Effect of freeze-thaw cycles and water content on the mechanical properties of moraine soil
-
摘要:
处在季节性冻土区的冰碛土受冻融循环作用影响显著, 极大地影响工程的稳定和安全。为了探究冻融循环作用及初始含水率对冰碛土静力学特性的影响, 以川西甘孜州海螺沟的冰碛土为研究对象, 通过开展不同冻融循环次数及初始含水率条件下冰碛土不固结不排水三轴试验研究冻融循环作用对冰碛土力学参数的影响。试验结果表明: 冻融循环作用下冰碛土应力-应变曲线为弱应变软化型; 随冻融循环次数增加, 冰碛土弹性模量、抗剪强度均呈现出先快速衰减后趋于稳定的变化趋势, 且初始含水率越大其力学指标衰减程度越大, 黏聚力呈负指数型函数降低, 而内摩擦角无明显变化; 采用指数型函数对抗剪强度、弹性模量试验值进行多元非线性拟合, 建立冰碛土力学参数与围压、含水率及冻融循环次数的关系表达式, 拟合效果理想, 可用于推算经历冻融循环后土体力学参数值; 冻融循环作用会使冰碛土力学性质显著劣化, 且劣化程度与含水率呈正相关。研究成果可为高寒山区工程设计与建设提供科学支撑。
Abstract:Objective Moraine soil in seasonal permafrost areas is significantly affected by freeze-thaw cycles, which greatly affects the stability and safety of projects.
Methods To investigate the effect of freeze-thaw cycles and water content on the static mechanical properties of the soil, the influence of freeze-thaw cycles and water content on the mechanical parameters of Hailuogou moraine soil was studied via an unconsolidated-undrained triaxial test.
Results The results show that the stress-strain curves of the moraine soil before and after freeze-thaw cycling exhibit weak strain softening. With an increase in the number of freeze-thaw cycles, the elastic modulus and shear strength of the moraine soil first rapidly decrease and subsequently tend to stabilize. The higher the water content is, the greater the decay degree of the mechanical parameters. As the number of freeze-thaw cycles increases, the cohesion decreases exponentially, while the friction angle does not change significantly. The exponential function is thus adopted for multiple nonlinear fittings of the shear strength and elastic modulus. The relationship between mechanical parameters and confining conditions pressure, water content, and freeze-thaw cycles are obtained and show good correlation, which can be used to deduce the mechanical parameters of moraine soil after freeze-thaw cycles. The freeze-thaw cycles weaken the mechanical properties of moraine soil, and the higher the water content is, the greater the degree of attenuation.
Conclusion The obtained results and analyses can provide scientific support for engineering design and construction in alpine regions.
-
Key words:
- moraine soil /
- freeze-thaw cycles /
- water content /
- mechanical property /
- attenuation pattern
-
表 1 冰碛土基本物性参数
Table 1. Basic physical properties of the moraine soil
干密度/(g·cm-3) 天然含水率/% 最优含水率/% 塑限/% 液限/% 相对密度 1.7 9.7~16.4 14.3 8.6 15.5 2.82 表 2 静三轴试验方案
Table 2. Test procedure for static triaxial test
含水率w/% 围压σ3/kPa 冻融循环次数N/次 试样个数/个 10
14
1850,100,150,200 0,1,2,3,6,9,12,15,20 36
36
36 -
[1] 陈亚宁, 王志超, 高顺利. 西藏南迦巴瓦峰地区冰川沉积物粒度特征的初步分析[J]. 干旱区地理, 1986, 9(3): 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL198603010.htmCHEN Y N, WANG Z C, GAO S L. The preliminary analysis of particle size characteristics of glacial sediments in the Namcha Barwa Peak area, Tibet[J]. Arid Land Geography, 1986, 9(3): 32-40. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL198603010.htm [2] SHI Y F, LIU S Y. Estimation on the response of glaciers in China to the global warming in the 21st Century[J]. Chinese Science Bulletin, 2000, 45: 668-672. doi: 10.1007/BF02886048 [3] ZHANG Y, HIRABAYASHI Y, LIU S Y. Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment, south-eastern Tibetan Plateau[J]. Journal of Hydrology, 2012, 444: 146-160. [4] 郑利敏. 贡嘎山东坡冰川及相关沉积的粒度和石英颗粒表面特征分析[D]. 兰州: 兰州大学, 2017.ZHENG L M. Quantitative particle size and microtextural analyses of glacial and paraglacial sediments on the eastern slope of Mount Gongga[D]. Lanzhou: Lanzhou University, 2017. (in Chinese with English abstract) [5] 张志军, 徐马强, 王明, 等. GF-2遥感数据在盖孜河流域典型第四纪地层调查中的应用[J]. 地质科技通报, 2021, 40(6): 302-312. doi: 10.19509/j.cnki.dzkq.2021.0630ZHANG Z J, XU M Q, WANG M, et al. Application of GF 2 remote sensing data for typical Quaternary stratigraphic survey in Gaizi River Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 302-312. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0630 [6] 吕士展, 汪稔, 胡明鉴, 等. 玉龙雪山西麓原状冰碛土CT扫描试验研究[J]. 岩土力学, 2014, 35(6): 1593-1599. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406012.htmLV S Z, WANG R, HU M J, et al. Computerized tomography (CT) scanning test research on intact moraine soil on west side of Yulong snow mountain[J]. Rock and Soil Mechanics, 2014, 35(6): 1593-1599. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406012.htm [7] 李全文, 黄国栋, 聂忠权, 等. 海螺沟景区道路路基边坡病害研究[J]. 公路交通科技(应用技术版), 2012, 8(10): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201210018.htmLI Q W, HUANG G D, NIE Z Q, et al. Study on roadbed slope disease of Hailuogou Scenic Spot[J]. Highway Traffic Technology (Applied Technology), 2012, 8(10): 59-61. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201210018.htm [8] 马巍, 周国庆, 牛富俊, 等. 青藏高原重大冻土工程的基础研究进展与展望[J]. 中国基础科学, 2016, 18(6): 9-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201606002.htmMA W, ZHOU G Q, NIU F J, et al. Progress and prospect of the basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. China Basic Science, 2016, 18(6): 9-19. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201606002.htm [9] 朴昇昊, 张伟丽, 王永一, 等. 冻融循环对GFRP锚杆锚固性能影响的试验研究[J]. 地质科技通报, 2022, 41(6): 301-307. doi: 10.19509/j.cnki.dzkq.2021.0055PIAO S H, ZHANG W L, WANG Y Y, et al. Experimental study on the influence of freeze-thaw cycles on the anchoring performance of GFRP bolts[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 301-307. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0055 [10] 刘兵, 郑坤, 王超林, 等. 冻融环境下基于声发射的砂岩各向异性劣化机理分析[J]. 中国地质灾害与防治学报, 2024, 35(1): 132-142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202401014.htmLIU B, ZHENG K, WANG C L, et al. Mechanism analysis on anisotropic degradation of sandstone in freeze thaw environment based acoustic emission[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 132-142. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202401014.htm [11] 冯俊德, 李建国, 汪稔, 等. 云南某铁路冰碛土大型直剪强度特性试验研究[J]. 岩土力学, 2008, 29(12): 3205-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200812010.htmFENG J D, LI J G, WANG R, et al. Large scale direct shear test on strength behavior of railway moraine soils in Yunnan[J]. Rock and Soil Mechanics, 2008, 29(12): 3205-3210. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200812010.htm [12] 蒋德旺, 崔鹏, 王姣, 等. 细粒含量对冰碛土抗剪强度影响的实验研究[J]. 冰川冻土, 2019, 41(1): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201901014.htmJIANG D W, CUI P, WANG J, et al. Experimental study on the effect of shear strength of moraine soil with fine grain content[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 129-139. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201901014.htm [13] 杨东旭, 游勇, 王军朝, 等. 藏东南帕隆藏布流域冰碛物典型特征及工程效应[J]. 防灾减灾工程学报, 2020, 40(6): 841-851. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202006001.htmYANG D X, YOU Y, WANG J C, et al. Characteristics of typical glacial tills in Parlung Zangbo Basin in southeastern Tibet and its engineering effect[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(6): 841-851. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202006001.htm [14] 铁永波. 冻融条件下冰碛补给型泥石流物源汇集过程与灾变初探[J]. 灾害学, 2012, 27(4): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201204004.htmTIE Y B. Source converge process and hazards of moraine-supply debris flow under the condition of freezing and thawing[J]. Journal of Catastrophology, 2012, 27(4): 12-16. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201204004.htm [15] 屈永平, 唐川, 刘洋, 等. 西藏林芝地区冰川降雨型泥石流调查分析[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4013-4022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2047.htmQU Y P, TANG C, LIU Y, et al. Investigation and analysis of glacier debris flow in Nyingchi area, Tibet[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4013-4022. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2047.htm [16] 铁永波, 白永健, 宋志. 川西高原的岩土体的冻融破坏类型及其灾害效应[J]. 水土保持通报, 2015, 35(2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201502045.htmTIE Y B, BAI Y J, SONG Z. Damage types and hazards effects from freezing-thawing process in plateau of western Sichuan Province[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 241-245. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201502045.htm [17] 王永忠, 艾传井, 刘雄军. 冻融作用对南方粉质黏土物理力学性质的影响[J]. 地质科技情报, 2010, 29(5): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201005021.htmWANG Y Z, AI C J, LIU X J. Effect of freeze-thaw on physical and mechanical properties of silty clay in southern China[J]. Geological Science and Technology Information, 2010, 29(5): 107-111. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201005021.htm [18] 钱程. 冻融作用下黑方台黄土力学特性及微细观结构变化研究[D]. 北京: 中国地质大学(北京), 2018.QIAN C. Study on the mechanical properties and structure changes in microscale and mesoscale of loess in Heifangtai under freeze-thaw action[D]. Beijing: China University of Geosciences(Beijing), 2018. (in Chinese with English abstract) [19] WEI L, CHAI S X, XUE M L, et al. Structural damage and shear performance degradation of fiber-lime-soil under freeze-thaw cycling[J]. Geotextiles and Geomembranes, 2022, 50(5): 845-857. doi: 10.1016/j.geotexmem.2022.04.005 [20] 付宴菊. 短历时冻融作用对冰碛土剪切特性的影响[D]. 成都: 中国科学院成都山地灾害与环境研究所, 2021.FU Y J. Effects of short-term freeze-thaw on the shear strength of glacial tills[D]. Chengdu: Chengdu Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 2021. (in Chinese with English abstract) [21] 邱恩喜, 何巧玲, 孙希望, 等. 冻融循环作用下西藏东南冰碛土剪切力学特性试验研究[J]. 防灾减灾工程学报, 2022, 42(6): 1267-1279. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202206017.htmQIU E X, HE Q L, SUN X W, et al. Experimental study on shear mechanical properties of moraine soil in southeast Tibet under freeze-thaw cycle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(6): 1267-1279. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202206017.htm [22] KUENZA K, TOWHATA I, ORENSE R P, et al. Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004, 1(3): 185-194. doi: 10.1007/s10346-004-0023-3 [23] 付宴菊, 江耀, 王姣. 冰川泥石流物源区冰碛土剪切力学特性研究[J]. 兰州大学学报(自然科学版), 2021, 57(2): 200-206. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202102008.htmFU Y J, JIANG Y, WANG J. Experimental study on the undrained shear behavior of glacial till in larger-scale triaxial testing[J]. Journal of Lanzhou University(Natural Sciences), 2021, 57(2): 200-206. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202102008.htm [24] 叶咸, 郭彪, 潘俊良, 等. 土工试验中制备最优含水率试样的方法研究[J]. 公路交通科技(应用技术版), 2016, 12(2): 72-74. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201602023.htmYE X, GUO B, PAN J L, et al. Study on the method of preparing the sample with optimum moisture content in geotechnical test[J]. Highway Traffic Technology (Applied Technology), 2016, 12(2): 72-74. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201602023.htm [25] 董晓强, 陈瑞锋. 冻融循环作用下土体特性研究进展[J]. 太原理工大学学报, 2017, 48(3): 275-287. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201703002.htmDONG X Q, CHEN R F. Research progress of soil properties under freezing and thawing cycles[J]. Journal of Taiyuan University of Technology, 2017, 48(3): 275-287. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201703002.htm [26] 屈智炯, 刘开明, 肖晓军, 等. 冰碛土微观结构、应力应变特性及其模型研究[J]. 岩土工程学报, 1992, 14(6): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199206002.htmQU Z J, LIU K M, XIAO X J, et al. Study on microstructure, stress-strain characteristics of moraine soil and its model[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 19-28. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199206002.htm [27] LUO F, HE J, ZHU Z, et al. Study on deformation characteristics and nonlinear constitutive model of frozen moraine soil in cold region[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38: 801-808. [28] LI C D, WANG R, GU D M, et al. Temperature and ice form effects on mechanical behaviors of ice-rich moraine soil of Tianmo valley nearby the Sichuan-Tibet Railway[J]. Engineering Geology, 2022, 305: 106713. doi: 10.1016/j.enggeo.2022.106713 [29] 王静. 季冻区路基土冻融循环后力学特性研究及微观机理分析[D]. 长春: 吉林大学, 2012.WANG J. Research on the mechanical properties of subgrade soil after several freeze-thaw cycles in seasonally frozen soil region and microscopic mechanism analysis[D]. Changchun: Jilin University, 2012. (in Chinese with English abstract) [30] 常丹, 刘建坤, 李旭. 冻融循环下粉砂土应力-应变归一化特性研究[J]. 岩土力学, 2015, 36(12): 3500-3505. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512021.htmCHANG D, LIU J K, LI X. Normalized stress-strain behavior of silty sand under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2015, 36(12): 3500-3505. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512021.htm [31] 战高峰, 张群, 朱福, 等. 冻融循环对石灰处置粉质黏土静强度影响研究[J]. 岩土力学, 2015, 36(增刊2): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2049.htmZHAN G F, ZHANG Q, ZHU F, et al. Research on influence of freeze-thaw cycles on static strength of lime-treated silty clay[J]. Rock and Soil Mechanics, 2015, 36(S2): 351-356. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2049.htm [32] LEE W J, BOHRA N C, ALTSCHAEFFL A G, et al. Resilient modulus of cohesive soils and the effect of freeze-thaw[J]. Canadian Geotechnical Journal, 1995, 32(4): 559-568. doi: 10.1139/t95-059 [33] WANG D Y, MA W, NIU Y H, et al. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay[J]. Cold Regions Science and Technology, 2007, 48(1): 34-43. doi: 10.1016/j.coldregions.2006.09.008 [34] 许雷, 刘斯宏, 鲁洋, 等. 冻融循环下膨胀土物理力学特性研究[J]. 岩土力学, 2016, 37(增刊2): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2020.htmXU L, LIU S H, LU Y, et al. Physico-mechanical properties of expansive soil under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2016, 37(S2): 167-174. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2020.htm [35] 刘友能, 黄润秋, 刘恩龙, 等. 冻融循环对云贵高原尾矿土力学性质的影响[J]. 西南交通大学学报, 2020, 55(5): 1052-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202005019.htmLIU Y N, HUANG R Q, LIU E L, et al. Influence of freezing-thawing cycles on mechanical properties of tailing soil at Yunnan-Guizhou Plateau[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1052-1059. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202005019.htm [36] SIMONSEN E, JANOO V C, ISACSSON U. Resilient properties of unbound road materials during seasonal frost conditions[J]. Journal of Cold Regions Engineering, 2002, 16(1): 28-50. doi: 10.1061/(ASCE)0887-381X(2002)16:1(28) [37] ZHANG W Y, GUO A B, LIN C. Effects of cyclic freeze and thaw on engineering properties of compacted loess and lime-stabilized loess[J]. Journal of Materials in Civil Engineering, 2019, 31(9): 04019205. doi: 10.1061/(ASCE)MT.1943-5533.0002858 [38] QI J L, MA W. Influence of freezing-thawing on strength of overconsolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2082-2086. [39] 崔广芹, 杨晋华. 循环荷载和冻融循环作用下土体的弹性模量分析[J]. 建筑科学, 2019, 35(3): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201903009.htmCUI G Q, YANG J H. Elastic modulus analysis of soil under cyclic loading and freeze-thaw cycles[J]. Building Science, 2019, 35(3): 77-81. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201903009.htm [40] ANDERSLAND O B, LADANYI B. Frozen ground engineering[M]. [S. l. ]: John Wiley & Sons, 2003. [41] IVERSON R M, REID M E, LOGAN M, et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 2011, 4(2): 116-121. doi: 10.1038/ngeo1040 [42] Wang R L, Zhu D P, Liu X Y, et al. Monitoring the freeze-thaw process of soil with different moisture contents using piezoceramic transducers[J]. Smart Materials and Structures, 2015, 24(5): 057003. doi: 10.1088/0964-1726/24/5/057003 [43] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.LI G X. Advanced geotechnics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese) [44] SHEN Y J, WEI X, ZHANG L, et al. Hydrothermal migration of moraine soli and the mechanism of ice accumulation and frost swelling in alpine-cold mountain region[J]. Journal of Engineering Geology, 2022, 30(5): 1450-1465. [45] 叶万军, 李长清, 董西好, 等. 冻融环境下黄土微结构损伤识别与宏观力学响应规律研究[J]. 冰川冻土, 2018, 40(3): 546-555. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201803013.htmYE W J, LI C Q, DONG X H, et al. Identification of microstructural damage and macromechanical response of loess under freeze-thaw environment[J]. Journal of Glaciology and Geocryology, 2018, 40(3): 546-555. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201803013.htm [46] 汪恩良, 姜海强, 张栋, 等. 冻融作用对土体物理力学性质影响研究进展[J]. 东北农业大学学报, 2017, 48(5): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDN201705011.htmWANG E L, JIANG H Q, ZHANG D, et al. Research progress on the effect of freezing and thawing on the physical and mechanical properties of soil[J]. Journal of Northeast Agricultural University, 2017, 48(5): 82-88. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDN201705011.htm [47] 张彦锋. 循环冻融作用下冰碛土碎化机制及其致灾效应研究[D]. 北京: 中国地质大学(北京), 2020.ZHANG Y F. Research on the mechanism of glacial till fragmentation and its breaking effects under freeze-thaw cycles[D]. Beijing: China University of Geosciences(Beijing), 2020. (in Chinese with English abstract) [48] AOYAMA K, OGAWA S, FUKUDA M. Temperature dependencies of mechanical properties of soils subjected to freezing and thawing[C]//Anon. International symposium on ground freezing 4. Rotterdam: A.A. Balkema, 1985: 217-222. [49] 胡再强, 刘寅, 李宏儒. 冻融循环作用对黄土强度影响的试验研究[J]. 水利学报, 2014, 45(增刊2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2003.htmHU Z Q, LIU Y, LI H R. Experimental study on the effect of freeze-thaw cycles on the strength of loess[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 14-18. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2003.htm [50] LIU H B, WANG J. Influence of freeze-thaw cycles on resilient modulus of different plasticity index subgrade soil[C]//Anon. 2011 International Conference on Remote Sensing, Environment and Transportation Engineering. [S. l. ]: IEEE, 2011: 3215-3218. [51] 刘晖, 刘建坤, 邰博文, 等. 冻融循环对含砂粉土力学性质的影响[J]. 哈尔滨工业大学学报, 2018, 50(3): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803019.htmLIU H, LIU J K, TAI B W, et al. Mechanical properties changes of sandy silt due to freeze-thaw cycles[J]. Journal of Harbin Institute of Technology, 2018, 50(3): 135-142. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803019.htm [52] 左庆祥. 冻融循环作用下武汉红黏土工程特性试验研究[D]. 武汉: 武汉科技大学, 2020.ZUO Q X. Experimental studies on red clay soil in Wuhan under freeze-thaw cycles condition[D]. Wuhan: Wuhan University of Science and Technology, 2020. (in Chinese with English abstract)