Causes of reservoir diagenesis and pore structure differences of the Yanchang Formation in the WL area of the Ordos Basin
-
摘要:
为了明确低渗透-致密砂岩储层孔隙结构纵向上差异性的成因。以鄂尔多斯盆地WL地区为例, 利用物性测试、铸体薄片、扫描电镜、高压压汞等分析资料, 通过对研究区成岩相的划分和不同成岩相纵向分布差异的分析, 对延长组不同层系储层孔隙结构的特征、差异性及其成因进行了探讨。研究表明, 研究区延长组主力层系共发育5类孔隙结构, 在同一层系内和不同层系之间孔隙结构存在较大差异: 上组合长2和长3油层组主要发育Ⅲa、Ⅲb类孔隙结构; 中组合长4+5和长6油层组主要发育Ⅳa、Ⅳb类孔隙结构; 下组合长7、长8和长9油层组主要发育Ⅳb、Ⅴ类孔隙结构。随着埋深增加, 储层孔隙结构及孔渗条件整体上逐渐变差。研究区延长组储层发育4种成岩相类型, 孔隙结构的纵向差异主要受控于成岩相类型的差异分布: 上组合大气水淋滤主导的溶蚀作用强, 发育不稳定组分溶蚀相和绿泥石胶结相为主的成岩相类型, 形成的孔隙结构以相对较好类型为主; 中组合胶结作用强, 发育绿泥石胶结相和碳酸盐胶结相为主的成岩相类型, 形成的孔隙结构以中等类型为主; 下组合压实和胶结作用强, 发育碳酸盐胶结相和富软颗粒压实充填相为主的成岩相类型, 形成的孔隙结构以相对较差类型为主。研究结果可以为鄂尔多斯盆地三叠系延长组油气勘探开发提供有利指导。
Abstract:Objective To clarify the causes of the vertical difference of pore structure in low permeability-tight sandstone reservoirs.
Methods Taking the WL area of the Ordos Basin as an example, using physical property tests, casting thin sections, scanning electron microscopy and high-pressure mercury injection, through the division of diagenetic facies and the analysis of vertical distribution differences of different diagenetic facies the characteristics, differences and causes of pore structure in different layers of the Yanchang Formation were discussed.
Results The study showed that there were five types of pore structures in the main strata of the Yanchang Formation in the study area, and there were great differences in the pore structures between the same strata and different strata. The Chang 2 and Chang 3 oil layers of the upper combination mainly developed Ⅲa- and Ⅲb-type pore structures, the Chang 4+5 and Chang 6 oil layers of the middle combination mainly developed Ⅳa- and Ⅳb-type pore structures, andthe Chang 7, Chang 8 and Chang 9 oil layers of the lower combination mainly developed Ⅳb- and Ⅴ-type pore structures. With the increasing of burial depth, the pore structure and the porosity and permeability conditions in the reservoir gradually deteriorated overall. There were four types of diagenetic facies types in the reservoir of the Yanchang Formation in the study area. The vertical difference of pore structure was mainly controlled by the difference distribution of diagenetic facies types. The dissolution dominated by atmospheric water leaching in the upper combination was strong. The diagenetic facies types dominated by unstable component dissolution facies and chlorite cementation were developed, and the pore structure formed was dominated by relatively good types. The middle combination had strong cementation, and the diagenetic facies types dominated by chlorite cementation facies and carbonate cementation facies were developed, and the pore structure formed was mainly medium type.The lower combination had strong compaction and cementation, and the diagenetic facies types dominated by carbonate cementation facies and soft-rich compaction filling facies were developed, and the pore structure formed by them was mainly relatively poor.
Conclusion The research results can provide favorable guidance for oil and gas exploration and development of the Triassic Yanchang Formation in the Ordos Basin.
-
Key words:
- pore structure /
- differential genesis /
- diagenesis /
- Yanchang Formation /
- Ordos Basin
-
鄂尔多斯盆地伊陕斜坡中部WL地区延长组含油层系较多,其中主要为下组合长9、长8和长7,中组合长6和长4+5,以及上组合长2等油层组,其储层主要为典型的低渗透-致密砂岩储层,孔隙结构十分复杂[1-3],且同一层内和不同层系之间储层类型和孔隙结构变化较大。前人对鄂尔多斯盆地延长组单一储层的孔隙结构差异特征[4-6]、孔隙结构影响因素以及孔隙演化规律有较多研究[7-10],而鄂尔多斯盆地多层系孔隙结构的研究,大多是对延长组孔隙结构进行分类或对孔隙结构的成因进行对比分析[11-15],对孔隙结构在多层系中纵向分布差异及其形成原因的研究很少。笔者拟以鄂尔多斯盆地WL地区延长组为例,选用铸体薄片、扫描电镜与高压压汞资料,划分各主力层系储层中的孔隙结构类型,对孔隙结构的孔径大小、分布以及孔隙结构差异进行总结,并通过对研究区成岩相的划分和不同成岩相纵向分布差异的分析,对延长组不同层系储层孔隙结构的特征、差异性及其成因进行探讨,总结研究区纵向上多层系之间孔隙结构的差异性成因,以期为认识鄂尔多斯盆地三叠系延长组油气的分布变化及其油气勘探提供帮助。
1. 区域地质概况
WL地区位于鄂尔多斯盆地南部,伊陕斜坡中部延安三角洲上,其三叠系延长组是由于淡水湖盆形成、发展到消亡等一系列过程而形成的一套地层,主要发育河流-湖泊沉积相类型沉积物[16-17]。延长组自下而上划分10个油层组,前人依据成藏组合、沉积构造演化阶段等因素,对延长组上组合、中组合以及下组合提出了多种划分方案[18-20]。本研究根据沉积组合特征,将长9、长8和长7油层组划为延长组下组合,主要发育水下分流河道砂体和浊积水道砂体;长6和长4+5油层组划分为延长组中组合,主要发育水下分流河道砂体;长3和长2油层组划分为延长组上组合,主要发育分流河道砂体(图 1)。
2. 储层特征
2.1 岩石学特征
研究区岩心观察和铸体薄片鉴定显示,延长组各主力储层的主要岩性均为细粒长石砂岩(图 2)。研究区上组合长2和长3储层中,砂岩矿物成分主要为长石(平均值47.44%)和石英(平均值44.85%),其次为岩屑(平均值2.43%)和云母(平均值为1.57%)。填隙物主要为白云石、方解石和浊沸石胶结物,杂基主要为泥质(表 1)。碎屑颗粒分选中等到好;磨圆度以次棱角-次圆状为主;颗粒呈点状或点线接触;胶结类型主要为孔隙式,次为薄膜-孔隙式,成岩作用主要为机械压实作用、溶蚀作用、绿泥石胶结作用。
表 1 WL地区长2到长9储层矿物成分统计Table 1. Statistical table of mineral composition of the Chang 2 to Chang 9 reservoirs in the WL area层位 长2和长3 长4+5和长6 长7、长8和长9 碎屑体积分数/% 石英 44.85 36.89 36.62 长石 47.44 53.11 52.56 火成岩岩屑 0.85 0.17 0.99 变质岩岩屑 1.41 0.11 3.99 沉积岩岩屑 0.17 0.61 0.67 云母 1.57 5.33 4.31 填隙物体积分数/% 泥质 1.34 1.56 3.64 绿泥石 1.92 2.27 1.28 方解石 0.84 1.00 1.43 白云石 1.89 0.00 0.33 自生高岭石 0.00 0.00 0.70 浊沸石 0.74 0.17 0.00 硅质 0.00 0.11 0.00 泥铁质 0.00 0.22 0.00 凝灰质 0.00 0.00 0.00 研究区中组合长4+5和长6储层中,砂岩矿物成分主要为长石(平均值53.11%)和石英(平均值36.89%),其次为岩屑(平均值0.89%)和云母(平均值为5.33%)。填隙物主要为绿泥石,杂基主要为泥质(表 1)。砂岩碎屑颗粒分选以中等到好为主,个别为差;磨圆度以次棱角-次圆状为主;颗粒呈点状或点线接触;胶结类型主要为孔隙式,次为接触型,成岩作用主要为机械压实作用、碳酸盐胶结作用、绿泥石胶结作用以及溶蚀作用。
研究区下组合长7、长8和长9储层中,砂岩矿物成分主要为长石(平均值52.56%)和石英(平均值36.62%),其次为岩屑(平均值5.65%)和云母(平均值为4.31%)。填隙物体积主要为方解石,杂基主要为泥质(表 1)。砂岩碎屑颗粒分选以中等为主,其次为好;磨圆度以次棱角-次圆状为主;颗粒呈点状或点线接触;胶结类型主要为孔隙式,次为孔隙-薄膜式,个别为薄膜式和连晶式,成岩作用主要为机械压实作用、碳酸盐胶结作用、绿泥石胶结作用以及溶蚀作用。
上述分析表明研究区延长组上组合石英和长石的总含量最高,中组合与下组合中石英和长石的总含量相对较低,且含量相差不大;而在3个组合中岩屑和云母等塑性矿物的总含量从上组合到下组合呈依次增大趋势(表 1);填隙物组分中,绿泥石含量中组合最高,上组合次之,下组合最低;方解石和白云石的总含量上组合最高,下组合次之,中组合最低,上组合、中组合与下组合成岩作用类型几乎相同。
2.2 物性特征
根据研究区260块样品实测物性资料统计分析,上组合长2和长3油层组储层孔隙度最小值为8.2%,最大值为14.2%,平均值11.8%,主要分布在10.0%~14.0%;中组合长4+5和长6油层组储层孔隙度最小值为3.8%,最大值为14.9%,平均值10.6%,主要分布在8.0%~13.0%;下组合长7、长8和长9油层组储层孔隙度最小值为1.1%,最大值为15.7%,平均值7.4%,主要分布在4.0%~9.0%(表 2,图 3)。
表 2 WL地区主要储层物性统计Table 2. Statistical table of the main reservoir physical properties of the Yanchang Formation in the WL area层位物性 长2和长3 长4+5和长6 长7、长8和长9 孔隙度/% 渗透率/10-3 μm2 孔隙度/% 渗透率/10-3 μm2 孔隙度/% 渗透率/10-3 μm2 最大值 14.2 9.10 14.9 6.10 15.7 2.06 最小值 8.2 0.30 3.8 0.10 1.1 0.03 平均值 11.8 1.38 10.6 0.74 7.4 0.29 样品数 15 15 94 94 143 143 研究区延长组不同层位储层渗透率值的变化比较大:上组合长2和长3油层组渗透率分布在0.30×10-3~9.10×10-3 μm2,平均值1.38×10-3 μm2,主要分布范围在0.5×10-3~2.0×10-3 μm2之间;中组合长4+5和长6油层组渗透率分布在0.10×10-3~6.10×10-3 μm2,平均值0.74×10-3 μm2,主要分布范围在0.15×10-3~1.2×10-3 μm2之间;下组合长7、长8和长9油层组渗透率分布在0.03×10-3~2.06×10-3 μm2,平均值0.29×10-3 μm2,主要分布范围在0.04×10-3~0.50×10-3 μm2之间(表 2,图 3)。
根据上述分析,表明延长组储层孔隙度和渗透率在垂向上有明显差异,上组合、中组合、下组合的平均孔隙度分别为11.8%,10.6%,7.4%,上组合、中组合、下组合的渗透率分别为1.38×10-3,0.74×10-3,0.29×10-3 μm2,随埋深增加,研究区延长组主要油层组储层的孔隙度和渗透率呈明显减小的趋势。
3. 孔隙结构特征及其差异
3.1 孔隙类型及其差异
统计研究区延长组79块铸体薄片样品,经分析得到,各油层组储层的孔隙类型以溶蚀孔和残余粒间孔为主。但是,溶蚀孔和残余粒间孔的面孔率在各油层组中有较大差异,在研究区上组合长2和长3油层组中面孔率最高,中组合长4+5和长6油层组中面孔率次之,下组合长7、长8和长9油层组中面孔率最低。在上组合、中组合和下组合中,微裂缝、铸膜孔和微孔的面孔率都小于1%(图 4)。
3.2 孔喉大小及其差异
3.2.1 孔隙结构分类
根据研究区延长组111块高压压汞样品,并参考前人有关鄂尔多斯盆地中生界碎屑岩储集层分类评价标准[2],将研究区储层微观孔隙结构划分为5种类型,分别为Ⅲa类(中孔中细喉型)、Ⅲb类(小孔中细喉型)、Ⅳa类(小孔细喉型)、Ⅳb类(细孔微细喉型)和Ⅴ类(细-微孔微细喉-微喉型)。5种类型孔隙结构的压汞曲线有明显差异,Ⅲa类孔隙结构毛管曲线平缓段斜率低,粗歪度;Ⅲb类孔隙结构毛管曲线平缓段斜率较低,偏粗歪度;Ⅳa类孔隙结构毛管曲线平缓段斜率相对较高,中等歪度;Ⅳb类孔隙结构毛管曲线斜率高,偏细歪度;Ⅴ类孔隙结构毛管曲线斜率最高,细歪度(图 5)。
3.2.2 孔隙结构差异表征
数据分析表明,Ⅲa类孔隙结构的排驱压力和中值压力分布在0.20~0.44 MPa和0.84~2.60 MPa之间,平均值分别为0.34,1.68 MPa,最大孔喉半径和平均孔喉半径分布在1.72~3.82 μm和0.50~0.79 μm之间,平均值分别为2.31,0.63 μm。Ⅲb类孔隙结构的排驱压力和中值压力分布在0.23~1.46 MPa和2.50~7.15 MPa之间,平均值分别为0.85,4.39 MPa,最大孔喉半径和平均孔喉半径分布在0.51~3.31 μm和0.17~0.54 μm之间,平均值分别为1.24,0.25 μm。Ⅳa类孔隙结构的排驱压力和中值压力分布在0.33~1.05 MPa和5.25~14.00 MPa之间,平均值分别为1.73,9.45 MPa,最大孔喉半径和平均孔喉半径分布在0.22~0.72 μm和0.05~0.13 μm之间,平均值分别为0.49,0.10 μm。Ⅳb类孔隙结构的排驱压力和中值压力分布在3.21~11.69 MPa和14.99~33.70 MPa之间,平均值分别为5.70,21.06 MPa,最大孔喉半径和平均孔喉半径分布在0.06~0.24 μm和0.02~0.12 μm之间,平均值分别为0.16,0.04 μm。Ⅴ类孔隙结构的排驱压力和中值压力分布在8.53~45.86 MPa和27.53~174.57 MPa之间,平均值分别为15.70,108.56 MPa,最大孔喉半径和平均孔喉半径分布在0.02~0.09 μm和0.01~0.03 μm之间,平均值分别为0.05,0.02 μm。
由上述分析,Ⅲa、Ⅲb、Ⅳa、Ⅳb和Ⅴ类孔隙结构的排驱压力和中值压力分布区间和均值逐渐增大,同时最大孔喉半径和平均孔喉半径分布区间和均值逐渐减小,因此,Ⅲa、Ⅲb、Ⅳa、Ⅳb和Ⅴ类的孔隙结构呈现出变差的趋势(图 6)。
上组合长2和长3油层组发育Ⅲa~Ⅴ类的全部5种孔隙结构类型,以Ⅲa和Ⅲb类为主,分别占储层的23.5%,35.3%;中组合长4+5和长6油层组发育Ⅲb~Ⅴ类4种孔隙结构类型,以Ⅳa和Ⅳb类为主,分别占储层的30.2%,33.4%;下组合长7、长8和长9油层组发育Ⅲb~Ⅴ类4种孔隙结构类型,以Ⅳb和Ⅴ类为主,分别占储层的42.9%,34.3%。可见,随埋深增加,低渗透-致密砂岩储层中孔隙结构相对较好的Ⅲa和Ⅲb类含量越来越少,孔隙结构相对较差的Ⅳb和Ⅴ类含量越来越多(表 3)。
表 3 WL地区储层孔隙结构综合评价结果Table 3. Comprehensive evaluation results of reservoir pore structure in the WL area层位 微观孔隙结构/% Ⅲa类 Ⅲb类 Ⅳa类 Ⅳb类 Ⅴ类 长2和长3 23.5 35.3 8.8 11.8 16.6 长4+5和长6 0.0 11.1 30.2 33.4 25.3 长7、长8和长9 0.0 10.7 16.1 42.9 34.3 4. 成岩相特征及其差异
孔隙结构的形成受多种地质因素控制,沉积作用和成岩作用是主要控制因素[8, 21-23],沉积作用是基础,成岩作用强度及其组合特征则是决定储集岩孔隙结构好坏的关键。成岩相是对沉积物形成之后直至发生变质作用之前所经历的沉积、成岩作用的高度概括[24],因此本研究综合考虑了沉积环境和成岩作用的组合差异,划分了研究区目的层储层的成岩相类型。
4.1 成岩相及其成岩序列差异
根据研究区目的层铸体薄片、扫描电镜特征及前人相关研究成果[22, 25-27],将研究区目的层的成岩相划分为富软颗粒压实充填相、碳酸盐胶结相、绿泥石胶结相和不稳定组分溶蚀相等4种类型,不同成岩相的成岩序列具有明显差异(图 7)。
(1) 富软颗粒压实充填相 此类成岩相以泥质杂基和岩屑等物质含量较高为特征。高含量的软颗粒使其初始孔隙度较其他成岩相低且在压实作用下孔隙会迅速减少,在早成岩阶段储层就已致密,镜下可见塑性岩屑、云母等在压实作用下发生弯曲变形甚至被挤入粒间孔隙中形成假杂基(图 8-a,f),后期胶结作用有限,几乎没有溶蚀作用发生,该相孔隙被严重破坏,是研究区物性最差的成岩相类型。
图 8 WL地区延长组储层成岩作用类型及特征(蓝色与红色为铸体薄片孔隙)a.泥质岩屑、云母挤压变形,WL71井,4 97.2 m,长4+5,铸体薄片;b.方解石基底胶结,颗粒呈悬浮状,WL82井,1 249.4 m,长7,铸体薄片;c.绿泥石薄膜,WL91井,899.2 m,长6,铸体薄片;d.铁白云母胶结,WL34井,764 m,长2,铸体薄片;e.晚期铁方解石胶结,N194井,1 146.62 m,长8,铸体薄片;f.长石溶孔,石英次生加大,WL5井,1 437.6 m,长9,铸体薄片; g.浊沸石胶结,WL71井,497.27 m,长4+5,扫描电镜;h.叶片状绿泥石充填孔隙,WL87井,998.17 m,长6,扫描电镜;i.微晶石英、微晶长石,WL1井,1 437.60 m,长9,扫描电镜Figure 8. Types and characteristics of diagenesis of Yanchang Formation reservoir in the WL area(2) 碳酸盐胶结相 由于早成岩期方解石基底式胶结,使得颗粒呈悬浮状或点接触分布(图 8-b)或以微晶状充填孔隙。成岩作用中、晚期,储层中的火山岩岩屑、变质岩岩屑等暗色矿物在转化成黏土矿物的过程中,析出较多Fe2+和Mg2+,与早期形成的方解石或白云石胶结物结合,形成含铁的铁方解石和铁白云石胶结物(图 8-d, e)。早期碳酸盐胶结物的大量形成抑制了压实作用,同时也使得储层孔隙渗流条件极差[22, 28]。因此,该类型储层压实作用主要发生于早成岩A期,中成岩期不再压实,溶蚀期几乎没有溶蚀作用发生,是研究区物性较差的成岩相类型。
(3) 绿泥石胶结相 绿泥石胶结相以早期成岩A期和中成岩A2期绿泥石的大量胶结为特征,早期绿泥石以薄膜状包裹颗粒(图 8-c),绿泥石薄膜可通过占据结晶基底和维持流体呈碱性环境阻止石英次生加大[29],孔隙水中溶解的SiO2在早成岩期以微晶石英、微晶长石的形式沉淀于绿泥石膜表面(图 8-f),中成岩A2期形成的绿泥石呈针叶状充填孔隙(图 8-h)。钾长石、钠长石、钙长石在溶蚀过程中会产生高岭石,高岭石可与钾离子反应产生伊利石或直接转化为伊利石[30-33],因此中成岩A2期还有一些高岭石和伊利石形成,储层物性整体较好,是研究区的优势成岩相类型之一。
(4) 不稳定组分溶蚀相 此类成岩相早成岩期的压实、胶结作用较弱,仅有一些绿泥石、自生石英、方解石和浊沸石形成(图 8-g),原始孔隙保存相对较好。在早成岩A期和中成岩期,酸性流体对长石、岩屑等不稳定组分进行溶蚀形成大量粒间、粒内溶孔,有效改善了储层物性[34]。中成岩A2期仅有一些片状和丝缕状的伊利石和绿泥石充填孔隙,储层孔隙发育,也是研究区的优势成岩相类型。
4.2 成岩相分布差异
由于取心资料有限,根据岩石薄片所划分的成岩相在垂向上分布是不连续的,因此需利用垂向上连续性好的测井资料来开展成岩相研究,本研究选取了声波时差、自然伽马、中感应电阻率以及深感应电阻率曲线,对比分析了不同成岩相类型的测井响应特征。研究表明富软颗粒压实充填相在测井响应上表现为高伽马、高电阻、低声波;碳酸盐胶结相表现为低伽马、高电阻、低声波;绿泥石胶结相表现为低伽马、高声波、低电阻;不稳定组分溶蚀相表现为低伽马、高声波、低电阻。
依据上述测井响应特征对研究区成岩相的纵向分布进行划分(图 9),并统计各成岩相占比,综合来看研究区分布的4种成岩相具有良好分布规律:上组合长2和长3油层组发育不稳定组分溶蚀相、绿泥石胶结相和富软颗粒压实充填相,以不稳定组分溶蚀相为主,占比50%。中组合长4+5和长6油层组不稳定组分溶蚀相、绿泥石胶结相、碳酸盐胶结相、富软颗粒压实充填相均有发育,以碳酸盐胶结相和绿泥石胶结相占比最多,占比33.19%,33.39%。下组合长7、长8和长9油层组4种成岩相也均有发育,以碳酸盐胶结相和富软颗粒压实充填相为主,占比30.77%,53.85%(表 4)。
表 4 WL地区储层成岩相综合评价结果Table 4. Comprehensive evaluation results of diagenetic facies in the WL area层位 成岩相占比/% 不稳定组分溶蚀相 绿泥石胶结相 碳酸盐胶结相 富软颗粒压实充填相 长2和长3 50.00 33.29 0.00 16.71 长4+5和长6 22.27 33.39 33.19 11.15 长7、长8和长9 7.69 7.69 30.77 53.85 垂向上,不稳定组分溶蚀相在上组合最发育,随埋深增加,占比逐渐减少;富软颗粒压实充填相在上组合不发育,在下组合最发育;绿泥石胶结相在中组合最发育,上组合次之,下组合较少;碳酸盐胶结相则在中组合最发育,下组合次之,上组合不发育(表 4)。
5. 孔隙结构差异性分析
综合来看,研究区目的层沉积作用以及成岩作用的垂向差异决定了成岩相的纵向分布特征。研究区上组合沉积环境为水动力较强的三角洲平原亚相,中下组合则为水动力较弱的三角洲前缘亚相,水动力条件和沉积方式的变化使得沉积物颗粒大小、填隙物含量、矿物组分和岩石结构特征(分选性、磨圆度等)均存在差异[35-38],自上而下粒度逐渐变细,分选、磨圆逐渐变差,杂基、胶结物等填隙物含量逐渐增加,层段的原始物性和孔渗条件变差。延长组在印支期抬升剥蚀,储层遭受大气水的淋滤作用,初始孔渗性和孔隙结构更好的层系更易被流体进入,长石、岩屑等物质被大量溶蚀[39-40],因此,不稳定组分溶蚀相在上组合占比较大,中组合次之,下组合占比较小。岩屑、云母等物质的水解可提供绿泥石胶结所需的Fe2+,Mg2+,孔隙流体中Fe2+,Mg2+含量达到一定的程度,绿泥石会从碱性孔隙水中析出[29, 41],中、上组合的云母、岩屑等物质以及相对较强的溶蚀作用为绿泥石胶结物的形成提供了条件,因此,绿泥石胶结相在中、上组合占比较多,下组合占比较小。长石、岩屑等物质的溶蚀可以提供碳酸盐胶结所需的Ca2+,Mg2+[22, 42-44],同时烃源岩中有机质脱羧产生的CO2可提供碳酸盐胶结所需的CO32- [45-46],中、下组合长石、岩屑含量相对较高,主要发育三角洲前缘亚相,泥岩较上组合更发育,且长7作为鄂尔多斯盆地普遍发育的优质烃源岩层为方解石、白云石等胶结物的形成提供了物质来源,因此,碳酸盐胶结物相在中、下组合占比较多,上组合不发育。云母、岩屑等塑性矿物在压实作用下易发生变形充填孔隙[47-49],下组合的云母、岩屑等塑性矿物的含量明显较中、上组合高,成分成熟度较低,抗压实能力弱,因此,富软颗粒压实充填相在下组合占比大,中、上组合占比较小。成岩相的分布特征对孔隙结构的纵向差异具有明显控制作用,上组合不稳定组分溶蚀相和绿泥石胶结相等优势成岩相发育,形成的孔隙结构以Ⅲa、Ⅲb类为主;中组合绿泥石胶结相和碳酸盐胶结相发育,形成的孔隙结构以中等的Ⅳa、Ⅳb类为主;下组合碳酸盐胶结相和富软颗粒压实充填相发育,储层孔隙破坏严重,主要形成物性较差的Ⅳb、Ⅴ类孔隙结构。
6. 结论
(1) 研究区延长组低渗透-致密砂岩储层共发育由好到差的Ⅲa类、Ⅲb类、Ⅳa类、Ⅳb和Ⅴ类5种孔隙结构类型,其上组合、中组合和下组合储层发育的孔隙结构类型及其含量具有明显差异。上组合主要发育Ⅲa和Ⅲb类,占储层的23.5%,35.3%;中组合主要发育Ⅳa和Ⅳb类,占储层的30.2%,33.4%;下组合主要发育Ⅳb和Ⅴ类,占储层的42.9%,34.3%。总体上,随埋深增加其孔隙结构逐渐变差。
(2) 研究区延长组储层发育4种成岩相类型,分别是富软颗粒压实充填相、碳酸盐胶结相、绿泥石胶结相和不稳定组分溶蚀相。孔隙结构的纵向差异主要受控于成岩相类型的差异分布,上组合大气水淋滤主导的溶蚀作用强,发育不稳定组分溶蚀相和绿泥石胶结相为主的成岩相类型,形成的孔隙结构以相对较好Ⅲa、Ⅲb类为主;中组合胶结作用强,发育绿泥石胶结相和碳酸盐胶结相为主的成岩相类型,形成的孔隙结构以中等的Ⅳa、Ⅳb类为主;下组合压实和胶结作用强,发育碳酸盐胶结相和富软颗粒压实充填相为主的成岩相类型,形成的孔隙结构以相对较差Ⅳb、Ⅴ类为主。
(所有作者声明不存在利益冲突) -
图 8 WL地区延长组储层成岩作用类型及特征(蓝色与红色为铸体薄片孔隙)
a.泥质岩屑、云母挤压变形,WL71井,4 97.2 m,长4+5,铸体薄片;b.方解石基底胶结,颗粒呈悬浮状,WL82井,1 249.4 m,长7,铸体薄片;c.绿泥石薄膜,WL91井,899.2 m,长6,铸体薄片;d.铁白云母胶结,WL34井,764 m,长2,铸体薄片;e.晚期铁方解石胶结,N194井,1 146.62 m,长8,铸体薄片;f.长石溶孔,石英次生加大,WL5井,1 437.6 m,长9,铸体薄片; g.浊沸石胶结,WL71井,497.27 m,长4+5,扫描电镜;h.叶片状绿泥石充填孔隙,WL87井,998.17 m,长6,扫描电镜;i.微晶石英、微晶长石,WL1井,1 437.60 m,长9,扫描电镜
Figure 8. Types and characteristics of diagenesis of Yanchang Formation reservoir in the WL area
表 1 WL地区长2到长9储层矿物成分统计
Table 1. Statistical table of mineral composition of the Chang 2 to Chang 9 reservoirs in the WL area
层位 长2和长3 长4+5和长6 长7、长8和长9 碎屑体积分数/% 石英 44.85 36.89 36.62 长石 47.44 53.11 52.56 火成岩岩屑 0.85 0.17 0.99 变质岩岩屑 1.41 0.11 3.99 沉积岩岩屑 0.17 0.61 0.67 云母 1.57 5.33 4.31 填隙物体积分数/% 泥质 1.34 1.56 3.64 绿泥石 1.92 2.27 1.28 方解石 0.84 1.00 1.43 白云石 1.89 0.00 0.33 自生高岭石 0.00 0.00 0.70 浊沸石 0.74 0.17 0.00 硅质 0.00 0.11 0.00 泥铁质 0.00 0.22 0.00 凝灰质 0.00 0.00 0.00 表 2 WL地区主要储层物性统计
Table 2. Statistical table of the main reservoir physical properties of the Yanchang Formation in the WL area
层位物性 长2和长3 长4+5和长6 长7、长8和长9 孔隙度/% 渗透率/10-3 μm2 孔隙度/% 渗透率/10-3 μm2 孔隙度/% 渗透率/10-3 μm2 最大值 14.2 9.10 14.9 6.10 15.7 2.06 最小值 8.2 0.30 3.8 0.10 1.1 0.03 平均值 11.8 1.38 10.6 0.74 7.4 0.29 样品数 15 15 94 94 143 143 表 3 WL地区储层孔隙结构综合评价结果
Table 3. Comprehensive evaluation results of reservoir pore structure in the WL area
层位 微观孔隙结构/% Ⅲa类 Ⅲb类 Ⅳa类 Ⅳb类 Ⅴ类 长2和长3 23.5 35.3 8.8 11.8 16.6 长4+5和长6 0.0 11.1 30.2 33.4 25.3 长7、长8和长9 0.0 10.7 16.1 42.9 34.3 表 4 WL地区储层成岩相综合评价结果
Table 4. Comprehensive evaluation results of diagenetic facies in the WL area
层位 成岩相占比/% 不稳定组分溶蚀相 绿泥石胶结相 碳酸盐胶结相 富软颗粒压实充填相 长2和长3 50.00 33.29 0.00 16.71 长4+5和长6 22.27 33.39 33.19 11.15 长7、长8和长9 7.69 7.69 30.77 53.85 -
[1] 杨希濮, 孙卫. 鄂尔多斯盆地低渗透油藏孔隙结构特征及影响因素分析[J]. 特种油气藏, 2011, 18(6): 44-47, 125. doi: 10.3969/j.issn.1006-6535.2011.06.011Yang X P, Sun W. Pore structural features of low permeability reservoirs in Ordos Basin and factor analysis[J]. Special Oil and Gas Reservoirs, 2011, 18 (6): 44-47, 125 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2011.06.011 [2] 赵靖舟, 吴少波, 武富礼. 论低渗透储层的分类与评价标准: 以鄂尔多斯盆地为例[J]. 岩性油气藏, 2007, 19(3): 28-31, 53. doi: 10.3969/j.issn.1673-8926.2007.03.005Zhao J Z, Wu S B, Wu F L. The classification and evaluation criterion of low permeability reservoir: An example from Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(3): 28-31, 53 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2007.03.005 [3] 赖锦, 王贵文, 孟辰卿, 等. 致密砂岩气储层孔隙结构特征及其成因机理分析[J]. 地球物理学进展, 2015, 30(1): 217-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201501033.htmLai J, Wang G W, Meng C Q, et al. Pore structure characteristics and formation mechanisms analysis of tight gas sandstones[J]. Progress in Geophysics, 2015, 30 (1): 217-227 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201501033.htm [4] Zhang T, Zhang G, Zhang L. Micropore structure characteristics of tight oil reservoirs in the Yanchang Formation in the Ordos Basin, China[J]. Fresenius Environmental Bulletin, 2020, 29 (4A): 3212-3222. [5] Zhang Q, Jiao T, Huang H, et al. Pore structure and fractal characteristics of ultralow-permeability sandstone reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin[J]. Interpretation, 2021, 9(3): T747-T765. doi: 10.1190/INT-2020-0185.1 [6] Yao J L, Yu G Z, Hu C, et al. Research on pore structure characteristics of tight sandstone reservoirs in Chang 7 member of shaanbei area in Ordos Basin, China[J]. Fresenius Environmental Bulletin, 2022, 31(4): 4452-4458. [7] 张玉晔, 高建武, 赵靖舟, 等. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202106004.htmZhang Y Y, Gao J W, Zhao J Z, et al. Diagenesis and pore evolution of Chang 6 tight sandstone reservoir in southeastern Ordos Basin[J]. Lithologic Reservoirs, 2021, 33(6): 29-38 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202106004.htm [8] 李智, 叶加仁, 曹强, 等. 鄂尔多斯盆地杭锦旗独贵加汗区带下石盒子组储层特征及孔隙演化[J]. 地质科技通报, 2021, 40(4): 49-60. doi: 10.19509/j.cnki.dzkq.2021.0404Li Z, Ye J R, Cao Q, et al. Reservoir characteristics and pore evolution of the Lower Shihezi Formation in Duguijiahan zone, Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Scienceand Technology, 2021, 40(4): 49-60 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0404 [9] 任大忠, 孙卫, 魏虎, 等. 华庆油田长81储层成岩相类型及微观孔隙结构特征[J]. 现代地质, 2014, 28(2): 379-387. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201402016.htmRen D Z, Sun W, Wei H, et al. Types of sandstone reservoir diagenetic facies and microscopic pore structure characteristics of Chang 81 reservoir in Huaqing Oilfield[J]. Geoscience, 2014, 28(2): 379-387 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201402016.htm [10] 张茜, 孙卫, 杨晓菁. 致密砂岩储层差异性成岩演化对孔隙度演化定量表征的影响: 以鄂尔多斯盆地华庆地区长63储层为例[J]. 石油实验地质, 2017, 39(1): 126-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701019.htmZhang X, Sun W, Yang X J, et al. Quantitative calculation of tight sandstone reservoir porosity evolution based on different diagenesis: A case study of Chang 63 reservoir in Huaqing area, Ordos Basin[J]. Petroleum Geology & Experiment, 2017, 39(1): 126-133 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201701019.htm [11] 杨华, 钟大康, 姚泾利, 等. 鄂尔多斯盆地陇东地区延长组砂岩储层孔隙成因类型及其控制因素[J]. 地学前缘, 2013, 20(2): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201302011.htmYang H, Zhong D K, Yao J L, et al. Pore genetic types and their controlling factors in sandstone reservoir of Yanchang Formation in Longdong area, Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 69-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201302011.htm [12] Zhang Z, Shi Y, Li H, et al. Experimental study on the pore structure characteristics of tight sandstone reservoirs in Upper Triassic Ordos Basin, China[J]. Energy Exploration & Exploitation, 2016, 34(3): 418-439 (in Chinese with English abstract). [13] 汪新光, 张冲, 张辉, 等. 基于微观孔隙结构的低渗透砂岩储层分类评价[J]. 地质科技通报, 2021, 40(4): 93-103. doi: 10.19509/j.cnki.dzkq.2021.0429Wang X G, Zhang C, Zhang H, et al. Classification and evaluation of low permeability sandreservoir based on micro pore-structure[J]. Bulletion of Geological Science and Technology, 2021, 40(4): 93-103 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0429 [14] 李南星, 刘林玉, 郑锐, 等. 鄂尔多斯盆地镇泾地区超低渗透储层评价[J]. 岩性油气藏, 2011, 23(2): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201102010.htmLi N X, Liu L Y, Zheng R, et al. Super-low permeability reservoir evaluation in Zhenjing area, Ordos Basin[J]. Lithologic Reservoirs, 2011, 23(2): 41-45 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201102010.htm [15] 史基安, 王金鹏, 毛明陆, 等. 鄂尔多斯盆地西峰油田三叠系延长组长6—8段储层砂岩成岩作用研究[J]. 沉积学报, 2003, 21(3): 373-380. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200303001.htmShi J A, Wang J P, Mao M L, et al. Reservoir sandstone diagenesis of Memeber 6 to 8 in Yanchang Formation (Triassic), Xifeng Oilfield, Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(3): 373-380 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200303001.htm [16] 郭艳琴, 李文厚, 郭彬程, 等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报, 2019, 21(2): 293-320. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902008.htmGuo Y Q, Li W H, Guo B C, et al. Sedimentary systems and paleogeography evolution of Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(2): 293-320(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902008.htm [17] 李文厚, 刘溪, 张倩, 等. 鄂尔多斯盆地中晚三叠世延长期沉积演化[J]. 西北大学学报: 自然科学版, 2019, 49(4): 605-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201904014.htmLi W H, Liu X, Zhang Q, et al. Deposition evolution of Middle-Late Triassic Yanchang Formation in Ordos Basin[J]. Journal of Northwest University: Natural Science Edition, 2019, 49(4): 605-621 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201904014.htm [18] Zhang K, Liu R, Liu Z J. Sedimentary sequence evolution and organic matter accumulation characteristics of the Chang 8-Chang 7 members in the Upper Triassic Yanchang Formation, Southwest Ordos Basin, central China[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107751. [19] Cheng H L, Wei J F, Cheng Z Y. Study on sedimentary facies and reservoir characteristics of Paleogene sandstone in Yingmaili Block, Tarim Basin[J]. Geofluids, 2022, 2022: 1445395. [20] Wei J, Li F, Zhang S, et al. Characteristics of sedimentary microfacies of Late Triassic Yanchang Formation in North central Ordos Basin[J]. Journal of Chemistry, 2022, 2022: 1513503. [21] 赖锦, 王贵文, 王书南, 等. 川中蓬莱地区须二段和须四段储层孔隙结构特征及影响因素[J]. 中国地质, 2013, 40(3): 927-938. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201303024.htmLai J, Wang G W, Wang S N, et al. Porestructure characteristics and controlling factors of 2nd and 4th Member reservoirs in Upper Triassic Xujiahe Formation of Penglai area, central Sichuan Basin[J]. Geology in China, 2013, 40(3): 927-938 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201303024.htm [22] Lai J, Wang G W, Ran Y, et al. Impact of diagenesis on the reservoir quality of tight oil sandstones: The case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2016, 145: 54-65. [23] Yan M. The influence of diagenesis on the heterogeneity of sandstone reservoir[C]//IOP. IOP Conference Series: Earth and Environmental Science. [S. l. ]: IOP Publishing, 2017: 012038. [24] 赖锦, 王贵文, 王书南, 等. 碎屑岩储层成岩相研究现状及进展[J]. 地球科学进展, 2013, 28(1): 39-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201301006.htmLai J, Wang G W, Wang S N, et al. Research status and advances in the diagenetic facies of clastic reservoirs[J]. Advances in Earth Science, 2013, 28(1): 39-50 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201301006.htm [25] Chen Q, Liu Q, Wang S. Study of diagenesis and pore evolution of Triassic Jialingjiang Formation in southern Puguang Gasfield[J]. Journal of Chemistry, 2016, 2016: 7328326. [26] 王昌勇, 王成玉, 梁晓伟, 等. 鄂尔多斯盆地姬塬地区上三叠统延长组长8油层组成岩相[J]. 石油学报, 2011, 32(4): 596-604. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104007.htmWang C Y, Wang C Y, Liang X W, et al. Diagenetic facies of the Chang 8 oil-bearing layer of the Upper Triassic Yanchang Formation in the Jiyuan area, Ordos Basin[J]. Acta Petrolei Sinica, 2011, 32(4): 596-604(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104007.htm [27] 杨佳颖, 蒋有录, 蔡国钢, 等. 深层砂岩储层特征及成岩差异演化过程: 以辽河坳陷东部凹陷牛居-长滩洼陷沙三上亚段为例[J]. 天然气地球科学, 2022, 33(2): 233-242. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202202005.htmYang J Y, Jiang Y L, Cai G G, et al. Reservoir characteristics and differential diagenetic evolution process of deep buried sandstone reservoirs: Case study of the Upper Es3 in Niuju-Changtan subsag of Eastern Sag, Liaohe Depression[J]. Natural Gas Geosciences, 2022, 33(2): 233-242 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202202005.htm [28] Wang G W, Chang X C, Yin W, et al. Impact of diagenesis on reservoir quality and heterogeneity of the Upper Triassic Chang 8 tight oil sandstones in the Zhenjing area, Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 83: 84-96. [29] 田建锋, 陈振林, 凡元芳, 等. 砂岩中自生绿泥石的产状、形成机制及其分布规律[J]. 矿物岩石地球化学通报, 2008, 27(2): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200802017.htmTian J F, Chen Z L, Fan Y F, et al. The occurrence, growth mechanism and distribution of authigenic chlorite in sandstone[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27 (2): 200-206 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200802017.htm [30] Wang A, Zhong D K, Zhu H H, et al. Depositional and diagenetic controls on the reservoir quality of Upper Triassic Chang 7 tight oil sandstones, southwestern Ordos Basin, China[J]. Geosciences Journal, 2019, 23(3): 471-488. [31] 史基安, 王金鹏, 毛明陆, 等. 鄂尔多斯盆地西峰油田三叠系延长组长6-8段储层砂岩成岩作用研究[J]. 沉积学报, 2003, 21(3): 373-380. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200303001.htmShi J A, Wang J P, Mao M L, et al. Reservoir sandstone diagenesis of Memeber 6 to 8 in Yanchang Formation (Triassic), Xifeng Oilfield, Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21 (3): 373-380 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200303001.htm [32] 黄思静, 黄可可, 冯文立, 等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球化学, 2009, 38(5): 498-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200905010.htmHuang S J, Huang K K, Feng W L, et al. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis: A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, western Sichuan Depression[J]. Geochimica, 2009, 38(5): 498-506 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200905010.htm [33] Grant N T, Middleton A J, Archer S. Porosity trends in the Skagerrak Formation, Central Graben, United Kingdom continental shelf: The role of compaction and pore pressure historyporosity trends in Skagerrak Formation[J]. AAPG Bulletin, 2014, 98(6): 1111-1143. [34] Dou W C, Liu L F, Wu K J, et al. Origin and significance of secondary porosity: A case study of Upper Triassic tight sandstones of Yanchang Formation in Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 149: 485-496. [35] Ma B Q, Chen S M, Yan W L, et al. Pore structure evaluation of low permeability clastic reservoirs based on sedimentation diagenesis: A case study of the Chang 8 Reservoirs in the Zhenbei region, Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107841. [36] Dong X, Zhang Y, Zhou Y. Analysis of reservoir petrology and reservoir sapce characteristics of Triassic Chang 8 Member in Huanjiang Oilfiled, Ordos Basin[J]. Fresenius Environmental Bulletin, 2022, 31(7): 7092-7103. [37] Chen Z B, Zhou C F, Chen X J, et al. Evaluation of the matrix influence on the microscopic pore-throat structures of deep-water tight sandstone: A case study from the Upper Triassic Chang 6 oil group of the Yanchang Formation in the Huaqing area, Ordos Basin, China[J]. Interpretation, 2020, 8(4): T763-T776. [38] Bloch S, Lander R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability[J]. AAPG Bulletin, 2002, 86(2): 301-328. [39] Qiao J, Zeng J, Jiang S, et al. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: Implications for macroscopic and microscopic heterogeneities[J]. Marine and Petroleum Geology, 2020, 111: 279-300. [40] 黄思静, 武文慧, 刘洁, 等. 大气水在碎屑岩次生孔隙形成中的作用: 以鄂尔多斯盆地三叠系延长组为例[J]. 地球科学: 中国地质大学学报, 2003, 28(4): 419-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304010.htmHuang S J, Wu W H, Liu J, et al. Generation of secondary porosity by meteoric water during time of subaerial exposure: An example from Yanchang Formation sandstone of Triassic of Ordos Basin[J]. Earth Science: Journal of China University of Geosciences, 2003, 28 (4): 419-424 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304010.htm [41] Li K, Xi K, Cao Y, et al. Chlorite authigenesis and its impact on reservoir quality in tight sandstone reservoirs of the Triassic Yanchang Formation, southwestern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108843. [42] 贺艳祥, 张伟, 胡作维, 等. 鄂尔多斯盆地姬塬地区长8油层组砂岩中长石的溶解作用对储层物性的影响[J]. 天然气地球科学, 2010, 21(3): 482-488. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201003022.htmHe Y X, Zhang W, Hu Z W, et al. Affect of feldspar dissolution to properties of sandstone reservoir of Chang-8 oil layer in Jiyuan area, Ordos Basin[J]. Natural Gas Geosciences, 2010, 21(3): 482-488 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201003022.htm [43] Li S, Wu F, Li A, et al. Quantitive characterization of the influence of diagenesis on the porosity evolution of tight sandstone oil reservoirs[J]. Fresenius Environmental Bulletin, 2019, 28(9): 6890-6897. [44] 黎盼, 孙卫, 高永利, 等. 致密砂岩储层差异性成岩演化对孔隙度定量演化表征影响: 以鄂尔多斯盆地马岭地区长81储层为例[J]. 地质科技情报, 2018, 37(1): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801018.htmLi P, Sun W, Gao Y L, et al. Quantitative calculation of tight sandstone reservoir porosity evolution based on different diagenesis: A case study from Chang 81 reservoir of Maling area, Ordos Basin[J]. Geological Science and Technology Information, 2018, 37(1): 135-142 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801018.htm [45] Li S T, Li S X, Zhou X P, et al. The genesis model of carbonate cementation in the tight oil reservoir: A case of Chang 6 oil layers of the Upper Triassic Yanchang Formation in the western Jiyuan area, Ordos Basin, China[J]. Open Geosciences, 2020, 12(1): 1105-1115. [46] 薛莲花, 史基安, 晋慧娟. 辽河盆地沙河街组砂岩中碳酸盐胶结作用对孔隙演化控制机理研究[J]. 沉积学报, 1996, 14(2): 104-111.Xue L H, Shi J A, Jin H J. Study of controlling mechanism of carbonate cementation on porosity evolution in Lower Tertiary sandstones of the Liaohe Basin[J]. Acta Sedimentologica Sinica, 1996, 14 (2): 104-111 (in Chinese with English abstract). [47] Li J, Zhang X, Tian J, et al. Effects of deposition and diagenesis on sandstone reservoir quality: A case study of Permian sandstones formed in a braided river sedimentary system, northern Ordos Basin, northern China[J]. Journal of Asian Earth Sciences, 2021, 213: 104745. [48] 赵家锐, 祝海华, 冯小哲, 等. 鄂尔多斯盆地长7段云母特征及其对储层的影响[J]. 断块油气田, 2021, 28(2): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102010.htmZhao J R, Liu H H, Feng X Z, et al. Characteristics of Member 7 mica of Yanchang Formation in Ordos Basin and its effects on reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28 (2): 194-199 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102010.htm [49] 李培月, 何晓东, 周长静, 等. 苏里格地区致密砂岩矿物组成与微观结构及其对水力压裂的潜在影响[J]. 水文地质工程地质, 2023, 50(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202303001.htmLi P Y, He X D, Zhou C J, et al. Mineral compositions and microstructural characteristics of the tight sandstone reservoir in the Sulige area and their potential influence on hydraulic fracturing[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 1-11(in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202303001.htm 期刊类型引用(3)
1. 杨水胜,白江,陈刚,刘大鹏,贠玉平,王天翔,周武. 吴起油田吴仓堡地区下组合致密储层特征及影响因素分析. 非常规油气. 2025(02): 41-53 . 百度学术
2. 邓国政,姚志刚,陈峰,杜治伟,高攀明. 鄂尔多斯盆地中西部中生界储层差异研究. 中外能源. 2024(07): 40-49 . 百度学术
3. 路研,刘宗宾,廖新武,李超,李扬. 基于自组织神经网络算法的低渗透砂岩孔隙结构自动分类. 地质科技通报. 2024(06): 318-330 . 本站查看
其他类型引用(0)
-