留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密砂岩储层孔隙结构特征对可动流体赋存的影响: 以鄂尔多斯盆地庆城地区长7段为例

石桓山 胡望水 李涛 李亦博 卢丹阳 刘国文

石桓山, 胡望水, 李涛, 李亦博, 卢丹阳, 刘国文. 致密砂岩储层孔隙结构特征对可动流体赋存的影响: 以鄂尔多斯盆地庆城地区长7段为例[J]. 地质科技通报, 2024, 43(2): 62-74. doi: 10.19509/j.cnki.dzkq.tb20220660
引用本文: 石桓山, 胡望水, 李涛, 李亦博, 卢丹阳, 刘国文. 致密砂岩储层孔隙结构特征对可动流体赋存的影响: 以鄂尔多斯盆地庆城地区长7段为例[J]. 地质科技通报, 2024, 43(2): 62-74. doi: 10.19509/j.cnki.dzkq.tb20220660
SHI Huanshan, HU Wangshui, LI Tao, LI Yibo, LU Danyang, LIU Guowen. Pore throat structure characteristics of tight sandstone reservoirs and their influence on movable fluid occurrence: Taking the Chang-7 Member of Qingcheng area of Ordos Basin as an example[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 62-74. doi: 10.19509/j.cnki.dzkq.tb20220660
Citation: SHI Huanshan, HU Wangshui, LI Tao, LI Yibo, LU Danyang, LIU Guowen. Pore throat structure characteristics of tight sandstone reservoirs and their influence on movable fluid occurrence: Taking the Chang-7 Member of Qingcheng area of Ordos Basin as an example[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 62-74. doi: 10.19509/j.cnki.dzkq.tb20220660

致密砂岩储层孔隙结构特征对可动流体赋存的影响: 以鄂尔多斯盆地庆城地区长7段为例

doi: 10.19509/j.cnki.dzkq.tb20220660
详细信息
    作者简介:

    石桓山, E-mail: 13288014@qq.com

    通讯作者:

    李涛, E-mail: ltm817@163.com

  • 中图分类号: P618.130.2+1

Pore throat structure characteristics of tight sandstone reservoirs and their influence on movable fluid occurrence: Taking the Chang-7 Member of Qingcheng area of Ordos Basin as an example

More Information
  • 摘要:

    分析孔隙结构和可动流体分布特征是储层研究的关键要素,也是当前研究的重点与热点,对致密砂岩油气勘探及提高油气采收率具有重要意义。以鄂尔多斯盆地庆城地区长7段致密砂岩储层为例,通过物性测试、铸体薄片、扫描电镜、高压压汞和核磁共振实验,结合分形理论,分析了致密砂岩储层孔隙结构、非均质性和可动流体分布特征,讨论了孔喉结构和非均质性对可动流体赋存的影响。结果表明:研究区长7段储层储集空间主要由微纳米级孔隙贡献,孔隙连通性较差,孔喉半径主要分布在0.050~0.500 μm;孔喉结构非均质性较强,分形维数分布在2.65~2.90;流体可动性较差,可动流体饱和度分布在16.68%~51.74%,可动流体多分布在中孔和小孔内。研究区长7段储层可分为3类:从Ⅰ类到Ⅲ类储层,剩余粒间孔和粒间溶蚀孔发育变少,孔隙连通性变差,孔喉尺寸变小,较大孔喉变少,非均质性变强,流体可动性变差,中孔和大孔内可动流体含量趋于降低, 可动流体倾向于在小孔内赋存。研究成果为致密砂岩油气勘探及油气采收率提高提供了理论依据。

     

  • 图 1  研究区构造位置平面分布图(a)及延长组地层综合柱状图(b)

    Figure 1.  Plane distribution map of structural position in the study area (a) and comprehensive histogram of the Yanchang Formation (b)

    图 2  研究区长7段砂岩储层孔隙类型及微观特征

    a.Z283井, 1 820.42 m, 粒内溶蚀孔、粒间溶蚀孔和片状喉道,铸体薄片,单偏光; b.N86井, 1 723.74 m, 粒间溶蚀孔、粒内溶蚀孔、剩余粒间孔和弯片状喉道,铸体薄片,单偏光; c: Z193井, 1 755.73 m, 粒间溶蚀孔和粒内溶蚀孔,铸体薄片,单偏光; d.Z283井, 1 823.73 m, 微裂缝,铸体薄片,单偏光; e.Z193井, 1 763.28 m, 晶间微孔和剩余粒间孔,扫描电镜照片; f.T40井, 1 689.13 m, 晶间孔和管束状喉道,扫描电镜照片

    Figure 2.  Pore types and microscopic characteristics of sandstone reservoir of the Chang-7 Memeber in the study area

    图 3  研究区长7段砂岩压汞曲线特征(a)和孔喉半径分布特征(b)

    Figure 3.  Mercury injection curve characteristics (a) and pore throat radius distribution characteristics (b) of the Chang-7 Member sandstone in the study area

    图 4  研究区长7段典型样品分形维数计算曲线

    Figure 4.  Fractal dimension calculation curve of the Chang-7 Member typical samples in the study area

    图 5  研究区长7段典型样品可动流体分布图

    Figure 5.  Movable fluid distribution of the Chang-7 Member typical samples in the study area

    图 6  孔隙类型参数与可动流体饱和度(a)及可动流体分布参数(b, c)关系

    Figure 6.  Relationship between pore type parameters and movable fluid saturation (a) and movable fluid distribution parameters (b, c)

    图 7  孔喉结构参数与可动流体饱和度(a)及可动流体分布参数(b, c)关系图

    Figure 7.  Relationship between pore throat structure parameters and saturation of movable fluid (a) and movable fluid distribution parameters (b, c)

    图 8  孔喉大小分布参数与可动流体饱和度(a, b)及可动流体分布参数(c, d)关系

    Figure 8.  Relationship between pore throat size distribution parameter and movable fluid saturation (a, b) and movable fluid distribution parameters (c, d)

    图 9  可动流体饱和度(a)及可动流体分布参数(b)与分形维数关系图

    Figure 9.  Relationship between saturation of movable fluid (a) and movable fluid distribution parameters (b) and fractal dimension

    表  1  研究区各实验样品基本信息

    Table  1.   Basic information on testing samples in the study area

    编号 井名 埋深/m 空气渗透率/10-3 μm2 孔隙度/% 岩性
    #1 Z193 1 755.73 0.069 8 8.02 灰色粉砂岩
    #2 Z193 1 763.28 0.120 1 9.38 浅灰色细砂岩
    #3 Z193 1 778.45 0.017 3 7.04 浅灰色粉砂岩
    #4 Z193 1 770.59 0.007 9 4.31 灰色粉砂岩
    #5 Z283 1 820.42 0.130 0 10.59 浅灰色细砂岩
    #6 Z283 1 822.57 0.100 5 10.12 浅灰色细砂岩
    #7 Z283 1 823.73 0.123 0 11.91 浅灰色细砂岩
    #8 N86 1 715.69 0.055 4 7.58 浅灰色粉砂岩
    #9 N86 1 719.38 0.027 9 7.05 灰色粉砂岩
    #10 N86 1 723.74 0.113 6 11.79 浅灰色细砂岩
    #11 N86 1 724.82 0.018 7 4.69 浅灰色粉砂岩
    #12 T40 1 685.74 0.011 2 4.12 灰色粉砂岩
    #13 T40 1 688.69 0.007 3 3.90 灰色粉砂岩
    #14 T40 1 689.13 0.008 9 4.21 灰色粉砂岩
    #15 T40 1 691.69 0.009 8 4.06 浅灰色粉砂岩
    下载: 导出CSV

    表  2  研究区各长7段测试分析样品孔喉结构参数及主要孔隙类型的面孔率

    Table  2.   Pore throat structure parameters and face rate of main pore types of the Chang-7 Member testing samples in the study area

    编号 最大孔喉半径/μm 平均孔喉半径/μm 孔喉半径中值/μm 最大汞饱和度/% 排驱压力/MPa 分选系数 歪度 占比/%(半径≥0.1 μm) 占比/%(半径<0.1 μm) 主要孔隙类型的面孔率/% 储层类型
    剩余粒间孔 粒间溶蚀孔 粒内溶蚀孔
    #1 0.263 0.079 0.039 61.35 2.79 1.40 0.39 11.62 88.38 1.0 0.5 0.5
    #2 0.265 0.059 0.021 67.05 2.78 1.52 0.20 22.56 77.44 0.5 1.0 1.0
    #3 0.267 0.077 0.033 61.76 2.76 1.59 0.23 42.92 57.08 0.0 0.0 0.0
    #4 0.133 0.045 0.021 57.14 5.54 1.60 -0.05 7.08 92.92 0.0 0.0 0.5
    #5 0.359 0.098 0.035 68.68 2.05 2.50 -0.01 47.55 52.45 1.5 2.0 1.0
    #6 0.554 0.169 0.074 67.03 1.33 1.61 0.49 68.09 31.91 2.0 2.0 0.5
    #7 1.112 0.197 0.096 69.02 0.66 1.68 0.46 66.77 33.23 2.5 1.5 0.25
    #8 0.183 0.057 0.028 61.79 4.02 1.52 0.13 23.97 76.03 0.0 0.0 0.5
    #9 0.251 0.073 0.025 60.75 2.93 2.43 -0.02 39.00 61.00 0.5 0.0 0.0
    #10 0.186 0.058 0.040 72.41 3.95 1.49 0.06 22.86 77.14 1.5 1.0 0.5
    #11 0.096 0.030 0.011 52.61 7.66 3.03 -0.59 0.00 100 0.0 0.0 0.0
    #12 0.094 0.023 0.008 51.64 7.82 2.29 -0.41 0.00 100 0.0 0.0 0.5
    #13 0.075 0.019 / 34.75 9.80 2.57 -0.54 0.00 100 0.0 0.0 0.0
    #14 0.057 0.018 / 34.90 13.00 3.98 -0.73 0.00 100 0.0 0.0 0.5
    #15 0.098 0.017 / 40.07 7.50 2.56 -0.42 0.00 100 0.0 0.0 0.0
    下载: 导出CSV

    表  3  研究区各长7段测试样品分形维数及相关系数

    Table  3.   Fractal dimension and correlation coefficient of the Chang-7 Member testing samples in the study area

    样品编号 #1 #2 #3 #4 #5 #6 #7 #8
    分形维数 2.789 8 2.719 5 2.792 9 2.868 6 2.708 9 2.713 7 2.779 7 2.707 3
    R2 0.871 4 0.994 5 0.922 6 0.960 1 0.988 1 0.916 6 0.936 2 0.962 2
    储层类型
    样品编号 #9 #10 #11 #12 #13 #14 #15
    分形维数 2.743 9 2.686 9 2.728 1 2.780 5 2.930 4 2.817 9 2.834 9
    R2 0.973 0 0.986 6 0.985 5 0.982 5 0.948 2 0.980 7 0.980 3
    储层类型
    下载: 导出CSV

    表  4  研究区长7段实验样品可动流体分布参数

    Table  4.   Movable fluid distribution parameters of the Chang-7 Member testing samples in the study area

    编号 储层类型 可动流体饱和度/% 可动流体分布体积分数/%
    微孔(T2≤1 ms) 小孔(1 ms<T2≤10 ms) 中孔(10 ms<T2≤100 ms) 大孔(100 ms<T2≤1 000 ms) 微裂缝(T2>1 000 ms)
    #1 43.46 1.86 46.85 47.65 3.64 0.00
    #2 45.86 0.00 35.43 60.23 4.34 0.00
    #3 39.26 0.45 47.94 50.37 1.24 0.00
    #4 32.76 0.79 64.89 34.32 0.00 0.00
    #5 49.08 0.00 6.15 63.17 30.68 0.00
    #6 51.74 0.00 7.76 60.97 31.27 0.00
    #7 49.39 0.00 3.51 56.69 39.81 0.00
    #8 38.95 2.44 22.41 44.69 30.46 0.00
    #9 39.79 0.00 34.12 59.46 6.26 0.15
    #10 40.06 1.39 0.96 83.23 14.42 0.00
    #11 41.57 13.43 61.97 21.79 2.82 0.00
    #12 30.73 7.17 53.72 36.03 2.85 0.06
    #13 16.68 0.00 90.09 3.16 6.75 0.00
    #14 32.78 3.29 49.55 34.39 12.77 0.00
    #15 28.51 43.21 16.42 29.28 10.30 0.03
    下载: 导出CSV
  • [1] 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm

    YAO J L, DENG X Q, ZHAO Y D, et al. Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 150-158. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302002.htm
    [2] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm

    YANG H, LI S X, LIU X Y. Characteristics and resource potential of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm
    [3] 黄何鑫. 鄂尔多斯盆地长6致密砂岩储层特征差异及其对流体可动用能力的制约机理研究[D]. 西安: 西北大学, 2019.

    HUANG H X. Study on the difference in characteristics of the tight sandstone reservoir and its restrictive mechanism to the fluid availability of Chang 6 Member in the Ordos Basin[D]. Xi'an: Northwestern University, 2019. (in Chinese with English abstract)
    [4] ZHANG F, JIANG Z, SUN W, et al. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance, high pressure mercury injection and constant-rate mercury injection penetration test[J]. Marine and Petroleum Geology, 2019, 109: 208-222. doi: 10.1016/j.marpetgeo.2019.06.019
    [5] HUANG H, LI R, XIONG F, et al. A method to probe the pore-throat structure of tight reservoirs based on low-field NMR: Insights from a cylindrical pore model[J]. Marine and Petroleum Geology, 2020, 117: 104344. doi: 10.1016/j.marpetgeo.2020.104344
    [6] 钟红利, 张凤奇, 赵振宇, 等. 致密砂岩储层微观孔喉分布特征及对可动流体的控制作用[J]. 石油实验地质, 2021, 43(1): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202101009.htm

    ZHONG H L, ZHANG F Q, ZHAO Z Y, et al. Micro-scale pore-throat distributions in tight sandstone reservoirs and its constrain to movable fluid[J]. Petroleum Geology & Experiment, 2021, 43(1): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202101009.htm
    [7] 陈富瑜, 周勇, 杨栋吉, 等. 基于分形理论的致密砂岩储层孔隙结构研究: 以鄂尔多斯盆地庆城地区延长组长7段为例[J]. 中国矿业大学学报, 2022(5): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202205011.htm

    CHEN F Y, ZHOU Y, YANG D J, et al. Study on pore structure of tight sandstone reservoir based on fractal theory: A case study from Chang 7 tight sangstone of Yanchang Formation in Qingcheng area of Ordos Basin[J]. Journal of China University of Mining & Technology, 2022(5): 1-15. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202205011.htm
    [8] XU Y, LIU L, ZHU Y. Characteristics of movable fluids in tight sandstone reservoir and its influencing factors: A case study of Chang 7 reservoir in the southwestern of Ordos Basin[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(9): 3493-3507. doi: 10.1007/s13202-021-01250-x
    [9] WANG B, ZHAO X, ZHOU W, et al. Quantitative characterization of pore connectivity and movable fluid distribution of tight sandstones: A case study of the Upper Triassic Chang 7 Member, Yanchang Formation in Ordos Basin, China[J]. Geofluids, 2020, 97: 1-13.
    [10] 王永诗, 高阳, 方正伟. 济阳坳陷古近系致密储集层孔喉结构特征与分类评价[J]. 石油勘探与开发, 2021, 48(2): 266-278. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102005.htm

    WANG Y S, GAO Y, FANG Z W. Pore throat structure and classification of Paleogene tight reservoirs in Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2021, 48(2): 266-278. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102005.htm
    [11] 闫健, 秦大鹏, 王平平, 等. 鄂尔多斯盆地致密砂岩储层可动流体赋存特征及其影响因素[J]. 油气地质与采收率, 2020, 27(6): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006007.htm

    YAN J, QIN D P, WANG P P, et al. Occurrence characteristics and main controlling factors of movable fluid in tight sandstone reservoirs in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(6): 47-56. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202006007.htm
    [12] 卢振东, 刘成林, 臧起彪, 等. 高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用: 以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2022, 41(3): 300-310 doi: 10.19509/j.cnki.dzkq.2021.0256

    LU Z D, LIU C L, ZANG Q B, et al. Application of high pressure mercury injection and nuclear magnetic resonance technology in analysis of the pore structure of dense sandstone: A case study in Heshui area of Ordos Basin[J]. Bulletin of Geological Scientific and Technology, 2022, 41(3): 300-310. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0256
    [13] LI P, JIA C, JIN Z, et al. The characteristics of movable fluid in the Triassic lacustrine tight oil reservoir: A case study of the Chang 7 Member of Xin'anbian Block, Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 126-137. doi: 10.1016/j.marpetgeo.2018.11.019
    [14] 熊林芳, 刘池阳, 邱欣卫, 等. 鄂尔多斯盆地晚三叠世构造活动及对优质烃源岩发育的影响[J]. 地质科技情报, 2015, 34(2): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502016.htm

    XIONG L F, LIU C Y, QIU X W, et al. Tectonic activity of Later Triassic in Ordos Basin and its effect on the formation of high quality source rocks[J]. Geological Scientific and Technology Information, 2015, 34(2): 109-114. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502016.htm
    [15] 阮壮, 罗忠, 于炳松, 等. 鄂尔多斯盆地中-晚三叠世盆地原型及构造古地理响应[J]. 地学前缘, 2021, 28(1): 12-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101003.htm

    RUAN Z, LUO Z, YU B S, et al. Middle-Late Triassic Basin prototype and tectonic paleogeographic response in the Ordos Basin[J]. Earth Science Frontiers, 2021, 28(1): 12-32. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101003.htm
    [16] YANG Y, LI W, MA L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos Basin: A multicycle cratonic basin in central China[J]. AAPG Bulletin, 2005, 89(2): 255-269. doi: 10.1306/10070404027
    [17] 李士祥, 牛小兵, 柳广弟, 等. 鄂尔多斯盆地延长组长7段页岩油形成富集机理[J]. 石油与天然气地质, 2020, 41(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004007.htm

    LI S X, NIU X B, LIU G D, et al. Formation and accumulation mechanism of shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 719-729. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004007.htm
    [18] 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm

    FU J H, LI S X, NIU X B, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm
    [19] 付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24(5): 601-614. doi: 10.3969/j.issn.1672-7703.2019.05.007

    FU J H, NIU X B, DAN W D, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7703.2019.05.007
    [20] 李涛涛. 鄂尔多斯盆地庆城地区延长组长7段致密油成藏特征及成藏条件分析[D]. 北京: 中国石油大学(北京), 2018.

    LI T T. Accumulation characteristics and analysis accumulation conditions of tight oil reservoir in Chang 7 Member of Yanchang Formation in Qingcheng area, Ordos Basin[D]. Beijing: China University of Petroleum(Beijing), 2018. (in Chinese with English abstract)
    [21] 付锁堂, 付金华, 牛小兵, 等. 庆城油田成藏条件及勘探开发关键技术[J]. 石油学报, 2020, 41(7): 777-795. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202007003.htm

    FU S T, FU J H, NIU X B, et al. Accumulation conditions and key exploration and development technologies in Qingcheng Oilfield[J]. Acta Petrolei Sinica, 2020, 41(7): 777-795. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202007003.htm
    [22] 张晓辉, 冯顺彦, 梁晓伟, 等. 鄂尔多斯盆地陇东地区延长组长7段沉积微相及沉积演化特征[J]. 地质学报, 2020, 94(3): 957-967. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202003020.htm

    ZHANG X H, FENG S Y, LIANG X W, et al. Sedimentary Microfacies identification and inferredevolution of Chang 7 Member of Yanchang Formation in the Longdong area, Ordos Basin[J]. Acta Geologica Sinica, 2020, 94(3): 957-967. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202003020.htm
    [23] 王昊, 杨友运, 李元昊, 等. 鄂尔多斯盆地合水地区长7段重力流沉积特征及分布规律[J]. 西安石油大学学报(自然科学版), 2019, 34(2): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201902006.htm

    WANG H, YANG Y Y, LI Y H, et al. Characteristics and distribution of gravity flow deposition of Chang 7 Member in Heshui area, Ordos Basin[J]. Journal of Xi'an Petroleum University(Natural Science Edition), 2019, 34(2): 39-45. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201902006.htm
    [24] 杨华, 窦伟坦, 刘显阳, 等. 鄂尔多斯盆地三叠系延长组长7沉积相分析[J]. 沉积学报, 2010, 28(2): 254-263. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002007.htm

    YANG H, DOU W T, LIU X Y, et al. Analysis sedimentary facies of Chang 7 in Yanchang Formation of Triassic in Ordos Basin[J]. Acta Sedimentologica Sinica, 2010, 28(2): 254-263. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201002007.htm
    [25] 李文厚, 刘溪, 张倩, 等. 鄂尔多斯盆地中晚三叠世延长期沉积演化[J]. 西北大学学报(自然科学版), 2019, 49(4): 605-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201904014.htm

    LI W H, LIU X, ZHANG Q, et al. Deposition evolution of Middle-Late Triassic Yanchang Formation in Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2019, 49(4): 605-621. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201904014.htm
    [26] 刘芬. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及成因机制[D]. 北京: 中国石油大学(北京), 2016.

    LIU F. Sedimentary characteristics and genetic mechanism of gravity flow in Triassic Yanchang Formation of Longdong area, Ordos Basin[D]. Beijing: China University of Petroleum(Beijing), 2016. (in Chinese with English abstract)
    [27] 窦伟坦. 鄂尔多斯盆地三叠系延长组沉积体系、储层特征及油藏成藏条件研究[D]. 成都: 成都理工大学, 2005.

    DOU W T. Research for sediment system, reservoir character and oil-reservoir forming of Yanchang Formation, Triassic, Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2005. (in Chinese with English abstract)
    [28] 付金华, 郭正权, 邓秀芹. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J]. 古地理学报, 2005, 7(1): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200501004.htm

    FU J H, GUO Z Q, DENG X Q. Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin[J]. Journal of Palaeogeography, 2005, 7(1): 34-44. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200501004.htm
    [29] 王福伟, 陈冬霞, 解广杰, 等. 鄂尔多斯盆地庆城地区延长组7段源-储结构控制下致密砂岩油的差异富集机制[J]. 石油学报, 2022, 43(7): 941-956. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202207005.htm

    WANG F W, CHEN D X, XIE G J, et al. Differential enrichment mechanism of tight sandstone oil under the control of the source-reservoir structure in the Member 7 of Yanchang Formation in Qingcheng area, Ordos Basin[J]Acta Petrolei Sinica, 2022, 43(7): 941-956. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202207005.htm
    [30] 刘凯, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J]. 地质科技通报, 2021, 40(1): 57-68.

    Liu K, Shi W Z, Wang R, et al. Pore structure fractal characteristics and its relationship with reservoir properties the First Member of Lower Shihezi Formation tight sandstone in Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 57-68. (in Chinese with English abstract)
    [31] MANDELBROT B B, PASSOJA D E, PAULLAY D E. Fractal character of fracture surfaces in porous media[J]. Nature, 1984, 308: 721-722. doi: 10.1038/308721a0
    [32] 王伟, 陈朝兵, 许爽, 等. 鄂尔多斯盆地延长组致密砂岩不同尺度孔喉分形特征及其控制因素[J]. 石油实验地质, 2022, 44(1): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202201004.htm

    WANG W, CHEN C B, XU S, et al. Fractal characteristics and controlling factors of pore throat at different scales in tight sandstone of Yanchang Formation in Ordos Basin[J]Petroleum Geology & Experiment, 2022, 44(1): 33-40. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202201004.htm
    [33] 王伟, 宋渊娟, 黄静, 李亚辉, 陈朝兵, 朱玉双. 利用高压压汞实验研究致密砂岩孔喉结构分形特征[J]. 地质科技通报, 2021, 40(4): 22-30.

    WANG W, SONG Y J, HUANG J, et al. Fractal characteristics of pore-throat structure in tight sandstone using high-pressure mercury injection intrusion porosimetry[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 22-30. (in Chinese with English abstract)
    [34] SHAO X, PANG X, LI H, et al. Fractal analysis of pore network in tight gas sandstones using NMR Method: A case study from the Ordos Basin, China[J]. Energy & Fuels, 2017, 31: 10358-10368.
    [35] TIMUR A. Pulsed nuclear magnetic resonance studies of porosity, movable fluid, and permeability of sandstones[J]. Journal of Petroleum Technology, 1969, 6: 775-786.
    [36] 高树生, 胡志明, 刘华勋, 等. 不同岩性储层的微观孔隙特征[J]. 石油学报, 2016, 37(2): 248-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602012.htm

    Gao S S, Hu Z M, Liu H X, et al. Microscopic pore characteristics of different lithological reservoirs with[J]. Acta Petrolei Sinica, 2016, 37(2): 248-256. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602012.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  109
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-27
  • 录用日期:  2023-01-09
  • 修回日期:  2022-12-22

目录

    /

    返回文章
    返回