Fusion processing of multisource remote sensing images for extracting characteristic information from the Geladandong Snow Mountain area
-
摘要:
2022年7月中国地质大学(武汉)冰川勘测组与登山组, 在格拉丹东雪山开展了“第二次大学生长江源科考”工作。为详细分析该区域冰川时空特征信息, 以此次科研数据为支撑, 结合光学遥感影像解译、InSAR形变信息提取、激光雷达测高及高精度大地测量, 进行了多源遥感影像融合处理研究。针对格拉丹东雪山及典型冰川, 采用高分卫星GF1、GF6、GF7、ZY3与Landsat7遥感影像, 利用空三加密、频域影像互相关匹配、波段比值法及目视解译,提取区域DOM、冰川面积及条数分布;利用Sentinel-1A、ICESat-2影像,以SAR影像空间域互相关偏移量追踪方法为支撑,分别提取冰川表面流速及高程变化;利用青海省域北斗CORS站点,采用Gamit/Globk双差无电离层组合模型、卫星星站差分(real-time extended, 简称RTX)及RTK(real-time kinematic)方法,计算所有控制点三维空间坐标及高程异常值。结果表明: 格拉丹东雪山共发育冰川512条,年均增长率为3.12%,面积1 111.96 km2,年均退缩速率为0.63%;姜根(古)迪如冰川日均最大流速为0.25 cm/d,年均最大流速为91.25 cm/a,其南支最大退缩值、堆积值及年变化速率分别为-74.63 m、38.44 m、-5.29~3.09 m/a,北支最大退缩值、堆积值和年变化速率-39.17 m、35.74 m、-3.02~2.85 m/a;所有控制点中误差及区域似大地水准面精化模型精度均达到了mm级。研究成果可以为后续在该地区开展相关冰川研究工作提供数据支撑。
Abstract:Objective In July 2022(Beijing time), the glacier survey group and mountaineering group of the China University of Geosciences (Wuhan) performed the "Second University Students' Scientific Expedition to the Yangtze River" in the Geladandong Snow Mountain area.
Methods To analyse the spatial and temporal characteristics of glaciers in this region, scientific research data were combined with optical remote sensing image interpretation, InSAR deformation information extraction, LiDAR altimetry measurements, and high-precision geodetic survey data to conduct multisource remote sensing image fusion processing research. Aerial triangulation encryption, frequency domain image matching, the waveband ratio method, and visual interpretation were used to extract DOM, DSM, glacier area and number distribution information from high-resolution satellite GF1, GF6, GF7, ZY3, and Landsat 7 remote sensing images of Geladandong Snow Mountain and typical glaciers.Sentinel-1A and ICESat-2 images were used, supported by the cross-correlation offset tracking method in the SAR image space domain, to extract glacier surface velocity and elevation changes, respectively. The 3D spatial coordinates and elevation outliers of all the control points were calculated for the BDS CORS station in Qinghai Province using the Gamit/Globk double difference ionospheric combination model, real-time extended (RTX), and real-time kinematic (RTK) techniques.
Results The results revealed 512 glaciers in the Geladandong Snow Mountain area, with an average annual growth rate of 3.12%, an area of 1 111.96 km2, and an average annual retreat rate of 0.63%.The average daily maximum velocity of the Jianggen (gu) Diru glacier is 0.25 cm/d, and the average annual maximum velocity is 91.25 cm/a. The maximum retreat value, accumulation value and annual change rate of Jianggen (gu) Diru glacier on the south side and north side are -74.63 m, 38.44 m, -5.29 m/a to 3.09 m/a, -39.17 m, 35.74 m, -3.02 m/a to 2.85 m/a, respectively. The precision of the regional quasigeoid refinement model and the errors at all control sites both attained mm levels.
Conclusion The aforementioned findings can provide data support for subsequent research on glaciers in this region.
-
表 1 光学遥感影像数据源
Table 1. Optical remote sensing image data sources
序号 数据源 传感器 重访周期/d 波段数 分辨率/m 有效景数/景 现时性 数据覆盖度/% 用途 全色 多光谱 1 GF-1 WFV 4 4 2.0 8.0 49 2012-2021年 75 影像数据处理,冰川面积、边界及条数提取 2 GF1B/GF1C/GF1D WFV 4 4 2.0 8.0 65 2012-2020年 89 3 GF7 WFV 5 4 0.7 2.8 28 2012-2020年 85 4 GF6 WFV 4 5 2.0 8.0 32 2016-2021年 70 5 ZY3-01C/02C WFV 3 4 2.1 5.8 84 2016-2021年 68 6 Landsat7 TM/ETM+ 16 7 15~30 36 2000/2015/2020年 73 7 ALOS PALSAR DEM — — — 12.5 — 2011年 100 8 第二次冰川编目 — — — — — — 2007年 100 界线数据 表 2 不同时期冰川面积及变化情况统计
Table 2. Statistical table of glacier area and variation in different periods
监测年份 2012 2013 2014 2015 2016 2017 2018 2019 2020 冰川数量/条 496 496 496 498 499 502 503 504 512 冰川面积/km2 1 176.65 1 173.71 1 162.75 1 148.23 1 145.05 1 137.92 1 132.84 1 121.64 1 111.96 较上年变化量/km2 — -2.94 -10.96 -14.52 -3.18 -7.13 -5.08 -11.20 -9.68 变化率/% — 0.25 0.93 1.25 0.28 0.62 0.45 0.99 0.86 表 3 姜根(古)迪如冰川不同时期面积及变化情况统计
Table 3. Statistical table of glacial area and variation during different periods for the Jianggen (gu) Diru Glacier
类别 不同时期冰川面积及变化 两支冰川不同时期面积及变化 北支冰川 南支冰川 年份 2020 2021 2020 2021 2020 2021 数量/个 2 2 1 1 1 1 周长/km 78.14 101.13 36.22 36.24 41.88 41.90 面积/km2 58.38 58.12 25.12 25.01 33.26 33.11 周长较上年变化/km — 22.99 — 0.02 — 0.02 面积较上年变化/km2 — -0.26 — -0.11 — -0.15 面积变化率/% — -0.45 — -0.44 — -0.45 表 4 不同海拔冰川面积变化情况统计
Table 4. Statistical table of variation in glacier area at different elevations
监测年份 平均海拔范围/m < 5 600 [5 600, 5 700) [5 700, 5 800] >5 800 冰川面积/km2 2012 173.80 288.18 492.82 221.85 2013 189.36 286.10 478.40 219.85 2014 171.00 286.35 486.78 218.62 2015 168.37 278.83 475.57 225.46 2016 213.29 278.42 428.50 224.85 2017 164.98 276.81 472.05 224.08 2018 162.46 274.85 471.76 223.79 2019 161.84 271.75 397.43 290.63 2020 149.21 276.46 396.68 289.61 表 5 Sentinel-1A数据统计表
Table 5. Statistical table of Sentinel-1A data
序号 轨道ID 升/降轨 采集时间 序号 轨道ID 升/降轨 采集时间 序号 轨道ID 升/降轨 采集时间 1 150 Descending 2018/01/15 9 150 Descending 2019/04/16 17 150 Descending 2020/10/31 2 150 Descending 2018/02/08 10 150 Descending 2019/05/10 18 150 Descending 2020/11/24 3 150 Descending 2018/04/21 11 150 Descending 2019/11/18 19 150 Descending 2021/01/23 4 150 Descending 2018/05/15 12 150 Descending 2019/12/12 20 150 Descending 2021/02/16 5 150 Descending 2018/10/06 13 150 Descending 2020/01/29 21 150 Descending 2021/04/17 6 150 Descending 2018/10/30 14 150 Descending 2020/02/22 22 150 Descending 2021/05/11 7 150 Descending 2019/01/10 15 150 Descending 2020/04/10 23 150 Descending 2021/10/26 8 150 Descending 2019/02/03 16 150 Descending 2020/05/04 24 150 Descending 2021/11/19 表 6 ICESat-2激光测高数据统计
Table 6. Statistical table of ICESat-2 laser altimetry data
序号 轨道ID 升/降轨 采集时间 序号 轨道ID 升/降轨 采集时间 1 294 降 2019/01/16 7 1239 降 2019/12/17 2 439 升 2019/01/26 8 294 降 2020/01/14 3 294 降 2019/04/17 9 294 降 2020/04/24 4 439 升 2019/04/27 10 439 升 2020/07/24 5 439 升 2019/07/26 11 439 升 2020/10/22 6 439 升 2019/10/25 12 294 降 2021/10/11 -
[1] 张艳, 孙杰, 于长春, 等. 基于多源遥感数据的第四系覆盖物分类方法研究: 以内蒙古旗杆甸子幅1: 5万填图试点为例[J]. 地质科技情报, 2019, 38(2): 281-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902034.htmZHANG Y, SUN J, YU C C, et al. Classification of Quaternary coverings in desert grassland shallow cover area based on multi-source remote sensing data: A case of 1: 50 000 pilot geological mapping in Qigandianzi, Inner Mongolia[J]. Geological Science and Technology Information, 2019, 38(2): 281-290. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902034.htm [2] 陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266. doi: 10.19509/j.cnki.dzkq.tb20220235CHEN L, FAN X N, XIONG J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220235 [3] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201501002.htmLIU S Y, YAO X J, GUO W Q, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201501002.htm [4] 安国英, 韩磊, 涂杰楠, 等. 中国喜马拉雅山地区冰川1999-2015年期间动态变化遥感调查[J]. 现代地质, 2019, 33(5): 1086-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905017.htmAN G Y, HAN L, TU J N, et al. Remote sensing survey on glacial dynamic evolution in the Himalayas in China during 1999-2015[J]. Geoscience, 2019, 33(5): 1086-1097. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905017.htm [5] 别强, 强文丽, 王超, 等. 1960-2010年黑河流域冰川变化的遥感监测[J]. 冰川冻土, 2013, 35(3): 574-582. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303005.htmBIE Q, QIANG W L, WANG C, et al. Monitoring glacier variation in the upper reaches of the Heihe River based on remote sensing in 1960-2010[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 574-582. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303005.htm [6] 李成秀, 杨太保, 田洪阵. 近40年来西昆仑山冰川及冰湖变化与气候因素[J]. 山地学报, 2015, 33(2): 157-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201502004.htmLI C X, YANG T B, TIAN H Z. Variation of western Kunlun Mountain glaciers monitored by remote sensing during 1976-2010[J]. Mountain Research, 2015, 33(2): 157-165. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201502004.htm [7] 安国英, 韩磊, 黄树春, 等. 念青唐古拉山现代冰川1999-2015年期间动态变化遥感研究[J]. 现代地质, 2019, 33(1): 176-186. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901017.htmAN G Y, HAN L, HUANG S C, et al. Dynamic variation of glaciers in Nyainqentanglha Mountain during 1999-2015: Evidence from remote sensing[J]. Geoscience, 2019, 33(1): 176-186. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901017.htm [8] 薛娇, 姚晓军, 褚馨德, 等. 2020年青海省冰川边界及长度数据集[J]. 中国科学数据, 2022, 7(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ202202015.htmXUE J, YAO X J, CHU X D, et al. A dataset of boundary and length of glaciers in Qinghai Province[J]. China Scientific Data, 2022, 7(2): 1-13. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ202202015.htm [9] 李荣兴, 李国君, 冯甜甜, 等. 基于光学遥感卫星影像的南极冰流速产品和方法研究综述[J]. 测绘学报, 2022, 51(6): 953-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206015.htmLI R X, LI G J, FENG T T, et al. A review of Antarctic ice velocity products and methods based on optical remote sensing satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 953-963. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206015.htm [10] 黄兆欢, 彭思佳, 褚洪义, 等. 基于时序偏移量跟踪技术的喀喇昆仑山Batura和Passu冰川表面流速监测[J]. 兰州大学学报(自然科学版), 2021, 57(5): 569-576. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202105001.htmHUANG Z H, PENG S J, CHU H Y, et al. Surface velocity monitoring of the Batura and Passu glaciers in the Kara-koram Mountains based on time series offset tracking technology[J]. Journal of Lanzhou University(Natural Sciences), 2021, 57(5): 569-576. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202105001.htm [11] ANDERSON L S, ARMSTRONG W H, ANDERSON R S, et al. Debris cover and the thinning of Kennicott glacier, Alaska: In situ measurements, automated ice cliff delineation and distributed melt estimates[J]. The Cryosphere, 2021, 15(1): 265-282. doi: 10.5194/tc-15-265-2021 [12] 董继红, 杨成生, 张本浩, 等. 基于SAR偏移量跟踪技术的加拉白垒峰典型冰川位移监测[J]. 甘肃科学学报, 2021, 33(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX202102001.htmDONG J H, YANG C S, ZHANG B H, et al. Typical glacier displacement monitoring of Gyala Peri based on SAR offset tracking technology[J]. Journal of Gansu Scicnces, 2021, 33(2): 1-7. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX202102001.htm [13] 张生鹏, 周中正, 赵利江, 等. 基于SAR偏移量跟踪法提取岗纳楼冰川流速[J]. 测绘通报, 2020(11): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202011007.htmZHANG S P, ZHOU Z Z, ZHAO L J, et al. Extraction of Gangnalou glacier velocity based on SAR migration tracking method[J]. Bulletin of Surveying and Mapping, 2020(11): 33-38. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202011007.htm [14] QINGHUA Y E, CHENG W, ZHAO Y, et al. A review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies[J]. Journal of Geo-Information Science, 2016, 18(7): 920-930. [15] 王玉哲, 任贾文, 秦大河, 等. 利用卫星资料反演区域冰川冰量变化的尝试: 以祁连山为例[J]. 冰川冻土, 2013, 35(3): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303006.htmWANG Y Z, REN J W, QIN D H, et al. Regional glacier volume changes derived from satellite data: A case study in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 583-592. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303006.htm [16] 姬鑫慧, 叶庆华, 聂维, 等. 基于TerraSAR/TanDEM-X监测岗日嘎布山脉东南段冰川冰面高程变化(2000-2014)[J]. 山地学报, 2021, 39(5): 631-645. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202105003.htmJI X H, YE Q H, NIE W, et al. Glacier surface elevation change in southeastern Mt. Kangri Karpo on Tibet during 2000-2014 based on TerraSAR/TanDEM-X data[J]. Mountain Research, 2021, 39(5): 631-645. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202105003.htm [17] 王晋, 张勇, 张祖勋, 等. ICESat激光高程点辅助的天绘一号卫星影像立体区域网平差[J]. 测绘学报, 2018, 47(3): 359-369. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201803009.htmWANG J, ZHANG Y, ZHANG Z X, et al. ICESat laser points assisted block adjustment I or mapping Satellite-1 stereo imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3): 359-369. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201803009.htm [18] 许伟, 司延发. GPS时间序列噪声特性分析: 尼泊尔与藏南为例[J]. 测绘工程, 2020, 29(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC202001006.htmXU W, SI Y F. Analysis of the noise characteristics of GPS time series about Nepal and southern Tibet region[J]. Engineering of Surveying and Mapping, 2020, 29(1): 23-30. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC202001006.htm [19] XU W, CHEN G, DING K H, et al. Analysis of the common model error on velocity field under colored noise model by GPS and InSAR: A case study in the Nepal and Everest region[J]. Geodesy and Geodynamics, 2022, 13: 399-414. doi: 10.1016/j.geog.2022.01.005 [20] GUO W Q, LIU S Y, XU J L, et al. The contemporary glacier inventory of China: Data, methods, and results[J]. Journal of Glaciology, 2015, 61: 357-372. doi: 10.3189/2015JoG14J209 [21] 阿布都拉·阿不都卡地尔, 董玉森, 务宇宽, 等. 1972-2017年南阿尔泰山中部冰湖变化特征及其对气候变化的响应[J]. 地质科技通报, 2020, 39(4): 94-102. doi: 10.19509/j.cnki.dzkq.2020.0412ABUDULA·A, DONG Y S, WU Y K, et al. Characteristics of glacial lakes in the central part of the southern Altai Mountains from 1972 to 2017 and their responses to climate changes[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 94-102. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0412 [22] FAN J, WANG Q, LIU G, et al. Monitoring and analyzing mountain glacier surface movement using SAR data and a terrestrial laser scanner: A case study of the Himalayas north slope glacier area[J]. Remote Sensing, 2019, 11(6): 1-16. [23] YAN S Y, RUAN Z X, LIU G, et al. Deriving ice motion patterns in mountainous regions by integrating the intensity-based pixel-tracking and phase-based D-InSAR and MAI approaches: A case study of the Chongce glacier[J]. Remote Sensing, 2016, 8(7): 1-15. [24] SCHELLENBERGER T, DUNSE T, KAAB A, et al. Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking[J]. Cryosphere, 2015, 9(6): 2339-2355. doi: 10.5194/tc-9-2339-2015 [25] ZHOU J, ZHEN L, GUO W. Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data[J]. Environmental Earth Sciences, 2014, 71(8): 3581-3592. doi: 10.1007/s12665-013-2749-5 [26] 田青林, 潘蔚, 李瀚波, 等. 基于多源遥感数据的蚀变信息提取对比研究[J]. 地质科技情报, 2018, 37(6): 218-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806027.htmTIAN Q L, PAN W, LI H B, et al. Comparative research of alteration information extraction based on multi-source remote sensing data[J]. Geological Science and Technology Information, 2018, 37(6): 218-225. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806027.htm [27] LEPRINCE S, BARBOT S, AYOUB F, et al. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements[J]. IEEE Transactions on Geoence & Remote Sensing, 2007, 45(6): 1529-1558. [28] BAIRD T, BRISTOW C S, VERMEESCH P. Measuring sand dune migration rates with COSI-Corr and Landsat: Opportunities and challenges[J]. Remote Sensing, 2019, 11(20): 2423-2449. doi: 10.3390/rs11202423 [29] 周文明, 李志伟, 李佳, 等. 1992-2009年格拉丹东冰川及冰前湖而积变化的遥感研究[J]. 中南大学学报(自然科学版), 2014, 45(10): 3505-3512. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201410025.htmZHOU W M, LI Z W, LI J, et al. Variations of glaciers and glacial lake in Geladandong Mountain range in 1992-2009 with remote-sensing technology[J]. Journal of Central South University(Science and Technology), 2014, 45(10): 3505-3512. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201410025.htm [30] SUN M, LIU S, YAO X, et al. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory[J]. Journal of Geographical Sciences, 2018, 28(2): 206-220. doi: 10.1007/s11442-018-1468-y [31] 陈健, 刘汉湖. 2000-2015年格拉丹东冰川面积变化与物质平衡遥感监测[J]. 河南科学, 2021, 39(2): 282-289. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202102016.htmCHEN J, LIU H H. Remote sensing monitoring of glacier change and mass balance(2000-2015) in Geladandong[J]. Henan Science, 2021, 39(2): 282-289. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202102016.htm [32] ZHANG Q, YI C, FU P, et al. Glacier change in the Gangdise Mountains, southern Tibet, since the Little Ice Age[J]. Geomorphology, 2018, 306(1): 51-63. [33] ZHANG G, YAO T, CHEN W, et al. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J]. Remote Sensing of Environment, 2019, 221: 386-404. doi: 10.1016/j.rse.2018.11.038 [34] YAN S, ZHENG Y, LI Y, et al. A spatio-temporal variation analysis of Fedchenko and Grumm-Grzhimaylo glacier motion pattern with an efficient pixel-tracking method on spaceborne SAR imagery[J]. Environmental Earth Sciences, 2019, 78(20): 1-10. [35] JAWAK S D, KUMAR S, LUIS A J, et al. Seasonal comparison of velocity of the eastern Tributary glaciers, Amery ice shelf, Antarctica, using sar offset tracking[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, IV-2/W5: 595-600. [36] SINGH G, NELA B R, BANDYOPADHYAY D, et al. Discovering anomalous dynamics and disintegrating behaviour in glaciers of Chandra-Bhaga sub-basins, part of Western Himalaya using DInSAR[J]. Remote Sensing of Environment, 2020, 246: 111885. doi: 10.1016/j.rse.2020.111885 [37] 曹彬才, 方勇, 高力, 等. 利用机载点云检核ICESat-2/ATLAS激光测高数据精度[J]. 测绘科学技术学报, 2020, 37(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202001011.htmCAO B C, FANG Y, GAO L, et al. Verification of ICESat-2 /ATLAS laser altimetry data accuracy using airborne point cloud[J]. Journal of Geomatics Science and Technology, 2020, 37(1): 50-55. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202001011.htm [38] NELA B R, SINGH G, KULKARNI A. Glacier movement estimation of benchmark glaciers in Chandra Basin using differential SAR interferometry(DInSAR) technique[J]. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 2019, 28(6): 4186-4189. [39] 蒙张, 胡勇, 邹洪坤, 等. 长江源各拉丹冬地区冰川变化遥感监测分析[J]. 人民长江, 2018, 49(4): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201804007.htmMENG Z, HU Y, ZOU H K, et al. Remote sensing monitoring on glacier change in Geladandong area from 1992 to 2015, a source area of Yangtze River[J]. Yangtze River, 2018, 49(4): 34-39. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201804007.htm [40] KREEMER C, BLEWITT G. Robust estimation of spatially varying common-mode components in GPS time-series[J]. Journal of Geodesy, 2021, 95(1): 1466-1485. [41] KOSEK W, POPIńSKI W, WNK A, et al. Analysis of systematic errors in geocenter coordinates determined from GNSS, SLR, DORIS, and GRACE[J]. Springer International Publishing, 2020, 177(2): 867-888. [42] LYSZKOWICZ A, NASTULA J, ZIELINSKI J B, et al. A new model of Quasigeoid for the Baltic Sea area[J]. Remote Sensing, 2021, 13(13): 2580. doi: 10.3390/rs13132580 [43] TENZER R, CHEN W, RATHNAYAKE S, et al. The effect of anomalous global lateral topographic density on the geoid-to-quasigeoid separation[J]. Journal of Geodesy, 2021, 95(1): 1-20. doi: 10.1007/s00190-020-01448-7 [44] WANG L Y, GAO H, FENG G C, et al. Source parameters and triggering links of the earthquake sequence in Central Italy from 2009 to 2016 analyzed with GPS and InSAR data[J], Tectonphysics, 2018, 744: 285-295. doi: 10.1016/j.tecto.2018.07.013 [45] VU D T, BRUINSMA S, BONVALOT S, et al. A Quasigeoid-derived transformation model accounting for land subsidence in the Mekong delta towards height system unification in Vietnam[J]. Remote Sensing, 2020, 12(5): 817. doi: 10.3390/rs12050817 [46] BAI J, LOU Y, ZHANG W, et al. Assessment and calibration of MODIS precipitable water vapor products based on GPS network over China[J]. Atmospheric Research, 2021, 254(14): 105504. [47] KVAS A, BROCKMANN J M, SCHUBERT T, et al. A satellite-only global gravity field model[J]. Earth Syst., 2020, 13: 99-118.