Natural CO2 leakage and responses of shallow aquifers in the southern Xining Basin
-
摘要:
CO2地质封存是重要的CO2减排技术之一, 其中泄漏风险评价是该技术实施的关键, 而天然CO2泄漏研究是获取泄漏评价关键信息的重要手段。通过野外调查, 现场测量以及水样、气样和岩样的采集和测试, 分析了西宁盆地南部CO2的来源、泄漏特征和其泄漏到浅部含水层后相关的响应规律。结果显示西宁盆地南部发现了多处天然CO2泄漏, 包括高含CO2的泉、废弃钻孔的间歇水气喷发和CO2井喷等多种形式的泄漏显示, 以及与之伴随的较大范围的钙华。气体中CO2占绝对含量, CO2碳同位素介于-2.5‰~-0.4‰, 指示泄漏的CO2来源于深部无机成因, 并通过深部断层泄漏进入浅部承压含水层, 与地下水一起径流、排泄或在浅部二次聚集。CO2泄漏区域土壤222Rn浓度异常(超过9 000 Bq/m3), 这可作为识别隐伏泄漏通道的重要方法。地下水对CO2的泄漏产生了明显的物理化学响应, 包括现象独特的井筒间歇喷发(喷发200 s和停止130 s), 地下水水化学特征的变化(比如pH值的降低(小于7), 电导、HCO3-、Ca2+的升高和氧同位素的漂移), 以及地表大面积特征明显(比如气泡构造)和成分以方解石为主的钙华。该场地天然CO2泄漏特征与美国Utah场地具有很高的相似性。研究成果不仅能为CO2地质封存的泄漏风险评价提供天然类比知识, 而且还有助于了解地球深部地质活动。
Abstract:Objective Geological storage of CO2 is an important technology for reducing CO2 emissions, and the assessment of CO2 leakage risk is the key to its implementation. Research on natural CO2 leakage is an important means to obtain key information for leakage assessment.
Methods The source of CO2, the characteristics of CO2 leakage, and the relevant response of shallow aquifers to the CO2 leakage have been analysed through field investigations, on-site measurements, and sampling and testing of water, gas and rock.
Results A number of natural CO2 leakages have been discovered in the southern Xining Basin, including CO2-rich springs, CO2-driven cold-water geysers from abandoned wells, and CO2 blowouts, as well as large-scale travertine associated with them. CO2 is the dominant component in the gas phase, and the abundance of carbon isotope of CO2 is between -2.5‰ and -0.4‰, indicating that the leaked CO2 comes from a deep inorganic origin, leaks into shallow confined aquifers through deep faults, and flows and discharges with the groundwater or accumulates secondarily in shallow formations. The concentration of soil 222Rn in areas of CO2 leakage is abnormal (over 9 000 Bq/m3), which can be used as an important method of identifying hidden leakage channels. The groundwater has a pronounced response to CO2 leakage, including a unique phenomenon of intermittent eruptions (eruption for 200 s and incubation for 130 s), changes in groundwater hydrochemical characteristics (e.g., a decrease in pH, an increase in conductance and HCO3- and Ca2+ concentrations, and a drift in oxygen isotopes), and travertine composed mainly of calcite with a bubble structure at the surface. The natural CO2 leakage characteristics at this site are highly similar to those in Utah, USA.
Conclusion The results of this study not only provide knowledge of natural analogous for leakage risk assessment of CO2 geological storage, but also contribute to the understanding of geological activity in the deep earth.
-
Key words:
- natural CO2 leakage /
- shallow aquifer /
- response /
- CO2 geological storage /
- Xining Basin
-
图 1 西宁盆地南部基底埋深及构造纲要图(据文献[18]修改)
Figure 1. Burial depth and tectonic outline map of the southern Xining Basin
表 1 气体组分和同位素测试结果
Table 1. Test results for gas composition and isotopeic abundance
取样点 N2 O2 H2S Ar CO2 CO2同位素
13δCCO2/ ‰土壤氡
222Rn冰凌山 - - - - - -2.5 - 尧庄 2.45 0.62 0.01 0.03 96.88 -1.3 - 上洛麻 26.72 7.15 0.01 0.30 65.82 -0.6 20 000 ZK10井 2.58 0.63 0.02 0.03 96.74 -0.4 10 600 XCDCSZ-3-1钻孔 72.50 19.20 0.00 0.84 7.44 -0.9 9 590 注:气体组分单位为体积百分比(%),土壤氡的单位Bq/m3 表 2 水样测试结果
Table 2. Test results of water samples
项目 冰岭山 尧庄 上洛麻 ZK10井 高程/m 2 285 2 607 2 633 2 392 温度/℃ 15.6 16.2 0.8 7.1 电导/(mS·cm-1) 6.13 3.77 3.57 4.06 pH值 6.42 6.62 6.52 6.75 Na+ 763.60 92.91 123.85 135.98 K+ 212.46 25.81 26.75 67.61 Ca2+ 502.70 655.03 724.50 432.42 Mg2+ 149.37 137.41 133.76 131.14 Cl- 318.85 58.65 96.08 60.23 SO42- 1653.15 981.06 789.92 469.83 HCO3-a ρB/(mg·L-1) 1 433.5
(1 993.4)1 063
(1 634.1)2 397
(2 088.6)1 894
(1 749.8)Li 1.08 0.80 0.78 0.82 F 0.60 1.19 1.40 1.16 Sr 2.20 1.93 1.95 1.30 Br 1.13 0.86 4.42 0.92 TDS 4 596.83 2 767.92 2 939.16 2 172.11 δDVSMOW/‰ -77.80 -76.60 -77.80 -78.40 δ18OVSMOW/‰ -12.20 -11.40 -11.70 -11.60 矿物饱和指数 方解石 0.37 0.69 0.52 0.60 文石 0.22 0.54 0.35 0.44 白云石 0.43 0.93 0.22 0.75 石膏 -0.18 -0.21 -0.19 -0.57 地下水类型 SO4·HCO3-
Na·CaHCO3·
SO4-CaHCO3·
SO4-CaHCO3-
Ca·Mg注:括号中数值为根据电荷平衡计算 表 3 典型CO2泄漏点钙华矿物组分XRD测试结果
Table 3. Mineral composition of the travertine in typical CO2 leakage locations tested by XRD
样品编号 方解石 白云石 文石 石英 钠长石 斜长石 ① 98.70 0 0 1.30 0 0 ② 99.07 0 0 0.93 0 0 ③ 99.30 0 0 0.70 0 0 ④ 90.72 5.06 0 4.22 0 0 ⑤ 100.00 0 0 0 0 0 ⑥ 98.92 0 0 1.08 0 0 ⑦ 73.44 0 0 18.39 8.17 0 ⑧ 48.41 1.65 0 35.59 0 14.35 ⑨ 92.83 0 5.57 1.60 0 0 注:表中各值表示各矿物组分的体积百分比(%) 表 4 西宁和美国Utah天然CO2泄漏场地特征对比
Table 4. Comparison of the characteristics of natural CO2 leakage between Xining, China and Utah, USA
主要特征 西宁 美国Utah 规模 分散在整个盆地南部,范围大,但主要受断层控制泄漏 集中在Little Grand Wash和Salt Wash Graben断层附近,范围小 CO2同位素(13δCCO2)和来源 -0.4‰~-2.5‰,深部壳源 -6.61‰~-7.55‰,深部幔源 CO2地表通量/(g·m-2·d-1) 最大53 200 最大36 259 地表钙化 泄漏点普遍存在 泄漏点普遍存在 地表含CO2水化学特征 温度0.7~20℃,TDS介于2 000~5 000 mg/L,地下水类型HCO3·SO4-Ca,pH值介于6.4~6.8 温度13~18℃,地下水类型Cl·HCO3-Na·Ca,pH值介于6.2~6.5 井筒动力学 间歇喷发,喷发持续时间200 s,相对停止130 s 间歇喷发,喷发持续时间25~30 h,相对静止80~90 h -
[1] IPCC. Global warming of 1.5℃(SR1.5)[M]. Cambridge: Cambridge University Press, 2018. [2] Damen K, Faaij A, Turkenburg W. Health, safety and environmental risks of underground CO2 storage: Overview of mechanisms and current knowledge[J]. Climatic Change, 2006, 74(1/3): 289-318. [3] Dockrill B, Shipton Z K. Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, U.S.A. [J]. Journal of Structural Geology, 2010, 32(11): 1768-1782. doi: 10.1016/j.jsg.2010.01.007 [4] Han W S, Lu M, Mcpherson B J, et al. Characteristics of CO2-driven cold-water geyser, Crystal Geyser in Utah: Experimental observation and mechanism analyses[J]. Geofluids, 2013, 13(3): 283-297. doi: 10.1111/gfl.12018 [5] Watson Z, Han W S, Keating E H. Eruption dynamics of CO2-driven cold-water geysers: Crystal, Tenmile geysers in Utah and Chimayó geyser in New Mexico[J]. Earth and Planetary Science Letters, 2014, 408(15): 272-284. [6] Burnside N M, Shipton Z K, Dockrill B, et al. Man-made versus natural CO2 leakage: A 400 k. y. history of an analogue for engineered geological storage of CO2[J]. Geology, 2013, 41(4): 471-474. doi: 10.1130/G33738.1 [7] Jung N H, Han W S, Watson Z T, et al. Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah[J]. Earth and Planetary Science Letters, 2014, 403: 358-367. doi: 10.1016/j.epsl.2014.07.012 [8] Koh Y, Kim C, Bae D, et al. The isotopic and chemical compositions of the CO2-rich waters in Korea[J]. Geofísica Internacional, 2002, 41(4): 491-498. [9] Chiodini G, Granieri D, Avino R, et al. Non-volcanic CO2 earth degassing: Case of Mefite d'Ansanto(southern Apemnines), Italy[J]. Geophysical Research Letters, 2010, 37(11): L11303. [10] 王利民, 候元明. 对窑街煤田煤岩与二氧化碳突出的初步探讨[J]. 煤矿安全, 1980, 11(6): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ198006005.htmWang L M, Hou Y M. Preliminary discussion on coal rock and carbon dioxide outburst in the Yaojie Coalfield[J]. Safety in Coal Mines, 1980, 11(6): 24-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ198006005.htm [11] 郑长远, 张徽, 师延霞, 等. 青海平安地区CO2气藏成藏模式研究[J]. 西北地质, 2016, 49(3): 148-154. doi: 10.3969/j.issn.1009-6248.2016.03.017Zheng C Y, Zhang H, Shi Y X, et al. Study on carbon dioxide gas reservoir accumulation mode in Ping'an region, Qinghai Province[J]. Northwestern Geology, 2016, 49(3): 148-154(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2016.03.017 [12] Cai Y N, Lei H W, Feng G H, et al. Modeling of CO2-driven cold-water geyser in the Northeast Qinghai-Tibet Plateau[J]. Journal of Hydrology, 2021, 598: 125733. doi: 10.1016/j.jhydrol.2020.125733 [13] Schroder I F, Zhang H, Zhang C, et al. The role of soil flux and soil gas monitoring in the characterisation of a CO2 surface leak: A case study in Qinghai, China[J]. International Journal of Greenhouse Gas Control, 2016, 54(1): 84-95. [14] Zhao X H, Deng H Z, Wang W K, et al. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet Plateau[J]. Scientific Reports, 2017, 7: 3001. doi: 10.1038/s41598-017-02500-x [15] Afsin M, Kuscu I, Elhatip H, et al. Hydrogeochemical properties of CO2-rich thermal-mineral waters in Kayseri(Central Anatolia), Turkey[J]. Environmental Geology, 2006, 50(1): 24-36. doi: 10.1007/s00254-005-0169-x [16] Shik-Han W, Watson Z T, Kampman N, et al. Periodic changes in effluent chemistry at cold-water geyser: Crystal geyser in Utah[J]. Journal of Hydrology, 2017, 550: 54-64. doi: 10.1016/j.jhydrol.2017.04.030 [17] Aiuppa A, Federico C, Allard P, et al. Trace metal modeling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy[J]. Chemical Geology, 2005, 216(3/4): 289-311. [18] 张森琦, 许伟林, 严维德, 等. 西宁盆地地热地质[M]. 北京: 地质出版社, 2013.Zhang S Q, Xu W L, Yan W D, et al. Geothermal geology of Xining Basin[M]. Beijing: Geological Publishing House, 2013(in Chinese). [19] 季备. 西宁至城都铁路拉脊山越岭段主要工程地质问题及地质选线[J]. 铁路标准设计, 2018, 62(8): 21-25.Ji B. The main engineering geological problems and geological route selection of Ridge section in Laji Mountain on Xining-Chengdu railway[J]. Railway Standard Design, 2018, 62(8): 21-25(in Chinese with English abstract). [20] 高中亮, 王艳飞, 雷胜兰, 等. 珠江口盆地CO2分布特征与成藏机制浅析[J]. 地质科技通报, 2022, 41(4): 57-68. doi: 10.19509/j.cnki.dzkq.2022.0204Gao Z L, Wang Y F, Lei S L, et al. Distribution characteristics and accumulation mechanism of carbon dioxide gas reservoirs in the Pearl River Mouth Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0204 [21] 姚志勇. 西宁至成都铁路某隧道高压CO2气体研究及地质选线探析[J]. 现代隧道技术, 2019, 56(2): 170-174.Yao Z Y. Study on high pressure CO2 gas in a tunnel of Xining to Chengdu railway and exploration of geological route selection[J]. Modern Tunneling Technology, 2019, 56(2): 170-174(in Chinese with English abstract). [22] 戴金星, 宋岩, 洪峰, 等. 中国东部无机成因的二氧化碳气藏及其特征[J]. 中国海上油气: 地质, 1994, 6(4): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199404000.htmDai J X, Song Y, Hong F, et al. Inorganic carbon dioxide gas reservoirs in eastern China and their characteristics[J]. China Offshore Oil and Gas: Geology, 1994, 6(4): 3-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199404000.htm [23] Rodrigo-Naharro J, Quindos L S, Clemente-Jul C, et al. CO2 degassing from a Spanish natural analogue for CO2 storage and leakage: Implications on 222Rn mobility[J]. Applied Geochemistry, 2017, 84: 297-305. doi: 10.1016/j.apgeochem.2017.07.008 [24] 孙红丽, 王贵玲, 蔺文静. 西宁盆地地下热水的TDS分布特征及富集机理[J]. 地质科技通报, 2022, 41(1): 278-287. doi: 10.19509/j.cnki.dzkq.2021.0079Sun H L, Wang G L, Lin W J. Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 278-287(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0079 [25] Thomas D L, Bird D K, Arnorsson S, et al. Geochemistry of CO2-rich waters in Iceland[J]. Chemical Geology, 2016, 444: 158-179. doi: 10.1016/j.chemgeo.2016.09.002