山岭铜多金属矿田成岩成矿作用年代学研究[J]. 大地构造与成矿学, 2015, 39(6): 1061-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506009.htm

    LU Y Y, FU J M, CHENG S B, et al. Rock-forming and ore-forming ages of Tongshanling copper polymetallic ore-field in southern Hunan Province[J]. Geotectonica et Metallogenia, 2015, 39(6): 1061-1071. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506009.htm
    [47] 赵盼捞, 袁顺达, 原垭斌. 湘南魏家钨矿区祥林铺岩体锆石LA-MC-ICP-MSU-Pb测年: 对南岭西端晚侏罗世钨矿成岩成矿作用的指示[J]. 中国地质, 2016, 43(1): 120-131. doi: 10.3969/j.issn.1000-3657.2016.01.009

    ZHAO P L, YUAN S D, YUAN Y B. Zircon LA-MC-ICP-MS U-Pb dating of the Xianglinpu granites from the Weijia tungsten deposit in southern Hunan Province and its implications for the Late Jurassic tungsten metallogenesis in the western most Nanling W-Sn metallogenic belt[J]. Geology in China, 2016, 43(1): 120-131. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2016.01.009
    [48] 付建明, 李华芹, 屈文俊, 等. 湘南九嶷山大坳钨锡矿的Re-Os同位素定年研究[J]. 中国地质, 2007, 34(4): 651-656. doi: 10.3969/j.issn.1000-3657.2007.04.014

    FU J M, LI H Q, QU W J, et al. Re-Os isotope dating of the Daao tungsten-tin deposit in the Jiuyi Mountains, southern Hunan Province[J]. Geology in China, 2007, 34(4): 651-656. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2007.04.014
    [49] 程顺波, 付建明, 马丽艳, 等. 南岭地区成钨、成锡花岗岩组合的几个判别标志[J]. 华南地质与矿产, 2014, 30(4): 352-360. doi: 10.3969/j.issn.1007-3701.2014.04.006

    CHENG S B, FU J M, MA L Y, et al. Some discrimination criterions of W/Sn mineralization related granitoids in Nanling Range[J]. Geology and Mineral Resources of South China, 2014, 30(4): 352-360. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-3701.2014.04.006
    [50] TANG Y Y, KONG H, LIU B, et al. Geochronology, whole-rock geochemistry, and Sr-Nd-Hf isotopes of granitoids in the Tongshanling ore field, South China: Insights into Cu and W metallogenic specificity[J]. Minerals, 2022, 12(7): 892. doi: 10.3390/min12070892
    [51] 朱乔乔, 谢桂青, 李伟, 等. 湖北金山店大型矽卡岩型铁矿石榴子石原位微区分析及其地质意义[J]. 中国地质, 2014, 41(6): 1944-1963. doi: 10.3969/j.issn.1000-3657.2014.06.012

    ZHU Q Q, XIE G Q, LI W, et al. In situ analysis of garnets from the Jingshandian iron skarn deposit, Hubei Province, and its geological implications[J]. Geology in China, 2014, 41(6): 1944-1963. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2014.06.012
    [52] 何迪, 谭俊, 刘晓阳, 等. 湖北大冶铜山口斑岩-矽卡岩型铜钼矿床包裹体特征及流体演化意义[J]. 地质科技通报, 2020, 39(5): 97-108. doi: 10.19509/j.cnki.dzkq.2020.0508

    HE D, TAN J, LIU X Y, et al. Significance of inclusions and fluid evolution of the porphyry-skarn copper-molybdenum deposit in Tongshankou, Daye, Hubei[J]. Bulletin of Geological Scienceand Technology, 2020, 39(5): 97-108. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0508
    [53] GASPAR M, KNAACK C, MEINERT L D, et al. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 185-205. doi: 10.1016/j.gca.2007.09.033
    [54] ZHAO L J, ZHANG Y, SHAO Y J, et al. Using garnet geochemistry discriminating different skarn mineralization systems: Perspective from Huangshaping W-Mo-Sn-Cu polymetallic deposit, South China[J]. Ore Geology Reviews, 2021, 138: 104412. doi: 10.1016/j.oregeorev.2021.104412
    [55] YANG Y L, NI P, WANG Q, et al. In situ LA-ICP-MS study of garnets in the Makeng Fe skarn deposit, eastern China: Fluctuating fluid flow, ore-forming conditions and implication for mineral exploration[J]. Ore Geology Reviews, 2020, 126: 103725. doi: 10.1016/j.oregeorev.2020.103725
    [56] 欧阳永棚, 周显荣, 尧在雨, 等, 赣东北朱溪钨(铜)矿床两期石榴石研究及其对成矿作用的指示[J]. 地学前缘, 2020, 27(4): 219-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004022.htm

    OUYANG Y P, ZHOU X R, YAO Z Y, et al. Study on the two-stage garnets and their indication of mineralization in the Zhuxi W(Cu) deposit, northeastern Jiangxi Province[J]. Earth Science Frontiers, 2020, 27(4): 219-231. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004022.htm
    [57] ZHANG Y, LIU Q Q, SHAO Y J, et al. Fingerprinting the hydrothermal fluid characteristics from LA-ICP-MS trace element geochemistry of garnet in the Yongping Cu deposit, SE China[J]. Minerals, 2017, 7(10): 199. doi: 10.3390/min7100199
    [58] ZHANGY, SHAO Y J, WU C D, et al, LA-ICP-MS trace element geochemistry of garnets: Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu-S-Fe-Au deposit, eastern China[J]. Ore Geology Reviews, 2017, 86: 426-439. doi: 10.1016/j.oregeorev.2017.03.005
    [59] PENG J T, HU R D, ZHAO J H, et al. Rare earth element(REE) geochemistry for scheelite from the Woxi Au-Sb-W deposit, western Hunan[J]. Geochimical, 2005, 34(2): 115-122.
    [60] BLUNDY J, WOOD B. Prediction of crystal-melt partition coefficients from elastic moduli[J]. Nature, 1994, 372: 452-454. doi: 10.1038/372452a0
    [61] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Cryst, 1976, 32(5): 751-767. doi: 10.1107/S0567739476001551
    [62] REMPEL K U, WILLIAMS-JONES A E, MIGDISOV A A. The partitioning of molybdenum(Ⅵ) between aqueous liquid and vapour at temperatures up to 370℃[J]. Geochimica et Cosmochimica Acta, 2009, 73(11): 3381-3392. doi: 10.1016/j.gca.2009.03.004
    [63] 于志峰, 赵正, 王艳丽, 等. 湖南瑶岗仙矽卡岩型白钨矿床成矿流体演化特征研究[J]. 岩石学报, 2022, 38(2): 513-528. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202202014.htm

    YU Z F, ZHAO Z, WANG Y L, et al. Characteristics and evolutions of ore-forming fluids in the Yaogangxian skarn-type scheelite deposit, Hunan Province[J]. Acta Petrologica Sinica, 2022, 38(2): 513-528. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202202014.htm
    [64] WILLIAMS-JONES A E, MIGDISOV A A. Experimental constraints on the transport and deposition of metals in ore-forming hydrothermal systems[C]//Kelley K D, Golden H C. Building Exploration Capability for the 21st Century. [S. l. ]: Society of Economic Geologists, 2014, 18: 77-96
    [65] 胡绪云, 吴迎春, 康如华, 等. 湖南魏家隐伏型钨-萤石矿床控矿因素及成矿规律分析[J]. 矿产与地质, 2015, 29(4): 433-437. doi: 10.3969/j.issn.1001-5663.2015.04.004

    HU X Y, WU Y C, KANG R H, et al. Ore controlling factors and metallogenic regularity of concealed tungsten-fluorite deposits in Weijia of Hunan[J]. Mineral Resources and Geology, 2015, 29(4): 433-437. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5663.2015.04.004
    [66] HUANG X D, LU J J, ZHANG R Q, et al. Garnet and scheelite chemistry of the Weijia tungsten deposit, South China: Implications for fluid evolution and W skarn mineralization in F-rich ore system[J]. Ore Geology Reviews, 2022, 142: 104729.
    [67] 吴堑虹, 周厚祥, 刘飚, 等. 华南与花岗岩有关的稀有金属矿床和钨锡矿床的时空分布规律及其成因联系[J]. 地质科技通报, 2023, 42(1): 78-88. doi: 10.19509/j.cnki.dzkq.2022.0047

    WU Q H, ZHOU H X, LIU B, et al. Spatio-temporal distribution of granite-related rare metalde posits and W-Sn deposits in South China and their genetic relationship[J]. Bulletin of Geological Scienceand Technology, 2023, 42(1): 78-88. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0047
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  630
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 录用日期:  2023-04-03
  • 修回日期:  2023-03-23

目录

    /

    返回文章
    返回