Assessment of fractures geometries and seepage characteristics based on statistical homogeneous zone method
-
摘要:
综合分析岩体裂隙几何特征及渗流特性是高放废物处置库场址适宜性评价中关键内容之一。利用北山预选区新场地段中部BS32、BS36和BS39钻孔试验及其周围的裂隙现场调查结果, 以裂隙产状及线密度为指标对钻孔进行定量均质区划分, 并辅以渗透张量理论得到钻孔裂隙岩体渗透性大小及渗透主方向。研究结果表明: 新场地段URL(地下实验室)场址区发育4组优势裂隙, 其产状分别为279°∠79°, 98°∠76°, 227°∠79°和36°∠76°, 尤以EW向和NNE向最发育。节理裂隙以陡倾角(>60°)的剪节理为主, 同时伴有少量张节理, 裂隙倾向、倾角呈正态分布特征。与现场水力试验结果相比较, 钻孔整体综合渗透系数处于10-13~10-9 m/s数量级范围, 主渗透方向主要是NNE向、近EW向及SE向, NNE向及近EW向为裂隙岩体优势渗流通道, 其渗透张量主值较大。位于新场地段2条近EW向的F6, F7断裂以及与其配套的NNE-EW向次级断裂对新场地段裂隙发育起到宏观控制作用。裂隙岩体渗透性大小主要受裂隙间距和隙宽影响。研究结果可为北山预选区新场地段处置库建设及处置库中核素迁移等工程数值模拟提供必要的数据支撑。
Abstract:Objective Comprehensive analysis of fracture geometries and seepage characteristics is one of the prominent components in site suitability assessment of high-level radioactive waste (HLW) disposal repositories.
Methods To provide a sufficient basis for the construction of the Xinchang underground research laboratory (URL) site in the Beishan preselected area of the HLW disposal repository in China, this paper analyzed the development and distribution of fractures and the seepage characteristics in fractured granite. Based on the borehole tests of BS32, BS36 and BS39 carried out in the middle of the Xinchang site and the field investigation of the surrounding fractures, the orientations and linear density of fractures were used to quantitatively classify the homogeneous zones of the BS32, BS36 and BS39 boreholes. Supplemented by the theory of the hydraulic conductivity tensor, the hydraulic conductivities of fractured rock and the principal directions of fluid seepage in fractured rock with different burial depths were obtained.
Results The results show that four groups of dominant fractures are developed around BS32, BS36 and BS39 at the Xinchang URL site, with orientations of 279°∠79°, 98°∠76°, 227°∠79° and 36°∠76°, which are especially dominant in the EW and NNE directions. The fractures are mainly shear-stress formed with steep dips (>60°), accompanied by a few tensile fractures, and the fractures are normally distributed. Compared with the field hydraulic test results, the overall comprehensive hydraulic conductivities of the boreholes are in the range of 10-13-10-9 m/s. The main seepage directions are NNE, nearly EW and SE, where NNE and nearly EW are the dominant seepage channels of the fractured rock mass, with larger main permeability tensor values. Two nearly E-W-trending F6 and F7 faults and their corresponding NNE-E-trending secondary faults play a macrocontrolling role in fracture development at the Xinchang site. The permeability of fractured rock is mainly affected by the fracture spacing and aperture, demonstrating a great anisotropy.
Conclusion The results can provide necessary data support for the construction of disposal repositories and the numerical simulation of nuclide migration at the Xinchang URL site. In addition, the presented research idea could provide an alternative and practical method for effectively studying the properties of deep fractured rock masses with deep geological disposal of HLW.
-
图 1 研究区概况(据文献[25]修改)
a. 北山预选区;b. 新场地段遥感影像图;c. 新场岩体附近区域地质简图。O1x.新场单元二长花岗岩;Pt22h.红柳井单元片麻状花岗闪长岩;Chxs.咸水井群变质中基性火山岩;AnChDyj2.敦煌群鱼脊山组变质岩;AnChDyj3.敦煌群鱼脊山组黑云母片岩
Figure 1. Overview of the study area
表 1 优势组裂隙产状拟合参数
Table 1. Fitting parameters of fractures occurrence in the dominant group
优势组裂隙编号 优势产状 倾向φ拟合参数 倾角θ拟合参数 φ/(°) θ/(°) σφ δφ σθ δθ 1 279 79 6.56 280.87 3.60 80.09 2 98 76 8.31 100.06 8.62 77.65 3 227 79 4.54 229.58 7.39 77.83 4 36 76 6.28 38.11 2.79 75.80 表 2 BS36钻孔34格等面积块网γ值
Table 2. Value γ of 34 equal area block network in the BS36 borehole
区间 最大值 最小值 均值 数值排序 [40,160)与[160,230) 0.929 0.813 0.869 1 [160,230)与[230,300) 0.801 0.694 0.754 3 [230,300)与[300,400) 0.694 0.540 0.629 4 [300,400)与[400,470) 0.371 0.237 0.315 5 [400,470)与[470,500] 0.852 0.656 0.779 2 表 3 BS32钻孔不同均质区优势组裂隙特征
Table 3. Characteristics of dominant fracture groups in different homogeneous zones of the BS32 borehole
深度/m 优势组裂隙编号 优势产状 裂隙条数/条 间距/m 隙宽/mm φ/(°) θ/(°) [20,90] 1 48 77 6 11.67 0.77 2 163 69 6 11.67 0.36 3 211 77 4 17.50 0.44 [150,220] 1 307 64 5 14.00 0.58 2 165 36 6 11.67 1.03 [270,380] 1 317 68 4 27.50 0.02 2 150 49 3 36.67 0.02 [410,470] 1 200 44 2 30.00 0.02 2 306 72 1 60.00 0.02 3 54 25 1 60.00 0.02 [500,600] 1 200 75 1 100.00 0.10 表 4 BS32钻孔各均质区渗透系数
Table 4. Hydraulic conductivities of homogeneous zones in the BS32 borehole
深度/m 渗透系数张量/(m·s-1) 渗透张量主值/(m·s-1) 主渗透方向 综合渗透系数/(m·s-1) 倾向φ/(°) 倾角θ/(°) [20,90] $ \left(\begin{array}{ccc} 2.99 \times 10^{-11} & -1.97 \times 10^{-11} & 2.86 \times 10^{-12} \\ -1.97 \times 10^{-11} & 4.55 \times 10^{-11} & -6.30 \times 10^{-12} \\ 2.86 \times 10^{-12} & -6.30 \times 10^{-12} & 6.55 \times 10^{-11} \end{array}\right)$ 1.65×10-11 120.73 16.41 3.98×10-11 5.46×10-11 219.24 26.68 6.98×10-11 2.65 57.96 [150,220] $\left(\begin{array}{lll} 5.19 \times 10^{-11} & 1.38 \times 10^{-11} & 1.79 \times 10^{-11} \\ 1.38 \times 10^{-11} & 6.19 \times 10^{-11} & 1.27 \times 10^{-12} \\ 1.79 \times 10^{-11} & 1.27 \times 10^{-12} & 3.73 \times 10^{-11} \end{array}\right) $ 2.40×10-11 137.44 28.42 4.54×10-11 7.55×10-11 15.50 44.49 5.16×10-11 247.38 32.10 [270,380] $\left(\begin{array}{lll} 4.09 \times 10^{-13} & 2.59 \times 10^{-13} & 2.85 \times 10^{-14} \\ 2.59 \times 10^{-13} & 5.25 \times 10^{-13} & 2.16 \times 10^{-14} \\ 2.85 \times 10^{-14} & 2.16 \times 10^{-14} & 5.43 \times 10^{-13} \end{array}\right) $ 2.01×10-13 83.49 38.15 4.31×10-13 5.37×10-13 283.73 50.07 7.39×10-13 358.50 10.06 [410,470] $\left(\begin{array}{lll} 5.47 \times 10^{-13} & 4.27 \times 10^{-15} & 1.02 \times 10^{-13} \\ 4.27 \times 10^{-15} & 6.11 \times 10^{-13} & 5.83 \times 10^{-14} \\ 1.02 \times 10^{-13} & 5.83 \times 10^{-14} & 3.90 \times 10^{-13} \end{array}\right) $ 3.31×10-13 332.27 26.45 4.96×10-13 5.77×10-13 342.03 54.54 6.40×10-13 73.76 21.82 [500,600] $ \left(\begin{array}{ccc} 2.04 \times 10^{-14} & -3.48 \times 10^{-14} & 2.73 \times 10^{-14} \\ -3.48 \times 10^{-14} & 1.03 \times 10^{-13} & 9.93 \times 10^{-15} \\ 2.73 \times 10^{-14} & 9.93 \times 10^{-15} & 1.08 \times 10^{-13} \end{array}\right)$ -1.18×10-15 285.62 19.62 2.52×10-14 1.17×10-13 19.75 11.41 1.16×10-13 138.25 67.07 -
[1] 王驹. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术, 2019, 53(10): 2072-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htmWang J. Progress of geological disposal of high-level radioactive waste in China in the 21st century[J]. Atomic Energy Science and Technology, 2019, 53(10): 2072-2082(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htm [2] Huang F, Yao C, Yang J, et al. Connectivity evaluation of fracture networks considering the correlation between trace length and aperture[J]. Applied Mathematical Modelling, 2020, 88: 870-887. doi: 10.1016/j.apm.2020.07.011 [3] Huang F, Yao C, Yang J, et al. Effects of fracture parameters and roughness on heat-flow coupling in rock mass with two-dimensional fracture networks[J]. Energy Science & Engineering, 2021, 9(8): 1216-1231. [4] Li L L, Zhang Q L, Zhou Z C, et al. Groundwater circulation patterns in bedrock aquifers from a pre-selected area of high-level radioactive waste repository based on two-dimensional numerical simulation[J]. Journal of Hydrology, 2022, 610: 127849. doi: 10.1016/j.jhydrol.2022.127849 [5] Shanley R J, Mahtab M A. Delineation and analysis of clusters in orientation data[J]. Mathematical Geology, 1976, 8(1): 9-23. doi: 10.1007/BF01039681 [6] Gaziev E G, Tiden E N. Probabilistic approach to the study of jointing in rock masses[J]. Bulletin of Engineering Geology and the Environment, 1979, 20(1): 178-181. [7] Ma G W, Xu Z H, Zhang W, et al. An enriched K-means clustering method for grouping fractures with meliorated initial centers[J]. Arabian Journal of Geosciences, 2014, 8(4): 1881-1893. [8] 宋盛渊, 王清, 陈剑平, 等. 岩体结构面的多参数优势分组方法研究[J]. 岩土力学, 2015, 36(7): 2041-2048. doi: 10.16285/j.rsm.2015.07.028Song S Y, Wang Q, Chen J P, et al. A method for multivariate parameter dominant partitioning of discontinuities of rock masses[J]. Rock and Soil Mechanics, 2015, 36(7): 2041-2048(in Chinese with English abstract). doi: 10.16285/j.rsm.2015.07.028 [9] 李宁, 王李管, 贾明涛, 等. 改进遗传算法和支持向量机的岩体结构面聚类分析[J]. 岩土力学, 2014, 35(增刊2): 405-411. doi: 10.16285/j.rsm.2014.s2.014Li N, Wang L G, Jia M T, et al. Application of improved genetic algorithm and support vector machine to clustering analysis of rock mass structural plane[J]. Rock and Soil Mechanics, 2014, 35(S2): 405-411(in Chinese with English abstract). doi: 10.16285/j.rsm.2014.s2.014 [10] Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scanline surveys[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981, 18(3): 183-197. [11] Kulatilake P H S W, Wu T H. Estimation of mean trace length of discontinuities[J]. Rock Mechanics and Rock Engineering, 1984, 17(4): 215-232. doi: 10.1007/BF01032335 [12] Zhang L, Einstein H H. Estimating the mean trace length of rock discontinuities[J]. Rock Mechanics and Rock Engineering, 1998, 31(4): 217-235. doi: 10.1007/s006030050022 [13] Zhang Q, Wang Q, Chen J, et al. Estimation of mean trace length by setting scanlines in rectangular sampling window[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 84(2): 74-79. [14] Miller S M. A statistical method to evaluate homogeneity of structural populations[J]. Journal of International Association for Mathematical Geology, 1983, 15(2): 317-328. doi: 10.1007/BF01036073 [15] Kulatilake P H S W, Chen J, Teng J, et al. Discontinuity geometry characterization in a tunnel close to the proposed permanent shiplock area of the Three Gorges Dam Site in China[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1996, 33(3): 255-277. [16] 高敬, 杨春和, 王贵宾. 甘肃北山岩体结构均质区划分方法的探讨[J]. 岩土力学, 2010, 31(2): 588-592. doi: 10.3969/j.issn.1000-7598.2010.02.042Gao J, Yang C H, Wang G B. Discussion on zoning method of structural homogeneity of rock mass in Beishan of Gansu Province[J]. Rock and Soil Mechanics, 2010, 31(2): 588-592(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.02.042 [17] 宋盛渊, 王清, 陈剑平, 等. 一种基于裂隙间距的岩体结构统计均质区划分方法[J]. 东北大学学报: 自然科学版, 2015, 36(8): 1188-1192. doi: 10.3969/j.issn.1005-3026.2015.08.027Song S Y, Wang Q, Chen J P, et al. A method of identifying structural homogeneity of rock mass based on fracture spacing[J]. Journal of Northeastern University: Natural Science Edition, 2015, 36(8): 1188-1192(in Chinese with English abstract). doi: 10.3969/j.issn.1005-3026.2015.08.027 [18] 魏翔, 杨春和, 王贵宾, 等. 钻孔岩体结构均质区划分方法研究[J]. 长江科学院院报, 2017, 34(11): 72-76, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201711017.htmWei X, Yang C H, Wang G B, et al. Dividing structural homogeneity of rock mass by using boreholes[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(11): 72-76, 83(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201711017.htm [19] Snow D T. Anisotropic permeability of fractured media[J]. Water Resources Research, 1969, 5(6): 1273-1289. doi: 10.1029/WR005i006p01273 [20] Long J C S, Remer J S, Wilson C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research, 1982, 18(3): 645-658. doi: 10.1029/WR018i003p00645 [21] Oda M, Takemura T, Aoki T. Damage growth and permeability change in triaxial compression tests of Inada granite[J]. Mechanics of Materials, 2002, 34(6): 313-331. doi: 10.1016/S0167-6636(02)00115-1 [22] 田开铭, 万力. 各向异性裂隙介质渗透特性的研究与评价[M]. 北京: 学苑出版社, 1989.Tian K M, Wan L. Research and evaluation on permeability of anisotropic fractured media[M]. Beijing: Academy Press, 1989(in Chinese). [23] Wang J, Chen L, Su R, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 411-435. [24] 董艳辉, 符韵梅, 王礼恒, 等. 甘肃北山-河西走廊-祁连山区域地下水循环模式[J]. 地质科技通报, 2022, 41(1): 79-89. doi: 10.19509/j.cnki.dzkq.2022.0012Dong Y H, Fu Y M, Wang L H, et al. Rgional groundwater flow pattern in Beishan, Hexi Corridor and Qilian Mountain[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 79-89(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0012 [25] 苏锐, 郭永海, 季瑞利, 等. 甘肃北山新场向阳山预选地段深部环境水文地质特征研究[R]. 北京: 核工业北京地质研究院, 2010.Su R, Guo Y H, Ji R L, et al. Hydrogeological characterization of deep environment at Xinchang-Xiangyangshan preselected area in Gansu Beishan region for China's high level radioactive waste disposal[R]. Beijing: Beijing Research Institute of Uranium Geology, 2010(in Chinese). [26] 王超, 王川婴, 王益腾, 等. 基于孔壁光学图像的岩石孔隙结构识别与分析方法研究[J]. 岩石力学与工程学报, 2021, 40(9): 1894-1901. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202109015.htmWang C, Wang C Y, Wang Y T, et al. Research on identification and analysis method of rock pore structure based on optical images of borehole walls[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1894-1901(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202109015.htm [27] 朱恒银, 王川婴, 王强. 钻孔摄像技术在地质勘探中的应用研究[J]. 探矿工程: 岩土钻掘工程, 2013, 40(增刊1): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-META202301021.htmZhu H Y, Wang C Y, Wang Q. Application of borehole image technology in geological exploration[J]. Exploration Engineering: Rock & Soil Drilling and Junneling, 2013, 40(S1): 69-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-META202301021.htm [28] 葛云峰, 钟鹏, 唐辉明, 等. 基于钻孔图像的岩体结构面几何信息智能测量[J]. 岩土力学, 2019, 40(11): 4467-4476. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911038.htmGe Y F, Zhong P, Tang H M, et al. Intelligent measurement on geometric information of rock discontinuities based on borehole image[J]. Rock and Soil Mechanics, 2019, 40(11): 4467-4476(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911038.htm [29] 李亚伟, 郭哲江. 候选场址岩体工程质量评价研究[R]. 北京: 核工业北京地质研究院, 2017.Li Y W, Guo Z J. Rock mass quality evaluation of pre-selected areas for underground research laboratory[R]. Beijing: Beijing Research Institute of Uranium Geology, 2017(in Chinese). [30] 张明, 季瑞利, 李杰彪. 钻孔水文地质现场试验研究[R]. 北京: 核工业北京地质研究院, 2018.Zhang M, Ji R L, Li J B. Operation of borehole hydraulic tests and data interpretation[R]. Beijing: Beijing Research Institute of Uranium Geology, 2018(in Chinese). [31] 杨春和, 包宏涛, 王贵宾, 等. 岩体节理平均迹长和迹线中点面密度估计[J]. 岩石力学与工程学报, 2006, 25(12): 2475-2480. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612017.htmYang C H, Bao H T, Wang G B, et al. Estimation of mean trace length and trace midpoint density of rock mass joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2475-2480(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612017.htm [32] Martin M W, Tannant D D. A technique for identifying structural domain boundaries at the EKATI Diamond Mine[J]. Engineering Geology, 2004, 74(3/4): 247-264. [33] 周志芳, 王锦国. 裂隙介质水动力学[M]. 北京: 中国水利水电出版社, 2004.Zhou Z F, Wang J G. Dynamics of fluids in fractured media[M]. Beijing: China Water Power Press, 2004(in Chinese). [34] 胡成, 陈刚, 曹孟雄, 等. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126. doi: 10.19509/j.cnki.dzkq.2022.0029Hu C, Chen G, Cao M X, et al. A case study on water sealing efficiency of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0029