留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多源遥感影像融合处理提取格拉丹东雪山区域特征信息

许伟 杨德芳 陈李昊 罗锴澍 张生鹏 张彦泽 李龙 陈刚

许伟, 杨德芳, 陈李昊, 罗锴澍, 张生鹏, 张彦泽, 李龙, 陈刚. 多源遥感影像融合处理提取格拉丹东雪山区域特征信息[J]. 地质科技通报, 2024, 43(2): 370-385. doi: 10.19509/j.cnki.dzkq.tb20220545
引用本文: 许伟, 杨德芳, 陈李昊, 罗锴澍, 张生鹏, 张彦泽, 李龙, 陈刚. 多源遥感影像融合处理提取格拉丹东雪山区域特征信息[J]. 地质科技通报, 2024, 43(2): 370-385. doi: 10.19509/j.cnki.dzkq.tb20220545
XU Wei, YANG Defang, CHEN Lihao, LUO Kaishu, ZHANG Shengpeng, ZHANG Yanze, LI Long, CHEN Gang. Fusion processing of multisource remote sensing images for extracting characteristic information from the Geladandong Snow Mountain area[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 370-385. doi: 10.19509/j.cnki.dzkq.tb20220545
Citation: XU Wei, YANG Defang, CHEN Lihao, LUO Kaishu, ZHANG Shengpeng, ZHANG Yanze, LI Long, CHEN Gang. Fusion processing of multisource remote sensing images for extracting characteristic information from the Geladandong Snow Mountain area[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 370-385. doi: 10.19509/j.cnki.dzkq.tb20220545

多源遥感影像融合处理提取格拉丹东雪山区域特征信息

doi: 10.19509/j.cnki.dzkq.tb20220545
基金项目: 

国家自然科学基金项目 42274012

中国地质大学(武汉)长江源科考“三全育人”示范项目 2022171

详细信息
    作者简介:

    许伟, E-mail: CUGxuwei@cug.edu.cn

    通讯作者:

    陈刚, E-mail: ddwhcg@cug.edu.cn

  • 中图分类号: P407.8

Fusion processing of multisource remote sensing images for extracting characteristic information from the Geladandong Snow Mountain area

More Information
  • 摘要:

    2022年7月中国地质大学(武汉)冰川勘测组与登山组, 在格拉丹东雪山开展了“第二次大学生长江源科考”工作。为详细分析该区域冰川时空特征信息, 以此次科研数据为支撑, 结合光学遥感影像解译、InSAR形变信息提取、激光雷达测高及高精度大地测量, 进行了多源遥感影像融合处理研究。针对格拉丹东雪山及典型冰川, 采用高分卫星GF1、GF6、GF7、ZY3与Landsat7遥感影像, 利用空三加密、频域影像互相关匹配、波段比值法及目视解译,提取区域DOM、冰川面积及条数分布;利用Sentinel-1A、ICESat-2影像,以SAR影像空间域互相关偏移量追踪方法为支撑,分别提取冰川表面流速及高程变化;利用青海省域北斗CORS站点,采用Gamit/Globk双差无电离层组合模型、卫星星站差分(real-time extended, 简称RTX)及RTK(real-time kinematic)方法,计算所有控制点三维空间坐标及高程异常值。结果表明: 格拉丹东雪山共发育冰川512条,年均增长率为3.12%,面积1 111.96 km2,年均退缩速率为0.63%;姜根(古)迪如冰川日均最大流速为0.25 cm/d,年均最大流速为91.25 cm/a,其南支最大退缩值、堆积值及年变化速率分别为-74.63 m、38.44 m、-5.29~3.09 m/a,北支最大退缩值、堆积值和年变化速率-39.17 m、35.74 m、-3.02~2.85 m/a;所有控制点中误差及区域似大地水准面精化模型精度均达到了mm级。研究成果可以为后续在该地区开展相关冰川研究工作提供数据支撑。

     

  • 图 1  格拉丹东雪山监测范围及数据类型

    a.格拉丹东雪山DEM影像及卫星影像范围;b.格拉丹东雪山基础控制点及像控点点位

    Figure 1.  Monitoring scope and data types of the Geladandong Snow Mountain

    图 2  不同时期冰川面积及变化情况

    a.冰川数量变化趋势;b.冰川面积变化趋势;c.冰川面积变化量;d.冰川面积变化速率

    Figure 2.  Changes in glacier area and variation during different periods

    图 3  格拉丹东雪山代表性冰川面积及条数变化情况

    A.姜根(古)迪如冰川监测区面积变化: a1, a2, a3.冰舌发育情况; b1, b2, b3.冰川中段发育情况; c, d.冰舌面积变化及退缩对比解译;B.a′1, a′2, b′1, b′2, c′1, c′2, d′1, d′2, d′3分别为代表性平顶冰川、悬冰川、山谷冰川及冰斗冰川面积变化

    Figure 3.  Changes in area and number of representative glacier in the Geladandong Snow Mountain

    图 4  不同海拔冰川面积变化情况

    Figure 4.  Variation in glacier area at different elevations

    图 5  姜根(古)迪如冰川表面流速及DEM差值图

    a. 不同影像获取时间影像相对空间基数分布; b~e. 2018-2021年4 a姜根(古)迪如冰川表面日均流速; f. 2018-2019年姜根(古)迪如冰川DEM差值; g. 2020-2021年姜根(古)迪如冰川DEM差值

    Figure 5.  Surface velocity and DEM difference at the Jianggen(gu) Diru Glacier

    图 6  姜根(古)迪如冰川高程变化监测分析

    a.姜根(古)迪如冰川ICESat-2监测轨迹与时间图;b.姜根(古)迪如冰川ICESat-2与DEM高程差分级图;c.姜根(古)迪如南支冰川高程变化监测图;d.姜根(古)迪如南支冰川高程变化速率监测图;e.姜根(古)迪如北支冰川高程变化监测图;f.姜根(古)迪如北支冰川高程变化速率监测图

    Figure 6.  Analysis of the monitoring of elevation variation in Jianggen (gu) Diru Glacier

    图 7  格拉丹东雪山GNSS测量控制网及卫星影像控制点分布

    a.格拉丹东雪山大本营测量控制网;b.格拉丹东雪山北斗CORS站点首级控制网;c.格拉丹东雪山卫星影像控制点测量点位分布

    Figure 7.  GNSS measurement control network and satellite image control point distribution in the Geladandong Snow Mountain

    图 8  格拉丹东雪山GNSS大地测量高程异常值及中误差

    a.似大地水准面高程异常值及控制点分布;b.似大地水准面高程异常值散点;c.似大地水准面精化模型线性拟合;d.似大地水准面精化模型最邻近点拟合;e.所有控制点高程异常值;f.控制点中误差

    Figure 8.  GNSS geodetic elevation outliers and median errors in the Geladandong Snow Mountain dataset

    表  1  光学遥感影像数据源

    Table  1.   Optical remote sensing image data sources

    序号 数据源 传感器 重访周期/d 波段数 分辨率/m 有效景数/景 现时性 数据覆盖度/% 用途
    全色 多光谱
    1 GF-1 WFV 4 4 2.0 8.0 49 2012-2021年 75 影像数据处理,冰川面积、边界及条数提取
    2 GF1B/GF1C/GF1D WFV 4 4 2.0 8.0 65 2012-2020年 89
    3 GF7 WFV 5 4 0.7 2.8 28 2012-2020年 85
    4 GF6 WFV 4 5 2.0 8.0 32 2016-2021年 70
    5 ZY3-01C/02C WFV 3 4 2.1 5.8 84 2016-2021年 68
    6 Landsat7 TM/ETM+ 16 7 15~30 36 2000/2015/2020年 73
    7 ALOS PALSAR DEM 12.5 2011年 100
    8 第二次冰川编目 2007年 100 界线数据
    下载: 导出CSV

    表  2  不同时期冰川面积及变化情况统计

    Table  2.   Statistical table of glacier area and variation in different periods

    监测年份 2012 2013 2014 2015 2016 2017 2018 2019 2020
    冰川数量/条 496 496 496 498 499 502 503 504 512
    冰川面积/km2 1 176.65 1 173.71 1 162.75 1 148.23 1 145.05 1 137.92 1 132.84 1 121.64 1 111.96
    较上年变化量/km2 -2.94 -10.96 -14.52 -3.18 -7.13 -5.08 -11.20 -9.68
    变化率/% 0.25 0.93 1.25 0.28 0.62 0.45 0.99 0.86
    下载: 导出CSV

    表  3  姜根(古)迪如冰川不同时期面积及变化情况统计

    Table  3.   Statistical table of glacial area and variation during different periods for the Jianggen (gu) Diru Glacier

    类别 不同时期冰川面积及变化 两支冰川不同时期面积及变化
    北支冰川 南支冰川
    年份 2020 2021 2020 2021 2020 2021
    数量/个 2 2 1 1 1 1
    周长/km 78.14 101.13 36.22 36.24 41.88 41.90
    面积/km2 58.38 58.12 25.12 25.01 33.26 33.11
    周长较上年变化/km 22.99 0.02 0.02
    面积较上年变化/km2 -0.26 -0.11 -0.15
    面积变化率/% -0.45 -0.44 -0.45
    下载: 导出CSV

    表  4  不同海拔冰川面积变化情况统计

    Table  4.   Statistical table of variation in glacier area at different elevations

    监测年份 平均海拔范围/m
    < 5 600 [5 600, 5 700) [5 700, 5 800] >5 800
    冰川面积/km2
    2012 173.80 288.18 492.82 221.85
    2013 189.36 286.10 478.40 219.85
    2014 171.00 286.35 486.78 218.62
    2015 168.37 278.83 475.57 225.46
    2016 213.29 278.42 428.50 224.85
    2017 164.98 276.81 472.05 224.08
    2018 162.46 274.85 471.76 223.79
    2019 161.84 271.75 397.43 290.63
    2020 149.21 276.46 396.68 289.61
    下载: 导出CSV

    表  5  Sentinel-1A数据统计表

    Table  5.   Statistical table of Sentinel-1A data

    序号 轨道ID 升/降轨 采集时间 序号 轨道ID 升/降轨 采集时间 序号 轨道ID 升/降轨 采集时间
    1 150 Descending 2018/01/15 9 150 Descending 2019/04/16 17 150 Descending 2020/10/31
    2 150 Descending 2018/02/08 10 150 Descending 2019/05/10 18 150 Descending 2020/11/24
    3 150 Descending 2018/04/21 11 150 Descending 2019/11/18 19 150 Descending 2021/01/23
    4 150 Descending 2018/05/15 12 150 Descending 2019/12/12 20 150 Descending 2021/02/16
    5 150 Descending 2018/10/06 13 150 Descending 2020/01/29 21 150 Descending 2021/04/17
    6 150 Descending 2018/10/30 14 150 Descending 2020/02/22 22 150 Descending 2021/05/11
    7 150 Descending 2019/01/10 15 150 Descending 2020/04/10 23 150 Descending 2021/10/26
    8 150 Descending 2019/02/03 16 150 Descending 2020/05/04 24 150 Descending 2021/11/19
    下载: 导出CSV

    表  6  ICESat-2激光测高数据统计

    Table  6.   Statistical table of ICESat-2 laser altimetry data

    序号 轨道ID 升/降轨 采集时间 序号 轨道ID 升/降轨 采集时间
    1 294 2019/01/16 7 1239 2019/12/17
    2 439 2019/01/26 8 294 2020/01/14
    3 294 2019/04/17 9 294 2020/04/24
    4 439 2019/04/27 10 439 2020/07/24
    5 439 2019/07/26 11 439 2020/10/22
    6 439 2019/10/25 12 294 2021/10/11
    下载: 导出CSV
  • [1] 张艳, 孙杰, 于长春, 等. 基于多源遥感数据的第四系覆盖物分类方法研究: 以内蒙古旗杆甸子幅1: 5万填图试点为例[J]. 地质科技情报, 2019, 38(2): 281-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902034.htm

    ZHANG Y, SUN J, YU C C, et al. Classification of Quaternary coverings in desert grassland shallow cover area based on multi-source remote sensing data: A case of 1: 50 000 pilot geological mapping in Qigandianzi, Inner Mongolia[J]. Geological Science and Technology Information, 2019, 38(2): 281-290. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902034.htm
    [2] 陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266. doi: 10.19509/j.cnki.dzkq.tb20220235

    CHEN L, FAN X N, XIONG J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220235
    [3] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201501002.htm

    LIU S Y, YAO X J, GUO W Q, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201501002.htm
    [4] 安国英, 韩磊, 涂杰楠, 等. 中国喜马拉雅山地区冰川1999-2015年期间动态变化遥感调查[J]. 现代地质, 2019, 33(5): 1086-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905017.htm

    AN G Y, HAN L, TU J N, et al. Remote sensing survey on glacial dynamic evolution in the Himalayas in China during 1999-2015[J]. Geoscience, 2019, 33(5): 1086-1097. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905017.htm
    [5] 别强, 强文丽, 王超, 等. 1960-2010年黑河流域冰川变化的遥感监测[J]. 冰川冻土, 2013, 35(3): 574-582. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303005.htm

    BIE Q, QIANG W L, WANG C, et al. Monitoring glacier variation in the upper reaches of the Heihe River based on remote sensing in 1960-2010[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 574-582. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303005.htm
    [6] 李成秀, 杨太保, 田洪阵. 近40年来西昆仑山冰川及冰湖变化与气候因素[J]. 山地学报, 2015, 33(2): 157-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201502004.htm

    LI C X, YANG T B, TIAN H Z. Variation of western Kunlun Mountain glaciers monitored by remote sensing during 1976-2010[J]. Mountain Research, 2015, 33(2): 157-165. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201502004.htm
    [7] 安国英, 韩磊, 黄树春, 等. 念青唐古拉山现代冰川1999-2015年期间动态变化遥感研究[J]. 现代地质, 2019, 33(1): 176-186. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901017.htm

    AN G Y, HAN L, HUANG S C, et al. Dynamic variation of glaciers in Nyainqentanglha Mountain during 1999-2015: Evidence from remote sensing[J]. Geoscience, 2019, 33(1): 176-186. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901017.htm
    [8] 薛娇, 姚晓军, 褚馨德, 等. 2020年青海省冰川边界及长度数据集[J]. 中国科学数据, 2022, 7(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ202202015.htm

    XUE J, YAO X J, CHU X D, et al. A dataset of boundary and length of glaciers in Qinghai Province[J]. China Scientific Data, 2022, 7(2): 1-13. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ202202015.htm
    [9] 李荣兴, 李国君, 冯甜甜, 等. 基于光学遥感卫星影像的南极冰流速产品和方法研究综述[J]. 测绘学报, 2022, 51(6): 953-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206015.htm

    LI R X, LI G J, FENG T T, et al. A review of Antarctic ice velocity products and methods based on optical remote sensing satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 953-963. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206015.htm
    [10] 黄兆欢, 彭思佳, 褚洪义, 等. 基于时序偏移量跟踪技术的喀喇昆仑山Batura和Passu冰川表面流速监测[J]. 兰州大学学报(自然科学版), 2021, 57(5): 569-576. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202105001.htm

    HUANG Z H, PENG S J, CHU H Y, et al. Surface velocity monitoring of the Batura and Passu glaciers in the Kara-koram Mountains based on time series offset tracking technology[J]. Journal of Lanzhou University(Natural Sciences), 2021, 57(5): 569-576. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202105001.htm
    [11] ANDERSON L S, ARMSTRONG W H, ANDERSON R S, et al. Debris cover and the thinning of Kennicott glacier, Alaska: In situ measurements, automated ice cliff delineation and distributed melt estimates[J]. The Cryosphere, 2021, 15(1): 265-282. doi: 10.5194/tc-15-265-2021
    [12] 董继红, 杨成生, 张本浩, 等. 基于SAR偏移量跟踪技术的加拉白垒峰典型冰川位移监测[J]. 甘肃科学学报, 2021, 33(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX202102001.htm

    DONG J H, YANG C S, ZHANG B H, et al. Typical glacier displacement monitoring of Gyala Peri based on SAR offset tracking technology[J]. Journal of Gansu Scicnces, 2021, 33(2): 1-7. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX202102001.htm
    [13] 张生鹏, 周中正, 赵利江, 等. 基于SAR偏移量跟踪法提取岗纳楼冰川流速[J]. 测绘通报, 2020(11): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202011007.htm

    ZHANG S P, ZHOU Z Z, ZHAO L J, et al. Extraction of Gangnalou glacier velocity based on SAR migration tracking method[J]. Bulletin of Surveying and Mapping, 2020(11): 33-38. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202011007.htm
    [14] QINGHUA Y E, CHENG W, ZHAO Y, et al. A review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies[J]. Journal of Geo-Information Science, 2016, 18(7): 920-930.
    [15] 王玉哲, 任贾文, 秦大河, 等. 利用卫星资料反演区域冰川冰量变化的尝试: 以祁连山为例[J]. 冰川冻土, 2013, 35(3): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303006.htm

    WANG Y Z, REN J W, QIN D H, et al. Regional glacier volume changes derived from satellite data: A case study in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 583-592. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201303006.htm
    [16] 姬鑫慧, 叶庆华, 聂维, 等. 基于TerraSAR/TanDEM-X监测岗日嘎布山脉东南段冰川冰面高程变化(2000-2014)[J]. 山地学报, 2021, 39(5): 631-645. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202105003.htm

    JI X H, YE Q H, NIE W, et al. Glacier surface elevation change in southeastern Mt. Kangri Karpo on Tibet during 2000-2014 based on TerraSAR/TanDEM-X data[J]. Mountain Research, 2021, 39(5): 631-645. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202105003.htm
    [17] 王晋, 张勇, 张祖勋, 等. ICESat激光高程点辅助的天绘一号卫星影像立体区域网平差[J]. 测绘学报, 2018, 47(3): 359-369. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201803009.htm

    WANG J, ZHANG Y, ZHANG Z X, et al. ICESat laser points assisted block adjustment I or mapping Satellite-1 stereo imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3): 359-369. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201803009.htm
    [18] 许伟, 司延发. GPS时间序列噪声特性分析: 尼泊尔与藏南为例[J]. 测绘工程, 2020, 29(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC202001006.htm

    XU W, SI Y F. Analysis of the noise characteristics of GPS time series about Nepal and southern Tibet region[J]. Engineering of Surveying and Mapping, 2020, 29(1): 23-30. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC202001006.htm
    [19] XU W, CHEN G, DING K H, et al. Analysis of the common model error on velocity field under colored noise model by GPS and InSAR: A case study in the Nepal and Everest region[J]. Geodesy and Geodynamics, 2022, 13: 399-414. doi: 10.1016/j.geog.2022.01.005
    [20] GUO W Q, LIU S Y, XU J L, et al. The contemporary glacier inventory of China: Data, methods, and results[J]. Journal of Glaciology, 2015, 61: 357-372. doi: 10.3189/2015JoG14J209
    [21] 阿布都拉·阿不都卡地尔, 董玉森, 务宇宽, 等. 1972-2017年南阿尔泰山中部冰湖变化特征及其对气候变化的响应[J]. 地质科技通报, 2020, 39(4): 94-102. doi: 10.19509/j.cnki.dzkq.2020.0412

    ABUDULA·A, DONG Y S, WU Y K, et al. Characteristics of glacial lakes in the central part of the southern Altai Mountains from 1972 to 2017 and their responses to climate changes[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 94-102. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0412
    [22] FAN J, WANG Q, LIU G, et al. Monitoring and analyzing mountain glacier surface movement using SAR data and a terrestrial laser scanner: A case study of the Himalayas north slope glacier area[J]. Remote Sensing, 2019, 11(6): 1-16.
    [23] YAN S Y, RUAN Z X, LIU G, et al. Deriving ice motion patterns in mountainous regions by integrating the intensity-based pixel-tracking and phase-based D-InSAR and MAI approaches: A case study of the Chongce glacier[J]. Remote Sensing, 2016, 8(7): 1-15.
    [24] SCHELLENBERGER T, DUNSE T, KAAB A, et al. Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking[J]. Cryosphere, 2015, 9(6): 2339-2355. doi: 10.5194/tc-9-2339-2015
    [25] ZHOU J, ZHEN L, GUO W. Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data[J]. Environmental Earth Sciences, 2014, 71(8): 3581-3592. doi: 10.1007/s12665-013-2749-5
    [26] 田青林, 潘蔚, 李瀚波, 等. 基于多源遥感数据的蚀变信息提取对比研究[J]. 地质科技情报, 2018, 37(6): 218-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806027.htm

    TIAN Q L, PAN W, LI H B, et al. Comparative research of alteration information extraction based on multi-source remote sensing data[J]. Geological Science and Technology Information, 2018, 37(6): 218-225. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806027.htm
    [27] LEPRINCE S, BARBOT S, AYOUB F, et al. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements[J]. IEEE Transactions on Geoence & Remote Sensing, 2007, 45(6): 1529-1558.
    [28] BAIRD T, BRISTOW C S, VERMEESCH P. Measuring sand dune migration rates with COSI-Corr and Landsat: Opportunities and challenges[J]. Remote Sensing, 2019, 11(20): 2423-2449. doi: 10.3390/rs11202423
    [29] 周文明, 李志伟, 李佳, 等. 1992-2009年格拉丹东冰川及冰前湖而积变化的遥感研究[J]. 中南大学学报(自然科学版), 2014, 45(10): 3505-3512. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201410025.htm

    ZHOU W M, LI Z W, LI J, et al. Variations of glaciers and glacial lake in Geladandong Mountain range in 1992-2009 with remote-sensing technology[J]. Journal of Central South University(Science and Technology), 2014, 45(10): 3505-3512. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201410025.htm
    [30] SUN M, LIU S, YAO X, et al. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory[J]. Journal of Geographical Sciences, 2018, 28(2): 206-220. doi: 10.1007/s11442-018-1468-y
    [31] 陈健, 刘汉湖. 2000-2015年格拉丹东冰川面积变化与物质平衡遥感监测[J]. 河南科学, 2021, 39(2): 282-289. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202102016.htm

    CHEN J, LIU H H. Remote sensing monitoring of glacier change and mass balance(2000-2015) in Geladandong[J]. Henan Science, 2021, 39(2): 282-289. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202102016.htm
    [32] ZHANG Q, YI C, FU P, et al. Glacier change in the Gangdise Mountains, southern Tibet, since the Little Ice Age[J]. Geomorphology, 2018, 306(1): 51-63.
    [33] ZHANG G, YAO T, CHEN W, et al. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J]. Remote Sensing of Environment, 2019, 221: 386-404. doi: 10.1016/j.rse.2018.11.038
    [34] YAN S, ZHENG Y, LI Y, et al. A spatio-temporal variation analysis of Fedchenko and Grumm-Grzhimaylo glacier motion pattern with an efficient pixel-tracking method on spaceborne SAR imagery[J]. Environmental Earth Sciences, 2019, 78(20): 1-10.
    [35] JAWAK S D, KUMAR S, LUIS A J, et al. Seasonal comparison of velocity of the eastern Tributary glaciers, Amery ice shelf, Antarctica, using sar offset tracking[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, IV-2/W5: 595-600.
    [36] SINGH G, NELA B R, BANDYOPADHYAY D, et al. Discovering anomalous dynamics and disintegrating behaviour in glaciers of Chandra-Bhaga sub-basins, part of Western Himalaya using DInSAR[J]. Remote Sensing of Environment, 2020, 246: 111885. doi: 10.1016/j.rse.2020.111885
    [37] 曹彬才, 方勇, 高力, 等. 利用机载点云检核ICESat-2/ATLAS激光测高数据精度[J]. 测绘科学技术学报, 2020, 37(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202001011.htm

    CAO B C, FANG Y, GAO L, et al. Verification of ICESat-2 /ATLAS laser altimetry data accuracy using airborne point cloud[J]. Journal of Geomatics Science and Technology, 2020, 37(1): 50-55. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202001011.htm
    [38] NELA B R, SINGH G, KULKARNI A. Glacier movement estimation of benchmark glaciers in Chandra Basin using differential SAR interferometry(DInSAR) technique[J]. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 2019, 28(6): 4186-4189.
    [39] 蒙张, 胡勇, 邹洪坤, 等. 长江源各拉丹冬地区冰川变化遥感监测分析[J]. 人民长江, 2018, 49(4): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201804007.htm

    MENG Z, HU Y, ZOU H K, et al. Remote sensing monitoring on glacier change in Geladandong area from 1992 to 2015, a source area of Yangtze River[J]. Yangtze River, 2018, 49(4): 34-39. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201804007.htm
    [40] KREEMER C, BLEWITT G. Robust estimation of spatially varying common-mode components in GPS time-series[J]. Journal of Geodesy, 2021, 95(1): 1466-1485.
    [41] KOSEK W, POPIńSKI W, WNK A, et al. Analysis of systematic errors in geocenter coordinates determined from GNSS, SLR, DORIS, and GRACE[J]. Springer International Publishing, 2020, 177(2): 867-888.
    [42] LYSZKOWICZ A, NASTULA J, ZIELINSKI J B, et al. A new model of Quasigeoid for the Baltic Sea area[J]. Remote Sensing, 2021, 13(13): 2580. doi: 10.3390/rs13132580
    [43] TENZER R, CHEN W, RATHNAYAKE S, et al. The effect of anomalous global lateral topographic density on the geoid-to-quasigeoid separation[J]. Journal of Geodesy, 2021, 95(1): 1-20. doi: 10.1007/s00190-020-01448-7
    [44] WANG L Y, GAO H, FENG G C, et al. Source parameters and triggering links of the earthquake sequence in Central Italy from 2009 to 2016 analyzed with GPS and InSAR data[J], Tectonphysics, 2018, 744: 285-295. doi: 10.1016/j.tecto.2018.07.013
    [45] VU D T, BRUINSMA S, BONVALOT S, et al. A Quasigeoid-derived transformation model accounting for land subsidence in the Mekong delta towards height system unification in Vietnam[J]. Remote Sensing, 2020, 12(5): 817. doi: 10.3390/rs12050817
    [46] BAI J, LOU Y, ZHANG W, et al. Assessment and calibration of MODIS precipitable water vapor products based on GPS network over China[J]. Atmospheric Research, 2021, 254(14): 105504.
    [47] KVAS A, BROCKMANN J M, SCHUBERT T, et al. A satellite-only global gravity field model[J]. Earth Syst., 2020, 13: 99-118.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  408
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 录用日期:  2022-11-15
  • 修回日期:  2022-11-09

目录

    /

    返回文章
    返回