Numerical simulation of masonry building deformation and failure characteristics in landslide tension areas
-
摘要:
为保证滑坡上居民的生命和财产安全, 揭示滑坡上砌体房屋的变形破坏规律, 开展滑坡作用下砌体房屋的变形破坏过程模拟研究十分必要。试验基于ABAQUS接触分离式建模方法建立了砌体房屋精细化模型, 利用黏性接触界面来模拟砂浆在墙体中的作用,并将数值模拟结果与物理模型试验结果进行了对比分析。结果表明:通过物理模型试验和数值模型试验中砌体房屋宏观变形特征及微观应力应变数据的对比, 物理模型试验和数值模型试验的载荷-应变曲线拟合度较好、应变云图基本一致, 证明了该数值模拟方法的有效性;揭示了滑坡张拉变形区房屋墙体裂缝的扩展规律和应变分布规律。研究结果可以为滑坡张拉区砌体房屋防护设计提供依据。
Abstract:To ensure the safety of life and property of residents on landslides and reveal the deformation and failure law of masonry buildings on landslides, it is necessary to carry out a simulation study on the deformation and failure process of masonry buildings under the action of landslide deformation. A refined model of a masonry building was established based on the contact separation modeling method in ABAQUS, and the viscous contact interface was used to simulate the effect of mortar in the wall. Comparing the results of the numerical simulation with the physical model test results, the main conclusion is as follows: through the comparison of macroscopic deformation characteristics and microscopic stress and strain data obtained from physical and numerical model tests, the load-strain curve of the numerical model test agrees well with that of the physical model test, and their strain clouds are consistent, proving the validity of the numerical simulation method. The law of crack propagation and strain distribution of building walls in landslide tension areas is revealed, which can provide a basis for the protection design of masonry buildings in landslide tension areas.
-
图 3 滑坡变形三阶段[14](a)和对应加载曲线(b)
Figure 3. Three stages of landslide deformation(a) and corresponding loading curve(b)
表 1 主要材料参数
Table 1. Main material parameters
部位 材料 杨氏模量/MPa 泊松比 密度/(kg·m-3) 浅基础 C15混凝土 2.2×103 0.20 2 400 砖块 烧结砖 4.4×103 0.15 2 000 -
[1] 桂蕾. 三峡库区万州区滑坡发育规律及风险研究[D]. 武汉: 中国地质大学(武汉), 2014.Gui L. Research on landside development regularities and risk in Wanzhou district, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences(Wuhan), 2014(in Chinese with English abstract). [2] 连志鹏, 徐勇, 付圣, 等. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例[J]. 地质科技通报, 2020, 39(3): 178-186. doi: 10.19509/j.cnki.dzkq.2020.0319Lian Z P, Xu Y, Fu S, et al. Landside susceptibility assessment based on multi-model fusion method: A case study in Wufeng Country, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178-186(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0319 [3] 余玉婷, 桂蕾, 朱兴华, 等. 滑坡不同作用模式下房屋基础变形特征[J]. 地质科技通报, 2021, 40(6): 236-245. doi: 10.19509/j.cnki.dzkq.2021.0623Yu Y T, Gui L, Zhu X H, et al. Deformation characteristics of building foundation under different action modes of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 236-245(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0623 [4] 彭双麒, 柯灵, 郑体, 等. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622Peng S Q, Ke L, Zheng T, et al. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0622 [5] 张先扬, 袁广林. 采动区砌体结构抗变形实验[J]. 黑龙江科技大学学报, 2008, 18(3): 176-179. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200803004.htmZhang X Y, Yuan G L. Experiment of anti-deformation of masonry structure in mining subsidence area[J]. Journal of Heilongjiang University of Science and Technology, 2008, 18(3): 176-179(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200803004.htm [6] Yamin L E, Phillips C A, Reyes J C, et al. Seismic behavior and rehabilitation alternatives for adobe and rammed earth buildings[C]//Anon. 13th World Conference on Earthquake Engineering. BC Canada: Vancouver, 2004: 1-6. [7] Calderón S, Milani G, Sandoval C. Simplified micro-modeling of partially-grouted reinforced masonry shear walls with bed-joint reinforcement: Implementation and validation[J]. Engineering Structures, 2021, 234: 111987. doi: 10.1016/j.engstruct.2021.111987 [8] 李佳. 基于数值模拟的砌体结构倒塌影响因素分析及抗倒塌措施初探[D]. 重庆: 重庆大学, 2013.Li J. The collapsed factors analysis of masonry structures and preliminary exploration about anti-collapse based on numerical simulation[D]. Chongqing: Chongqing University, 2013(in Chinese with English abstract). [9] 丁瑞彬. 砌体精细化建模方法及砌体拟静力试验的数值模拟分析[D]. 太原: 太原理工大学, 2016.Ding R B. Detailed modeling method on masonry and quasi-static experiment numerical simulation analysis of masonry[D]. Taiyuan: Taiyuan University of Technology, 2016(in Chinese with English abstract). [10] Abdulla K F, Cunningham L S, Gillie M. Simulating masonry wall behaviour using a simplified micro-model approach[J]. Engineering Structures, 2017, 151: 349-365. doi: 10.1016/j.engstruct.2017.08.021 [11] 郭玉荣, 张楠. 近距离爆炸荷载作用下砌体墙动态响应及破坏历程的数值模拟[J]. 湖南大学学报: 自然科学版, 2016, 43(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201601008.htmGuo Y R, Zhang N. Numerical simulation of masonry wall dynamic response and failure process under close range balst load[J]. Journal of Hunan University: Natural Sciences, 2016, 43(1): 61-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201601008.htm [12] 韩笑. 燃气爆炸荷载下砖砌墙体的动力响应研究[D]. 西安: 长安大学, 2012.Han X. The dynamic response of brick masonry wall subjected to gas explosion load[D]. Xi'an: Chang'an University, 2012(in Chinese with English abstract). [13] 郑颖人, 陈祖煜, 王恭先, 等. 边坡与滑坡工程治理[M]. 北京: 人民交通出版社, 2010.Zhen Y R, Chen Z Y, Wang G X, et al. Engineering treatment of slop & landslide[M]. Beijing: China Communications Press, 2010(in Chinese). [14] 陈元勇, 王富强. 滑坡变形破坏过程中的受力特征分析[J]. 西部探矿工程, 2020, 32(11): 22-23, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK202011008.htmChen Y Y, Wang F Q. Analysis of force characteristics in landslide deformation and failure process[J]. West-China Exploration Engineering, 2020, 32(11): 22-23, 29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK202011008.htm [15] 许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806005.htmXu Q, Tang M G, Xu K X, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104-1112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806005.htm [16] Lü W R, Wang M, Liu X J. Numerical analysis of masonry under compression via micro-model[J]. Advanced Materials Research, 2011, 243/249: 1360-1365. [17] Feba S T, Kuriakose B. Nonlinear finite element analysis of unreinforced masonry walls[J]. Applied Mechanics and Materials, 2017, 857: 142-147. http://www.onacademic.com/detail/journal_1000039769832610_1476.html [18] 万蕾. 基于内聚力模型和三维离散元法沥青混合料劈裂试验研究[D]. 杭州: 浙江大学, 2016.Wang L. Study on asphalt mixture splitting test cohesive zone model and tree-dimension discrete element method[D]. Hangzhou: Zhejiang University, 2016(in Chinese with English abstract). [19] 蒋济同, 周新智. 基于分离式建模的砌体墙力学性能有限元分析参数探讨[J]. 建筑结构, 2019, 49(增刊1): 640-644. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2019S1133.htmJiang J T, Zhou X Z. Discussion on parameters in finite element analysis of mechanical properties of masonry wall based on separation modeling[J]. Building Structure, 2019, 49(S1): 640-644(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2019S1133.htm [20] 李聪, 朱杰兵, 汪斌, 等. 滑坡不同变形阶段演化规律与变形速率预警判据研究[J]. 岩石力学与工程学报, 2016, 35(7): 1407-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607011.htmLi C, Zhu J B, Wang B, et al. Critical deformation velocity of lamdslide in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1407-1414(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607011.htm [21] 许强, 曾裕平, 钱江澎, 等. 一种改进的切线角及对应的滑坡预警判据[J]. 地质通报, 2009, 28(4): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200904013.htmXu Q, Zeng Y P, Qian J P, et al. Study on improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China, 2009, 28(4): 501-505(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200904013.htm