Application of three-dimensional visualization modeling technology of ore bodies in metallogenic mode analysis
-
摘要:
铜是我国国民经济建设重要的战略性金属矿产资源之一, 其国外进口依存度高, 因此铜矿的勘查和资源评估工作具有重要的意义。基于野外地质工作中所采集的地质勘探剖面及钻孔数据, 建立了滇西某铜矿区的三维可视化地质矿产模型, 并基于该模型估算了资源储量。计算结果表明: 全区矿石资源量为4 893.4万t, 铜储量为54.3万t。通过对比分析证实新地质矿体三维建模系统建立的模型及资源估算具有较高的可信度, 其多样化的分析板块及动态更新功能具有较为广泛的应用性, 能够运用于铜矿后续的钻探工程及资源量评估中。结合区域构造和矿床地质资料, 进一步分析了铜矿的成矿模式, 即后期火山气液充填交代富集改造为滇西某铜矿成矿的主要矿质来源, 构造运动对其控制作用明显, 主要体现在多旋回构造运动中形成的岩相古地理条件及后期断裂活动对容矿空间的改造。研究成果为进一步的勘查工作奠定了基础, 能够更好地指导找矿工作, 对相关类型多金属矿产的勘查和开采等实践应用亦具有借鉴意义。
Abstract:Objective Copper is an important strategic metal resource for national economic and social development. Therefore, the exploration and resource assessment of copper mines are of great significance.
Methods Based on collected geological profiles and drilling data, this study constructed a three-dimensional geological model for a copper ore deposit in western Yunnan, which was applied to estimate the resource reserve in the mining area.
Results The ore resource is estimated to be 48.93 million tons, including 0.543 million tons of copper. Through comparative analysis, the model and resource estimation established by our newly proposed three-dimensional geological modelling system shows high credibility, in which multiple analysis modules and dynamic update function have a wide range of applications and it can be used for future drilling engineering and resources estimation.
Conclusion This study provides the basis for further exploration work in this region, and it can also be applied to the exploration and mining of related polymetallic deposits.
-
表 1 铜矿区褶皱构造特征
Table 1. Characteristics of folding structures in the copper ore deposit area
褶皱名称 褶皱轴向 轴长/km 倾角/(°) 出露地层 褶皱形态特征 西翼 东翼 核部 翼部 大过口向斜 N12°~20°E 16.0 10~20 20~35 K1j J2h 长轴不对称,轴面东倾,西翼局部被董家营断层所切 岩脚-关山向斜 N10°W~N35°E 6.0 10~25 20~50 K1j J2h 轴面略微东倾 结结坝背斜 N10°W~N10°E 12.5 20~35 20~35 J2h K1j 长轴不对称,轴面微东倾,轴线大体呈向东凸出的弧形,南端被那布断层所截 翁姑田背斜 N5°E 5.0 40~60 5 P2 P1, T2 为长轴背斜,轴线微向西凸出,轴部及东翼大部分被断层错失 那布背斜 N5°~40°E 12.0 20 30~50 J1 J2h 长轴不对称,轴面西倾,轴线呈向西凸出的弧形,南端及西翼被那布断层破坏,为似箱型褶皱 荞家村向斜 N10°W~N35°E 28.0 35~43 25~45 K1m J2h, K1j 长轴不对称,枢纽起伏,轴线呈S或反S形,北端被断层所切,南端倾伏于第四系之下 大官营向斜 N20°~30°E 10.0 30~50 28~30 K1j J2h, J3b 长轴不对称,轴面西倾,轴线东凸,圈闭良好 岩脚背斜 N0°~40°E 24.0 25~45 20~40 K1j K1j, K1m 长轴不对称 坤南箐背斜 N10°W~N50°E 28.0 25~60 30~50 T2 J1, J2h 长轴不对称,轴面东倾,轴线呈反S形,东翼及核部多被NE向断层所切 老家村向斜 N20°E 6.5 25~40 30~40 K1m K1j 长轴向斜,两翼基本对称,轴线尚较平直。往南可与下帮弄向斜相连,二者处于同一褶皱带上 注:K1m.下白垩统曼岗组;K1j.下白垩统景星组;J1.下侏罗统;J2h.中侏罗统和平乡组;J3b.上侏罗统坝注路组;T2.中三叠统;P1.下二叠统;P2.上二叠统;下同 表 2 铜矿区断裂构造特征
Table 2. Fault structural features in the copper ore deposit area
断层编号 断裂名称 长度/ km 产状 切错层位 断层性质 断裂带标志 走向 倾向 倾角/(°) F1 大困博断裂 8.5 N24° T2 不明 岩石有明显碎裂现象 F2 坡脚断裂 6.5 N20°W T2-P2 不明 产状相抵,地层层位有缺失 F3 文肖-岔河断裂 15.0 N10°~30°E T2-P2 高角度逆冲断裂 局部倒转或产状相抵,断裂沿线岩石片理化、碎裂-角砾岩化或糜棱岩化,劈理、构造透镜体发育 F4 董家营断裂 8.5 N3°~10°E NW P2-J2h 逆断裂 产状相抵,具明显挤压现象 F5 翁姑田断裂 26.0 N4°~13°E NE 68 P2-J1h 逆断裂 产状相抵,层位缺失,破碎带劈理发育 F6 那布断裂 36.5 N10°W~N20°E NE 70 T2-K1j 逆断裂 层位缺失,层序颠倒,岩石破碎 F7 文招营断裂 13.5 N45°E J2h-J1 正断裂 两盘岩层产状相抵、层序颠倒 F8 小河边断裂 22.0 N10°~32°E NW T2-K1m 正断裂 岩石破碎剧烈,具挤压特征,出现产状相抵及拖拽、扭曲等现象 表 3 铜矿区各地质体Cu元素变差函数拟合参数
Table 3. Variogram fitting parameters of geological bodies in the copper ore deposit area
地层及代号 结构模型 块金值 基台值 主变程 次变程 垂向变程 主方位 次方位 K1J2 球状模型 0.172 0 0.817 8 500.0 500.0 97.5 24.4 294.4 K1J1-3 球状模型 0.999 7 0.000 0 4 550.0 1 692.6 83.8 279.0 189.0 K1J1-2 球状模型 0.585 8 0.414 1 17 160.0 5 280.0 1 261.9 22.9 292.9 K1J1-1 球状模型 1.000 0 0.000 0 6 440.0 1 750.6 246.5 285.0 195.0 J3b 球状模型 0.275 9 0.723 7 1 762.1 647.4 670.0 7.0 277.0 J2h2 球状模型 0.640 0 0.359 8 623.6 435.3 1 000.0 50.7 320.7 表 4 铜矿岩矿石化学全分析结果表
Table 4. Chemical analysis results of the copper ore deposit
岩性 Al2O3 SiO2 Fe2O3 FeO TiO2 CaO MgO K2O Na2O MnO 特征比值 wB/% MgO/CaO Fe2O3/FeO Fe/Mn 顶板 14.95 61.09 5.09 3.37 0.71 2.91 2.05 3.91 0.11 0.09 0.70 1.51 19.11 夹石 9.91 45.64 4.15 3.63 0.45 16.28 2.89 2.10 0.09 0.19 0.18 1.14 2.74 夹石 11.04 65.30 3.05 2.28 0.52 4.40 2.69 2.08 0.09 0.11 0.61 1.34 7.00 夹石 14.90 61.18 4.31 1.97 0.64 4.00 1.91 4.20 0.10 0.08 0.48 2.19 29.25 底板 9.02 66.97 2.63 1.71 0.42 7.10 1.33 2.16 0.05 0.16 0.19 1.54 5.75 平均值 11.96 60.04 3.85 2.59 0.55 6.94 2.17 2.89 0.09 0.13 0.43 1.54 12.77 矿石1 9.36 38.78 3.35 2.68 0.44 20.55 2.12 2.25 0.07 0.12 0.10 1.25 5.58 矿石2 7.88 32.59 3.16 2.54 0.36 24.92 1.68 2.08 0.07 0.13 0.07 1.24 4.77 矿石3 10.53 71.51 3.80 2.96 0.53 1.81 2.04 1.79 0.53 0.04 1.13 1.28 21.00 矿石4 6.04 25.44 2.59 2.26 0.28 30.92 1.47 1.55 0.06 0.12 0.05 1.15 2.75 矿石5 12.29 69.79 3.27 2.79 0.61 1.63 1.54 3.03 0.06 0.05 0.94 1.17 9.60 矿石6 7.79 29.93 3.23 2.40 0.35 27.21 1.72 1.77 0.09 0.14 0.06 1.35 5.93 矿石7 11.08 66.30 4.01 3.09 0.56 3.09 2.51 2.02 1.29 0.07 0.81 1.30 13.14 矿石8 8.14 35.75 3.14 2.59 0.37 23.67 1.99 1.79 0.13 0.11 0.08 1.21 5.00 矿石9 9.10 56.33 2.99 2.27 0.43 11.79 1.91 2.09 0.05 0.13 0.16 1.32 5.54 矿石10 12.60 65.02 4.33 3.19 0.60 2.43 2.51 2.61 0.59 0.06 1.03 1.36 19.00 平均值 9.48 49.14 3.39 2.68 0.45 14.80 1.95 2.1 0.29 0.10 0.44 1.26 9.23 表 5 资源量估算验证对比
Table 5. Comparison of resources estimation from different methods
资源量 地质统计学法1 体模型法2 数值计算法3 断面法4 相对误差/% 矿石量/万t 4 893.4 4 821.2 4 527.0 4 615.7 5.89 Cu金属量/万t 54.3 55.1 51.7 52.6 4.66 平均品位/% 1.15 1.14 1.14 1.14 0.44 注:储量估算方法1~3为本次计算成果,方法4为断面法基于原始资料计算得到的储量结果;相对误差是本次计算结果与原始资料中断面法结果的相对偏差 -
[1] 应立娟, 陈毓川, 王登红, 等. 中国铜矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2216-2226. doi: 10.19762/j.cnki.dizhixuebao.2014.12.006Ying L J, Chen Y C, Wang D H, et al. Metallogenic regularity of copper ore in China[J]. Acta Geologica Sinica, 2014, 88(12): 2216-2226 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2014.12.006 [2] Wang C M, Bagas L, Lu Y J, et al. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: Insights from zircon Hf-isotopic mapping[J]. Earth-Science Reviews, 2016, 156: 39-65. doi: 10.1016/j.earscirev.2016.02.008 [3] Deng J, Wang Q F, Li G J, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299. doi: 10.1016/j.earscirev.2014.05.015 [4] Hou Z Q, Zaw K, Pan G T, et al. Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 2007, 31: 48-87. doi: 10.1016/j.oregeorev.2004.12.007 [5] 薛春纪, 陈毓川, 杨建民, 等. 滇西兰坪盆地构造体制和成矿背景分析[J]. 矿床地质, 2002, 21(1): 36-44. doi: 10.3969/j.issn.0258-7106.2002.01.005Xue C J, Chen Y C, Yang J M, et al. Analysis of ore-forming background and tectonic system of Lanping Basin, western Yunnan Province[J]. Mineral Deposits, 2002, 21(1): 36-44 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2002.01.005 [6] 侯增谦, 王二七, 莫宣学, 等. 青藏高原碰撞造山与成矿作用[M]. 北京: 地质出版社, 2008.Hou Z Q, Wang E Q, Mo X X, et al. Collision orogeny and mineralization of Qinghai-Tibet Plateau[M]. Beijing: Geological Publishing House, 2018 (in Chinese). [7] 陈贤胜, 徐恒, 梁庭祥, 等. 滇西景谷曾家村铜矿地质特征及矿床成因新认识[J]. 矿产与地质, 2019, 33(6): 964-973. doi: 10.3969/j.issn.1001-5663.2019.06.004Chen X S, Xu H, Liang T X, et al. Geological characteristics of Zengjiacun copper deposit and a new understanding of the deposit genesis in Jinggu City, west Yunnan[J]. Mineral Resources and Geology, 2019, 33(6): 964-973 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2019.06.004 [8] Zu X F, Hou W S, Zhang B Y, et al. Overview of three-dimensional geological modeling technology[J]. IERI Procedia, 2012, 2: 921-927. doi: 10.1016/j.ieri.2012.06.192 [9] 郑小杰, 李晓晖, 袁峰, 等. 姚家岭锌金多金属矿床三维地质建模与成矿预测[J]. 地质科学, 2022, 57(3): 910-923. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202203016.htmZheng X J, Li X H, Yuan F, et al. 3D geological modeling and perspectivity modeling in Yaojialing Zn-Au polymetallic deposit[J]. Chinese Journal of Geology, 2022, 57(3): 910-923 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202203016.htm [10] Chen Q Y, Liu G, Ma X G, et al. Three-dimensional geologic modeling[C]//Daya S B, Cheng Q, McKinley J, et al. Encyclopedia of Mathematical Geosciences: Encyclopedia of Earth Sciences Series[M]. [S. l. ]: Springer, 2021. [11] Wu Q, Xu H. Three-dimensional geological modeling and its application in digital mine[J]. Science China: Earth Sciences, 2014, 57: 491-502. doi: 10.1007/s11430-013-4671-9 [12] 张夏林, 吴冲龙, 周琦, 等. 基于勘查大数据和数据集市的锰矿床三维地质建模[J]. 地质科技通报, 2020, 39(4): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004002.htmZhang X L, Wu C L, Zhou Q, et al. Three-dimensional geological modeling of manganese deposits based on exploration big data and data market[J]. Bulletin Geological Science and Technology, 2020, 39(4): 12-20 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004002.htm [13] 赵岩岩, 吴昌雄, 石文杰, 等. 鄂东南矿集区铜绿山-铜山铜铁金矿床三维地质建模与深部预测[J]. 地质科技通报, 2023, 42(1): 112-125. doi: 10.19509/j.cnki.dzkq.2022.0095Zhao Y Y, Wu C X, Shi W J, et al. Three-dimensional (3D) geological modeling and deep mineral targeting of the Tonglüshan-Tongshan Cu-Fe-Au deposit in southeastern Hubei Province[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 112-125 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0095 [14] 李金岷, 黄鑫, 石文杰, 等. 山东牟乳成矿带金青顶矿区三维综合找矿模型的构建及深部预测[J]. 地质科技通报, 2021, 40(6): 151-164. doi: 10.19509/j.cnki.dzkq.2021.0615Li J M, Huang X, Shi W J, et al. Three-dimensional comprehensive model and deep prediction of the Jinqingding gold deposit, Muping-Rushan metallogenic belt, Shandong, China[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 151-164 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0615 [15] 李洪奎, 毛先成, 汤磊, 等. 山东招远夏甸金矿深部三维成矿可视化定位预测[J]. 山东国土资源, 2019, 35(7): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201907001.htmLi H K, Mao X C, Tang L, et al. 3D visual orientation location prediction in deep part of Xiadian gold deposit in Zhaoyuan City of Shandong Province[J]. Shandong Land and Resources, 2019, 35(7): 1-10 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201907001.htm [16] 毛先成, 邹艳红, 陈进, 等. 危机矿山深部、边部隐伏矿体的三维可视化预测: 以安徽铜陵凤凰山矿田为例[J]. 地质通报, 2010, 29(2/3): 401-413. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1028.htmMao X C, Zou Y H, Chen J, et al. Three-dimensional visual prediction of concealed ore bodies in the deep and marginal parts of crisis mines: A case study of the Fenghuangshan ore field in Tongling, Anhui, China[J]. Geological Bulletin of China, 2010, 29(2/3): 401-413 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1028.htm [17] 刘宜政, 高建国, 余晓霞, 等. 基于矿床三维地质建模的云南会泽某矿段隐伏矿体预测[J]. 地质科技情报, 2014, 33(6): 164-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406023.htmLiu Y Z, Gao J G, Yu X X, et al. Predicting unexplored ore bodies by 3-D geological metallogenic modeling: A case study of Huize lead-zinc mine, Yunnan Province[J]. Geological Science and Technology Information, 2014, 33(6): 164-169 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406023.htm [18] Chanderman L, Dohm C E, Minnitt R C A. 3D geological modelling and resource estimation for a gold deposit in Mali[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2017, 117(2): 189-197. [19] Wang G W, Huang L. 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China[J]. Geoscience Frontiers, 2012, 3(4): 483-491. [20] Wang G W, Zhang S T, Yan C H, et al. Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region, China[J]. Computers & Geosciences, 2011, 37(12): 1976-1988. [21] Guo J T, Wang X L, Wang J M, et al. Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm[J]. Engineering Geology, 2021, 284: 106047. [22] Xue C J, Zeng R, Liu S W, et al. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China: A review[J]. Ore Geology Reviews, 2007, 31: 337-359. [23] He L Q, Song Y C, Chen K X, et al. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau[J]. Ore Geology Reviews, 2009, 36: 106-132. [24] 陶晓风, 朱利东, 刘登忠, 等. 滇西兰坪盆地的形成及演化[J]. 成都理工学院学报, 2002, 29(5): 521-525. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200205010.htmTao X F, Zhu L D, Liu D Z, et al. The formation and evolution of the Lanping Basin in western Yunnan[J]. Journal of Chengdu University of Technology, 2002, 29(5): 521-525 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200205010.htm [25] 程朋根, 龚健雅, 史文中, 等. 基于似三棱柱体的地质体三维建模与应用研究[J]. 武汉大学学报: 信息科学版, 2004, 29(7): 602-607. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200407009.htmCheng P G, Gong J Y, Shi W Z, et al. Geological object modeling based on quasi tri-prism volume and its application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 602-607 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200407009.htm [26] 荆永滨, 王李管, 毕林, 等. 复杂矿体的块段模型建模算法[J]. 华中科技大学学报: 自然科学版, 2010, 38(2): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201002031.htmJing Y B, Wang L G, Bi L, et al. Robust creation of block model from complex orebody model[J]. Journal of Huazhong University of Science and Technology: Nature Science, 2010, 38(2): 97-100 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201002031.htm [27] 曹国林, 孟耀伟. 复杂地质构造三维地质体建模方法研究[J]. 矿冶工程, 2012, 32(3): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201203009.htmCao G L, Meng Y W. Research on 3D modeling of complex geologic bodies[J]. Mining and Metallurgical Engineering, 2012, 32(3): 22-29 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201203009.htm [28] 孙立双, 毕天平, 马运涛, 等. 一种基于剖面轮廓线进行矿体三维建模的方法[J]. 沈阳建筑大学学报: 自然科学版, 2011, 27(4): 653-658. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201104010.htmSun L S, Bi T P, Ma Y T. et al. An orebody 3D modeling algorithm based on section contour lines[J]. Journal of Shenyang Jianzhu University: Natural Science, 2011, 27(4): 653-658 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201104010.htm [29] 冀晓伟, 卢才武, 李海波. 三维矿体表面建模中的三角剖分技术及其应用[J]. 金属矿山, 2011(2): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201102030.htmJi X W, Lu C W, Li H B. Triangulation technique and its application in 3D ore body surface modeling[J]. Metal Mine, 2011(2): 106-110 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201102030.htm [30] 马洪滨, 郭甲腾. 一种新的多轮廓线重构三维形体算法: 切开缝合法[J]. 东北大学学报: 自然科学版, 2007, 28(1): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200701027.htmMa H B, Guo J T. Cut-and-sew algorithm: A new multi-contour reconstruction algorithm[J]. Journal of Northeastern University: Natural Science, 2007, 28(1): 111-114 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200701027.htm [31] 娄渝明, 韩鹏, 邓煜霖, 等. Surpac软件在三维地质建模中的应用[J]. 四川地质学报, 2017, 37(2): 339-341. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201702039.htmLou Y M, Han P, Deng Y L, et al. The application of Surpac to the 3D geological modeling[J]. Acta Geological Sichuan, 2017, 37(2): 339-341 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201702039.htm [32] 王小丹, 王标, 牛水源. 常用资源储量估算方法的对比分析[J]. 四川有色金属, 2015(2): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201502002.htmWang X D, Wang B, Niu S Y. Comparison of resources and reserve estimation methods[J]. Sichuan Nonferrous Metals, 2015(2): 5-7 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201502002.htm [33] 唐攀, 唐菊兴, 林彬, 等. 传统几何法与地质统计学法在矿产资源储量估算中的对比分析[J]. 地质科技情报, 2016, 35(1): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201601024.htmTang P, Tang J X, Lin B, et al. Comparative research of traditional method and geostatistical in mineral resource calculation[J]. Geological Science and Technology Information, 2016, 35(1): 156-160 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201601024.htm [34] 刘海英, 刘修国, 李超岭. 基于地质统计学法的三维储量估算系统研究与应用[J]. 吉林大学学报: 地球科学版, 2009, 39(3): 541-546. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903027.htmLiu H Y, Liu X G, Li C L. Realization and application of 3D reserves estimation system based on geostatistics[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(3): 541-546 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903027.htm [35] 罗君烈. 滇西特提斯造山带的演化及基本特征[J]. 云南地质, 1990, 9(4): 247-290. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199004000.htmLuo J L. Evolution and basic characteristics of Tethys Orogenic Zone, western Yunnan[J]. Yunnan Geology, 1990, 9(4): 247-290 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199004000.htm [36] 莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606007.htmMo X X, Pan G T. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic events[J]. Earth Science Frontiers, 2006, 13(6): 43-51 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606007.htm