Fine description method of the underwater distributary channel in a braided river delta front: A case study of the first Member of the Dongying Formation in the M Oilfield, Nanpu Depression
-
摘要:
河道单成因砂体划分精度直接影响剩余油刻画精度,进而决定了开发治理和调整的效果。以南堡凹陷M油田辫状河三角洲前缘沉积储层为例,优选地震属性刻画单一朵体边界,在辫状河三角洲前缘地质知识库约束下追踪河道主流线,采用拟声波反演技术刻画河道边界,结合动态资料验证,进行了水下分流河道的精细刻画。研究表明:M油田同期多朵体发育,单个朵体发育2~8支河道, 水下分流河道宽度在80~240 m之间,最宽可达440 m,单成因砂体厚度为2.6~5.8 m,河道的宽厚比为25∶1~78∶1,动态验证资料及钻井结果的对比表明河道刻画预测精度吻合率达90%。通过河道精细刻画,提高了砂体展布方向的预测精度和剩余油刻画的精度,为后期开发治理提供了地质依据。这种对砂体边界进行逐级刻画的储层综合预测方法在复杂断块泛连通辫状河三角洲前缘储层的水下分流河道刻画方面具有一定的参考价值。
Abstract:The division accuracy of a single-genesis sand body in a river channel determines the evaluation resolution of residual oil content and limits the efficiency of oil production. The following methods were used to describe the underwater distributary channel of the M oilfield in the Nanpu Depression. First, the seismic attribute was optimized to identify the boundary of a single channel-lobe complex. Then, the channel main stream line was traced with the constraint of the geological knowledge base of the braided river delta front, and the channel boundary was delineated using acoustic inversion technology. Finally, the results of channel characterization were verified with dynamic data. The research shows that the M Oilfield has multiple channel-lobe complexes developed in the same period. Even a single channel-lobe complex contains 2-8 channels. The width of the underwater distributary channel ranges from 80-240 m, with a maximum width of 440 m. The thickness of asingle channel sand body is 2.6-5.8 m, and the width-thickness ratio of the channel ranges from 25∶1 to 78∶1. The dynamic verification data and drilling results show that the prediction accuracy of channel distribution is 90%. The high prediction accuracy of the channel sand body distribution can promote the evaluation resolution of residual oil content, and provide constructive guidance for later development and management. The method has a certain reference value in the underwater distributary channel characterization of the braided river delta front reservoir in the complicated fault block.
-
表 1 辫状河三角洲砂体规模参数调研
Table 1. Investigation on sand body scale parameters of braided river delta
表 2 地震反演方法优选
Table 2. Optimization of seismic inversion methods
反演方法 分辨率 符合率 识别岩性体能力及适用性 波阻抗反演(无井) 与原始地震相当 较低,与原始地震相当,仅有60% 沉积现象明显,易追踪岩性体,适合开发初期 波阻抗反演(用井) 略高于原始地震 一般,为70% 沉积现象较明显,易追踪岩性体,适合开发初期到中期,构造复杂区块 相控波形指示反演 高,与井相当 参与反演井能达到85%左右,非参与反演井约70% 沉积现象明显,易追踪岩性体,适合断块相对简单、相位连续、井网不规则的开发区块 拟声波地质统计学反演 高,与井相当 参与反演井符合率取决于拟合波阻抗区分砂泥岩的能力,一般能达到80%,非反演井约65% 沉积现象较明显,易追踪岩性体,适合开发中后期构造复杂、井网密集、分布规律的区块 -
[1] Miall A D. The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology[M]. Berlin: Springer, 1996: 75-178. [2] Miall A D. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: A reality check[J]. AAPG Bulletin, 2006, 90(7): 989-1002. doi: 10.1306/02220605065 [3] 吴胜和, 纪友亮, 岳大力, 等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报, 2013, 19(1): 12-22. doi: 10.3969/j.issn.1006-7493.2013.01.004Wu S H, Ji Y L, Yue D L, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.01.004 [4] 胡光义, 王海峰, 范廷恩, 等. 海上油田河流相复合砂体构型级次解析[J]. 古地理学报, 2021, 23(4): 810-823. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202104010.htmHu G Y, Wang H F, Fan T G, et al. Structural classification analysis of fluvial facies composite sand bodies in offshore oil fields[J]. Journal of Paleogeography, 2021, 23(4): 810-823(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202104010.htm [5] 胡光义, 范廷恩, 陈飞, 等. 复合砂体构型理论及其生产应用[J]. 石油与天然气地质, 2018, 39(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801002.htmHu G Y, Fan T E, Chen F, et al. Composite sand body configuration theory and its production application[J]. Oil and Gas Geology, 2018, 39(1): 1-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801002.htm [6] 吴胜和, 徐振华, 刘钊. 河控浅水三角洲沉积构型[J]. 古地理学报, 2019, 21(2): 202-215. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902002.htmWu S H, Xu Z H, Liu Z, et al. Sedimentary configuration of river controlled shallow water delta[J]. Journal of Paleogeography, 2019, 21(2): 202-215(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902002.htm [7] 王夏斌, 姜在兴, 胡光义, 等. 浅水三角洲分流河道沉积模式分类[J]. 地球科学与环境学报, 2020, 42(5): 654-667. doi: 10.19814/j.jese.2020.04053Wang X B, Jiang Z X, Hu G Y, et al. Sedimentary model classification of distributary channel in shallow water delta[J]. Journal of Earth Science and Environment, 2020, 42(5): 654-667(in Chinese with English abstract). doi: 10.19814/j.jese.2020.04053 [8] 付鑫, 杜晓峰, 官大勇, 等. 地震沉积学在河流-浅水三角洲沉积相研究中的应用: 以渤海海域蓬莱A构造区馆陶组为例[J]. 地质科技通报, 2021, 40(3): 96-108. doi: 10.19509/j.cnki.dzkq.2021.0304Fu X, Du X F, Guan D Y, et al. Application of seismic sedimentology in reservoir prediction in fluvial to shallow water delta facies: A case study in Guantao Formation from the Penglai A structure area in Bohai Bay[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 96-108(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0304 [9] 冯文杰, 芦凤明, 吴胜和, 等. 断陷湖盆长轴缓坡辫状河三角洲前缘储层构型研究: 以大港枣园油田枣南断块孔一段枣Ⅴ油组为例[J]. 中国矿业大学学报, 2018, 47(2): 367-379. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802017.htmFeng W J, Lu F M, Wu S H, et al. Reservoir architecture analysis of braided river delta front developed in the long-axis gentle slope of faulted basin: Taking Zao Ⅴ oil formation in the First Member of Zaonan fault block in Dagang Zaoyuan Oilfield as an example[J]. Journal of China University of Mining and Technology, 2018, 47(2); 367-379(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802017.htm [10] 张皓宇, 李茂, 康永梅, 等. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202106018.htmZhang H Y, Li M, Kang Y M, et al. Reservoir configuration and fine characterization of remaining oil in Chang 3 oil formation of Zhenbei Oilfield in Ordos Basin[J]. Lithologic Oil and Gas Reservoir, 2021, 33(6): 177-188(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202106018.htm [11] 衡勇. 浅水三角洲分流河道砂体内部结构及其对气水分布的影响: 以四川盆地中江气田沙溪庙组为例[J]. 成都理工大学学报: 自然科学版, 2022, 49(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202201001.htmHeng Y. Internal structure of distributary channel sand body in shallow water delta and its influence on gas and water distribution: Taking Shaximiao Formation of Zhongjiang Gas Field in Sichuan Basin as an example[J]. Journal of Chengdu University of Technology: Natural Science Edition, 2022, 49(2): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202201001.htm [12] 高阳, 胡向阳, 曾大乾, 等. 川西新场气田沙溪庙组浅水三角洲砂体类型与展布特征[J]. 现代地质, 2019, 33(6): 1163-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201906005.htmGao Y, Hu X Y, Zeng D Q, et al. Types and distribution characteristics of shallow water delta sand bodies of Shaximiao Formation in Xinchang Gas Field, western Sichuan[J]. Modern Geology, 2019, 33(6): 1163-1173(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201906005.htm [13] 肖佃师, 张飞飞, 卢双舫, 等. 井震联合识别复合砂体中单一河道: 以朝44区块扶余油层为例[J]. 石油地球物理勘探, 2016, 51(1): 148-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201601024.htmXiao D S, Zhang F F, Lu S F, et al. Well seismic joint identification of single channel in composite sand body: Taking Fuyu reservoir in Chao 44 block as an example[J]. Petroleum Geophysical Exploration, 2016, 51(1): 148-157(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201601024.htm [14] 贺婷婷, 谈心, 段太忠, 等. 综合沉积正演与多点地质统计模拟辫状河三角洲: 以塔河T区为例[J]. 地质科技通报, 2021, 40(3): 54-66. doi: 10.19509/j.cnki.dzkq.2021.0301He T T, Tan X, Duan T Z, et al. Integrated sedimentary forward modeling and multipoint geostatistics in braided river delta simulation: A case from Block T of Tahe Oilfield[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 54-66(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0301 [15] 林伟强, 曲丽丽, 朱露, 等. 井震藏结合判定井间砂体连通性研究及应用: 以南堡油田M区中深层为例[J]. 油气藏评价与开发, 2022, 12(2): 373-381. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202202013.htmLin W Q, Qu L L, Zhu L, et al. Evaluation of inter-well sand body connectivity by Combination of well, seismic, and reservoir and its application: Taking the middle and deep layers of M area of Nanpu Oilfield as an example[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 373-381(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202202013.htm [16] 杜佳, 刘彦成, 白洁玢, 等. 基于波形指示模拟的致密砂岩储层预测[J]. 地质科技通报, 2022, 41(5): 94-100. doi: 10.19509/j.cnki.dzkq.2022.0155Du J, Liu Y C, Bai J B, et al. Prediction of tight sandstone reservoirs based on waveform indication simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 94-100(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0155 [17] 孙琦, 李春晨. 港东开发区东一段湖相三角洲沉积规律研究与储集层精细刻画[J]. 录井工程, 2021, 32(1): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ202101024.htmSun Q, Li C C. Study on sedimentary law of lacustrine delta and fine characterization of reservoir in the eastern section of Gangdong Development Zone[J]. Logging Engineering, 2021, 32(1): 132-138(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ202101024.htm [18] 陈彬滔, 杨丽莎, 于兴河, 等. 准噶尔盆地南缘三工河组和西山窑组辫状河三角洲水动力条件与砂体分布规模定量分析[J]. 中国地质, 2012, 39(5): 1290-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201205015.htmChen B T, Yang L S, Yu X H, et al. Quantitative analysis on hydrodynamic conditions and sand body distribution scale of braided river delta of Sangonghe Formation and Xishanyao Formation in the southern margin of the Junggar Basin[J]. Geology of China, 2012, 39(5): 1290-1298(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201205015.htm [19] 贾爱林, 何东博, 何文祥, 等. 应用露头知识库进行油田井间储层预测[J]. 石油学报, 2003(6): 51-53, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200306011.htmJia A L, He D B, He W X, et al. Application of outcrop knowledge base to inter-well reservoir prediction[J]. Journal of Petroleum, 2003(6): 51-53, 58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200306011.htm [20] 朱卫红, 吴胜和, 尹志军, 等. 辫状河三角洲露头构型: 以塔里木盆地库车坳陷三叠系黄山街组为例[J]. 石油勘探与开发, 2016, 43(3): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603023.htmZhu W H, Wu S H, Yin Z J, et al. Braided river delta outcrop configuration: Taking the Triassic Mount Huangshan Formation in Kuqa Depression, Tarim Basin as an example[J]. Petroleum Exploration and Development, 2016, 43(3): 482-489(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603023.htm [21] 万琼华, 刘伟新, 王华, 等. 珠江口盆地陆丰凹陷辫状河三角洲前缘储层沉积构型模式[J]. 天然气地球科学, 2019, 30(12): 1732-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912008.htmWan Q H, Liu W X, Wang H, et al. Sedimentary configuration model of braided river delta front reservoir in Lufeng Sag of the Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2019, 30(12): 1732-1742(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912008.htm [22] 焦里力, 俞昊, 任涛. 长岭凹陷腰英台油田腰西区块青山口组储层沉积微相研究[J]. 石油实验地质, 2011, 33(3): 249-254. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201103008.htmJiao L L, Yu H, Ren T. Study on sedimentary microfacies of Qingshankou Formation reservoir in Yaoxi Block of Yaoyingtai Oilfield in Changling Depression[J]. Petroleum Experimental Geology, 2011, 33(3): 249-254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201103008.htm [23] 胡张明, 郑丽君, 印森林, 等. 长轴缓坡辫状河三角洲前缘储层构型研究[J]. 中国科技论文, 2016, 11(9): 1005-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201609007.htmHu Z M, Zheng L J, Yin S L, et al. Study on reservoir configuration of braided river delta front on long axis gentle slope[J]. China Science and Technology Paper, 2016, 11(9): 1005-1010(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201609007.htm [24] Szerbiak R B. 3D description of clastic reservoirs: From 3D GPR data to 3D fluid permeability model[J]. Progress in Exploration Geophysics, 2002, 25(2): 64-73. [25] Baas J H. Conditions for formation of massive turbiditic sandstones by primary depositional processes[J]. Sedimentary Geology, 2004, 166(3/4): 293-310. http://doc.paperpass.com/foreign/rgArti2004189530944.html [26] Backert N, Ford M, Malartre F. Architecture and sedimentology of the Kerinitis Gilbert-type fan delta, Corinth Rift, Greece[J]. Sedimentology, 2010, 57(2): 543-586. http://www.researchgate.net/profile/Mary_Ford/publication/227887602_Architecture_and_sedimentology_of_the_Kerinitis_Gilbert-type_fan_delta_Corinth_Rift_Greece/links/09e4150ed193a00b63000000.pdf [27] Colombera L, Mountney N P, McCaffrey W D. A meta-study of relationships between fluvial channel-body stacking pattern and aggradation rate: Implications for sequence stratigraphy[J]. Geology, 2015, 43(4): 283-286. http://eprints.whiterose.ac.uk/83935/1/Colombera%20et%20al%202015%20Geology%20non-formatted%20for%20web%20site.pdf