留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字露头的多尺度裂缝模型建立及其对地下裂缝预测指导

高翔 冯建伟 渠继航 杜赫

高翔, 冯建伟, 渠继航, 杜赫. 基于数字露头的多尺度裂缝模型建立及其对地下裂缝预测指导[J]. 地质科技通报, 2024, 43(2): 143-155. doi: 10.19509/j.cnki.dzkq.tb20220599
引用本文: 高翔, 冯建伟, 渠继航, 杜赫. 基于数字露头的多尺度裂缝模型建立及其对地下裂缝预测指导[J]. 地质科技通报, 2024, 43(2): 143-155. doi: 10.19509/j.cnki.dzkq.tb20220599
GAO Xiang, FENG Jianwei, QU Jihang, DU He. Establishment of multi-scale fracture model based on digital outcrop and its guidance for subsurface fracture prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 143-155. doi: 10.19509/j.cnki.dzkq.tb20220599
Citation: GAO Xiang, FENG Jianwei, QU Jihang, DU He. Establishment of multi-scale fracture model based on digital outcrop and its guidance for subsurface fracture prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 143-155. doi: 10.19509/j.cnki.dzkq.tb20220599

基于数字露头的多尺度裂缝模型建立及其对地下裂缝预测指导

doi: 10.19509/j.cnki.dzkq.tb20220599
基金项目: 

中国石油重大科技项目 ZD2019-183-006

详细信息
    作者简介:

    高翔, E-mail: ggaox1201@163.com

    通讯作者:

    冯建伟, E-mail: linqu-fengjw@126.com

  • 中图分类号: P628

Establishment of multi-scale fracture model based on digital outcrop and its guidance for subsurface fracture prediction

More Information
  • 摘要:

    塔里木盆地台盆区发育大面积的深层碳酸盐岩油气藏, 构造裂缝是深层碳酸盐岩油气藏重要的储层渗流通道和储集空间, 但受多种地质因素的影响其分布具有强烈的非均质性, 目前无一套有效的技术方法解决储层多尺度裂缝定量化表征的难题。利用数字露头技术, 建立露头区三维数字模型, 并在此基础上开展露头裂缝识别及裂缝参数的定量描述。基于露头裂缝研究成果, 对于不同尺度裂缝的发育特点采用不同的建模方法, 针对大、中尺度裂缝, 分别采用确定性建模方法和基于分维理论的优化融合建模方法; 面对小尺度裂缝建模复杂的难题, 利用多元信息融合方法融合断层走向模型、距断层距离模型以及地层构造曲率模型建立小尺度裂缝综合发育概率体, 以裂缝综合发育概率体为约束, 多元数据协同模拟构建小尺度裂缝网络模型。结果表明: 在同一网格体系下, 将多尺度裂缝模型及构造模型叠加获得露头原型地质模型。将露头原型地质模型研究成果应用于塔里木盆地跃满地区地下储层裂缝建模中, 分尺度描述了裂缝产状、密度等主要建模参数, 确定了裂缝发育主控因素, 并结合井点裂缝分析成果, 构建了储层多尺度裂缝网络模型, 与单井裂缝解释、生产资料吻合度较好。实例研究表明露头原型地质模型研究成果可以为地下储层裂缝建模提供重要的研究思路和地质依据。

     

  • 图 1  研究区位置及地层岩性

    Figure 1.  Location and stratigraphic system of the study area

    图 2  原型地质模型构建方法流程图

    Figure 2.  Flow chart of prototype geological model construction method

    图 3  克斯勒塔格山露头裂缝发育特征

    Figure 3.  Fracture characteristics of the outcrop in Kiziltag Mountain

    图 4  克斯勒塔格山裂缝采样统计(Ⅰ~Ⅵ均为测点号)

    Figure 4.  Sampling statistics results of fractures in Kiziltag Mountain

    图 5  断层-裂缝交切关系特征

    Figure 5.  Characteristics of fault-fracture intersection relation

    图 6  克斯勒塔格山大尺度裂缝模型

    Figure 6.  Large scale fracture model of Kiziltag Mountain

    图 7  克斯勒塔格山中尺度裂缝网络

    Figure 7.  Mesoscale fracture network model of Kiziltag Mountain

    图 8  小尺度裂缝发育综合概率体

    Figure 8.  Comprehensive probability volume of small-scale fracture

    图 9  克斯勒塔格山小尺度裂缝发育模型

    Figure 9.  Small scale fracture model of Kiziltag Mountain

    图 10  克斯勒塔格山原型地质模型

    Figure 10.  Prototype geological model of Kiziltag Mountain

    图 11  克斯勒塔格山原型地质模型验证分析

    a.露头断层-缝裂提取;b.断层模拟结果; c.裂缝模拟结果

    Figure 11.  Verification and analysis of prototype geological model of Kiziltag Mountain

    图 12  跃满地区储层裂缝发育特征

    a.裂缝走向玫瑰花图; b.裂缝倾角统计直方图

    Figure 12.  Characteristics of reservoir fractures in the Yueman area

    图 13  跃满地区裂缝约束模型

    a.断层约束模型; b.储层岩性模型; c.应力强度模型; d.构造曲率模型

    Figure 13.  Fracture constraint model in the Yueman area

    图 14  跃满地区多尺度裂缝网络模型(D1~D4为井区的分段代号)

    Figure 14.  Multiscale fracture network model in the Yueman area

    图 15  实测裂缝密度与模拟裂缝密度对比

    Figure 15.  Comparison of the measured fracture density and simulated fracture density

    表  1  裂缝尺度三级划分标准

    Table  1.   Three-level division standard of the fracture scale

    裂缝级别 裂缝长度/m 裂缝开度/mm 应力条件 其他
    大尺度缝 > 100 > 1 区域应力场 具有微小断距的低级序断层
    中尺度缝 [10,100] [0.5, 1] 局部应力场 断距不明显的小断层或穿层的大裂缝,受隔层控制
    小尺度缝 < 10 < 0.5 派生应力场 层内、岩心裂缝,受多夹层控制
    下载: 导出CSV

    表  2  克斯勒塔格山断控裂缝密度统计

    Table  2.   Sampling statistics results of fractures in Kiziltag Mountain 裂缝密度/(条·m-1)

    测点号 距断层中心距离/m
    [0, 1) [1, 5) [5, 10) [10, 20) [20, 50) [50, 100]
    11.6 9.5 9.5 9.2 8.1 7.4 5.8 6.9 3.8 3.2 1.8 1.5
    10.5 10.2 8.4 8.1 6.2 6.6 4.8 4.4 2.1 2.0 3.1 0.8
    8.9 8.4 7.8 7.2 6.6 6.1 4.5 4.1 3.1 1.8 2.7 0.5
    7.6 7.4 6.5 5.8 4.1 3.4 3.2 3.9 2.2 2.8 1.8 1.2
    10.6 9.1 7.9 6.2 7.5 7.1 5.4 5.6 3.3 2.9 3.2 2.5
    7.1 7.2 6.9 6.1 4.4 4.8 3.9 3.4 1.2 1.5 1.9 0.9
    下载: 导出CSV

    表  3  裂缝建模输入参数

    Table  3.   Fracture modeling input parameters

    1期裂缝 2期裂缝 3期裂缝
    裂缝倾角/(°) 82 84 78
    裂缝走向/(°) 315 220 5
    Fisher分布κ 40 30 10
    最小裂缝长度/m 0.1 0.2 0.1
    最大裂缝长度/m 90 85 80
    幂律指数D 2.31 2.162 2.134
    裂缝长宽比 2.5 2.5 2.5
    裂缝线密度/(条·m-1) 9.4 6.8 2.6
    开度比例系数 10-5 10-5 10-5
    下载: 导出CSV
  • [1] 刘钰铭, 侯加根, 李永强, 等. 多元约束的古岩溶碳酸盐岩洞穴储层分布建模方法: 以塔河油田奥陶系油藏为例[J]. 石油科学通报, 2018, 3(2): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802001.htm

    LIU Y M, HOU J G, LI Y Q, et al. A multi-constrained modeling method for paleokarst carbonate reservoirs: An application to the Ordovician reservoir in the Tahe Oilfield[J]. Petroleum Science Bulletin, 2018, 3(2): 125-133. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802001.htm
    [2] 吕文雅, 曾联波, 陈双全, 等. 致密低渗透砂岩储层多尺度天然裂缝表征方法[J]. 地质论评, 2021, 67(2): 543-556. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202102024.htm

    LÜ W Y, ZENG L B, CHEN S Q, et al. Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs[J]. Geological Review, 2021, 67(2): 543-556. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202102024.htm
    [3] 高金栋, 周立发, 冯乔, 等. 储层构造裂缝识别及预测研究进展[J]. 地质科技情报, 2018, 37(4): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm

    GAO J D, ZHOU L F, FENG Q, et al. Progress in reservoir structural fracture characterization and prediction[J]. Geological Science and Technology Information, 2018, 37(4): 158-166. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm
    [4] 商晓飞, 龙胜祥, 段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学, 2021, 32(2): 215-232. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202102006.htm

    SHANG X F, LONG S X, DUAN T Z. Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs[J]. Natural Gas Geoscience, 2021, 32(2): 215-232. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202102006.htm
    [5] BELLIAN J A, KERANS C, JENNETTE D C. Digital outcrop models: Applications of terrestrial scanning lidar technology in stratigraphic modeling[J]. Journal of Sedimentary Research, 2005, 75(2): 166-176. doi: 10.2110/jsr.2005.013
    [6] 杜赫, 徐守余, 冯建伟, 等. 基于数字露头表征的岩溶缝洞组构特征[J]. 中国石油大学学报(自然科学版), 2020, 44(5): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202005001.htm

    DU H, XU S Y, FENG J W, et al. Digital outcrop representation for karst fracture-cave reservoir[J]. Journal of China University of Petroleum(Natural Science Edition), 2020, 44(5): 1-9. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202005001.htm
    [7] 王春阳, 刘永雷, 成锁, 等. 基于数字地质露头模型的碎屑岩储层及裂缝建模[C]//西安石油大学, 陕西省石油学会. 2019油气田勘探与开发国际会议论文集. 西安: 西安石油大学、陕西省石油学会, 2019.

    WANG C Y, LIU Y L, CHENG S, et al. Clastic reservoir and fracture modeling based on digital outcrop model[C]//Xi'an Shiyou University, Shaanxi Petroleum Society. Proceedings of the International Conference on Oil and Gas Field Exploration and Development. Xi'an: Xi'an Shiyou University, Shaanxi Petroleum Society, 2019. (in Chinese with English abstract)
    [8] 郑剑锋, 沈安江, 乔占峰. 基于数字露头的三维地质建模技术: 以塔里木盆地一间房剖面一间房组礁滩复合体为例[J]. 岩性油气藏, 2015, 27(5): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201505022.htm

    ZHENG J F, SHEN A J, QIAO Z F. 3D geologic modeling technology based on digital outcrop: A case study of reef-shoal body of Yijianfang Formation in Yijianfang outcrop, Tarim Basin[J]. Lithologic Reservoirs, 2015, 27(5): 108-115. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201505022.htm
    [9] 曾齐红, 马乙云, 谢兴, 等. 鄂尔多斯盆地延长组数字露头表层建模方法研究[J]. 岩性油气藏, 2015, 27(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201505007.htm

    ZENG Q H, MA Y Y, XIE X, et al. Surface modeling method of digital outcrop of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2015, 27(5): 25-29. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201505007.htm
    [10] GALLAS J, BACKERS T. Descriptive and quantitative analysis of fracture systems in a carbonate rock mass complex[C]//Anon. IOP Conference Series: Earth and Environmental Science. [S. l. ]: [s. n. ], 2021: 833.
    [11] 肖江, 王祖君, 张明, 等. 哈拉哈塘油田走滑断裂控藏研究: 以RP8断裂为例[J]. 长江大学学报(自然科学版), 2019, 16(6): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201906004.htm

    XIAO J, WANG Z J, ZHANG M, et al. Study on the reservoir control of the strike-slip fault in halahatang oilfield and its application: By taking RP8 fault for example[J]. Journal of Yangtze University(Natural Science Edition), 2019, 16(6): 19-23. (in Chinese with Emglish abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201906004.htm
    [12] 王新新, 崔德育, 孙崇浩, 等. 哈拉哈塘油田A地区断裂特征及其控油作用[J]. 地质力学学报, 2019, 25(6): 1058-1067. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201906023.htm

    WANG X X, CUI D X, SUN C H, et al. Characteristics of strike-slip fault and its controlling on oil in block a of the Halahatang oilfield, Tarim Basin[J]. Journal of Geomechanics, 2019, 25(6): 1058-1067. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201906023.htm
    [13] 周铂文, 陈红汉, 云露, 等. 塔里木盆地顺北地区一间房组台地碳酸盐岩异常泥质含量与断裂带距离及裂缝发育关系[J]. 地质科技通报, 2020, 39(6): 93-102. doi: 10.19509/j.cnki.dzkq.2020.0609

    ZHOU B W, CHEN H H, YUN L, et al. Relationship between argillaceous content and distance to main faulted zone and fractures development in the platform carbonate rocks of Yijianfang Formation in Shunbei area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 93-102. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0609
    [14] 马德波, 邬光辉, 朱永峰, 等. 塔里木盆地深层走滑断层分段特征及对油气富集的控制: 以塔北地区哈拉哈塘油田奥陶系走滑断层为例[J]. 地学前缘, 2019, 26(1): 225-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901022.htm

    MA D B, WU G H, ZHU Y F, et al. Segmentation characteristics of deep strike slip faults in the Tarim Basin and its control on hydrocarbon enrichment: Taking the Ordovician strike slip fault in the Halahatang oilfield in the Tabei area as an example[J]. Earth Science Frontiers, 2019, 26(1): 225-237. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901022.htm
    [15] LATO M, DIEDERICHS M S, HUTCHINSON D J, et al. Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 194-199. doi: 10.1016/j.ijrmms.2008.04.007
    [16] 张银涛, 孙冲, 王轩, 等. 哈拉哈塘油田走滑断裂带控储成藏规律初探[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202001002.htm

    ZHANG Y T, SUN C, WANG X, et al. Reservoir formation patterns in the strike-slip fault zone of the Halahatang oilfield[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(1): 10-18. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202001002.htm
    [17] 董少群, 吕文雅, 夏东领, 等. 致密砂岩储层多尺度裂缝三维地质建模方法[J]. 石油与天然气地质, 2020, 41(3): 627-637. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003019.htm

    DONG S Q, LÜ W Y, XIA D L, et al. An approach to 3D geological modeling of multi-scaled fractures in tight sandstone reservoirs[J]. Oil & Gas Geology, 2020, 41(3): 627-637. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003019.htm
    [18] 盛辉, 段政明, 刘善伟, 等. 大坡度地质露头高分辨率无人机影像采集方法与建模实践[J]. 古地理学报, 2020, 22(4): 799-806. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202004016.htm

    SHENG H, DUAN Z M, LIU S W, et al. High resolution UAV image acquisition method and modeling practice for geological outcrop with a large slope[J]. Journal of Palaeogeography, 2020, 22(4): 799-806. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202004016.htm
    [19] 印森林, 高阳, 胡张明, 等. 基于无人机倾斜摄影的露头多点地质统计模拟: 以山西吕梁坪头乡石盒子组为例[J]. 石油学报, 2021, 42(2): 198-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202102005.htm

    YIN S L, GAO Y, HU Z M, et al. Multiple-point geostatistical simulation of outcrop based on UAV oblique photographic data: A case study of Shihezi Formation in Pingtou Township, Lüliang City, Shanxi[J]. Acta Petrolei Sinica, 2021, 42(2): 198-216. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202102005.htm
    [20] 詹容若, 段亮, 罗晓容, 等. 无人机多点位航拍高分辨率三维数字露头建模[J]. 西安科技大学学报, 2021, 41(6): 1050-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202106007.htm

    ZHAN R R, DUAN L, LUO X R, et al. 3D digital outcrop modeling with high resolution usingdrone-based multi-point photography[J]. Journal of Xi'an University of Science and Technology, 2021, 41(6): 1050-1058. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202106007.htm
    [21] PASSCHIER M, PASSCHIER C, C WEISMVLLER, et al. The joint sets on the Lilstock Benches, UK: Observations based on mapping a full resolution UAV-based image[J]. Journal of Structural Geology, 2021, 147: 104332. doi: 10.1016/j.jsg.2021.104332
    [22] 孙信尧, 王平, 张宏, 等. 无人机在沉积学中的应用现状及展望[J]. 地质科技通报, 2022, 41(2): 228-238. doi: 10.19509/j.cnki.dzkq.2022.0145

    SUN X Y, WANG P, ZHANG H, et al. Research status and prospects for applications of unmanned aerial vehicle in sedim-entology[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 228-238. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0145
    [23] CARLSON S J, PAPACHRISTOS C. The MiniHawk-VTOL: Design, modeling, and experiments of a rapidly-prototyped Tiltrotor UAV[C]//Anon. 2021 International Conference on Unmanned Aircraft Systems(ICUAS). [S. l. ]: [s. n. ], 2021.
    [24] 翁剑桥, 曾联波, 吕文雅, 等. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 2020, 26(1): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202001005.htm

    WENG J Q, ZENG L B, LÜ W Y, et al. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 2020, 26(1): 39-47. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202001005.htm
    [25] 李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403

    LI C H, ZHAO L, LIU B, et al. Research status and development trend of fractures in carbonate reservoir[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0403
    [26] 李磊. 页岩孔渗特性的分维特征及储层预测意义[J]. 煤炭技术, 2020, 39(7): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202007020.htm

    LI L. Fractal dimension features of porosity and permeability of shale and significance of reservoir forecast[J]. Coal Technology, 2020, 39(7): 65-68. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202007020.htm
    [27] 王炯琦, 周海银, 吴翊. 基于最优估计的数据融合理论[J]. 应用数学, 2007, 20(2): 392-399. https://www.cnki.com.cn/Article/CJFDTOTAL-YISU200702026.htm

    WANG J Q, ZHOU H Y, WU Y. The Theory of data fusion based on state optimal estimation[J]. Mathematica Applicata, 2007, 20(2): 392-399. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YISU200702026.htm
    [28] 薛艳梅, 夏东领, 苏宗富, 等. 多信息融合分级裂缝建模[J]. 西南石油大学学报(自然科学版), 2014, 36(2): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201402007.htm

    XUE Y M, XIA D L, SU Z F, et al. Fracture modeling at different scales based on convergent multi-source information[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(2): 57-63. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201402007.htm
    [29] 赵万金, 高海燕, 闫国亮, 等. 基于最优化估算和贝叶斯统计的TOC预测技术[J]. 岩性油气藏, 2020, 32(1): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202001009.htm

    ZHAO W J, GAO H Y, YAN G L, et al. TOC prediction technology based on optimal estimation and Bayesian statistics[J]. Lithologic Reservoirs, 2020, 32(1): 86-93. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202001009.htm
    [30] SMERAGLIA, LUCA & MERCURI, MARCO & TAVANI, et al. 3D discrete fracture network(DFN)models of damage zone fluid corridors within a reservoir-scale normal fault in carbonates: Multiscale approach using field data and UAV imagery[J]. Marine and Petroleum Geology, 2021, 126: 104902.
    [31] 赖锦, 肖露, 白天宇, 等. 成像测井解释评价方法及其地质应用[J/OL]. 地质科技通报: 1-19[2023-12-02]. http://kns.cnki.net/kcms/detail/42.1904.P.20230516.1414.003.html.

    LAI J, XIAO L, BAI T Y, et al. Interpretation and evaluation methods of image logs and their geological applications[J]. Bulletin of Geological Science and Technology: 1-19[2023-12-02]. http://kns.cnki.net/kcms/detail/42.1904.P.20230516.1414.003.html.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  422
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 录用日期:  2023-02-07
  • 修回日期:  2023-01-12

目录

    /

    返回文章
    返回