留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山西塔儿山-二峰山地区新民铁矿床Fe同位素特征及其成矿指示意义

相轩 白洋 冯志强 任大陆 白阳 苗洪运 王米 侯建斌 郝书清

相轩, 白洋, 冯志强, 任大陆, 白阳, 苗洪运, 王米, 侯建斌, 郝书清. 山西塔儿山-二峰山地区新民铁矿床Fe同位素特征及其成矿指示意义[J]. 地质科技通报, 2023, 42(6): 187-200. doi: 10.19509/j.cnki.dzkq.tb20220816
引用本文: 相轩, 白洋, 冯志强, 任大陆, 白阳, 苗洪运, 王米, 侯建斌, 郝书清. 山西塔儿山-二峰山地区新民铁矿床Fe同位素特征及其成矿指示意义[J]. 地质科技通报, 2023, 42(6): 187-200. doi: 10.19509/j.cnki.dzkq.tb20220816
Xiang Xuan, Bai Yang, Feng Zhiqiang, Ren Dalu, Bai Yang, Miao Hongyun, Wang Mi, Hou Jianbin, Hao Shuqing. Iron isotopic characteristics of the Xinmin Fe deposit in the Taershan-Erfengshan district, Shanxi Province: Implications for origin of Fe mineralization[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 187-200. doi: 10.19509/j.cnki.dzkq.tb20220816
Citation: Xiang Xuan, Bai Yang, Feng Zhiqiang, Ren Dalu, Bai Yang, Miao Hongyun, Wang Mi, Hou Jianbin, Hao Shuqing. Iron isotopic characteristics of the Xinmin Fe deposit in the Taershan-Erfengshan district, Shanxi Province: Implications for origin of Fe mineralization[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 187-200. doi: 10.19509/j.cnki.dzkq.tb20220816

山西塔儿山-二峰山地区新民铁矿床Fe同位素特征及其成矿指示意义

doi: 10.19509/j.cnki.dzkq.tb20220816
基金项目: 

山西省科技厅自然科学基金项目 201701D221022

山西省自然资源厅地勘基金项目 晋地发[2020]32号

详细信息
    作者简介:

    相轩(1989-), 男, 工程师, 主要从事金属矿产地质勘查研究工作。E-mail: xiangxuan2012@126.com

    通讯作者:

    冯志强(1984—), 男, 副教授, 主要从事构造地质学研究工作。E-mail: fengzhiqiang@tyut.edu.cn

  • 中图分类号: P618.31

Iron isotopic characteristics of the Xinmin Fe deposit in the Taershan-Erfengshan district, Shanxi Province: Implications for origin of Fe mineralization

  • 摘要:

    新民铁矿是晋南塔儿山-二峰山地区近年来接触交代型矿床最具代表性的矿产勘查成果之一, 查明其成矿铁质来源及矿化过程对其成矿具有指示意义。系统分析了新民铁矿见矿钻孔中蚀变闪长岩体、赋矿灰岩(白云岩)及不同类型磁铁矿样品的铁同位素组成。结果显示δ56Fe分布范围分别为0.23‰, 0~0.19‰, -0.56‰~0.07‰。蚀变闪长岩体的铁同位素组成较上地壳δ56Fe平均值(0.07‰)明显更重, 可能与矽卡岩/钠长石化过程中流体迁移相关, 轻铁同位素优先从岩体中淋滤而出。灰岩、白云岩的δ56Fe变化范围较大, 且与磁铁矿的铁同位素组成有明显差异, 可能并非成矿铁元素的主要来源。磁铁矿相比于两类围岩明显富集轻铁同位素, 在钻孔剖面上呈现明显的从矿体的核部到边部变重趋势, 指示成矿流体从岩体淋滤、迁移, 并在灰岩地层中沉淀, 导致磁铁矿δ56Fe与Fe含量之间呈现出明显的负相关性。本研究与前人针对矽卡岩型铁矿床Fe同位素的系统研究结果相一致, 为其接触交代成因的厘定提供了重要证据, 同时也预示着塔儿山-二峰山地区, 尤其是具有高δ56Fe组成的蚀变闪长岩体, 可能具备开展富铁矿找矿工作的广阔前景。

     

  • 图 1  华北板块区域地质简图(a)和山西省区域地质图(b) (据文献[31-33]修改)

    Figure 1.  Simplified tectonic map of the North China Craton (a) and geological map of Shanxi Province (b)

    图 2  塔儿山-二峰山地质略图

    Figure 2.  Geological sketch of Taershan-Erfengshan area

    图 3  新民铁矿围岩蚀变显微照片

    a~b.围岩发育绿帘石化、绿泥石化;c.围岩碳酸盐化,原有的碳酸盐矿物重结晶;d.围岩碳酸盐化,石榴石具裂纹结构;e.围岩发育蛇纹石化;f.金云母蚀变岩中穿插后期碳酸盐脉,发育黄铁矿和闪锌矿等硫化物

    Figure 3.  Typical photomicrographs showing alteration the host rock in the Xinmin iron deposit

    图 4  塔儿山-二峰山地区新民铁矿联合剖面图

    Figure 4.  Combined cross sections of the Xinmin iron deposit in the Taershan-Erfengshan area

    图 5  新民铁矿岩心及显微图像

    a.新民铁矿矿石,具稠密浸染状构造;b.矿脉与围岩的接触带,矿脉发育矽卡岩化蚀变;c.新民铁矿矿石矿物组成,矿石矿物主要为磁铁矿,金属硫化物包括黄铁矿、雌黄铁矿、闪锌矿及黄铜矿;d.磁铁矿的再平衡结构的背散射图像

    Figure 5.  Macroscopic and microscopoic characteristics of drill cores of the Xinmin iron deposit

    图 6  新民铁矿含铁矿物之间的Fe同位素分馏

    Figure 6.  Plot of measured δ56Fe versus δ57Fe of Fe-bearing minerals in the Xinmin iron deposit

    图 7  钻孔ZK5-3地层柱状图及全Fe质量分数和Fe同位素组成变化关系

    Figure 7.  Drill columnar section of borehole ZK5-3 and variation trends of iron isotopic compositions and total Fe contents

    图 8  新民铁矿及全国各矽卡岩型矿床全岩、单矿物Fe同位素组成(据文献[36, 47-48]修改)

    Figure 8.  Comparsion of iron isotopic compositions of Fe-bearing minerals and whole rocks from different skarn polymetallic deposit and Xinmin iron deposit

    图 9  样品Fe同位素与全铁质量分数相关性图解

    Figure 9.  Plot of measured FeOT versus δ56Fe of Fe-bearing minerals in the Xinmin iron deposit

    表  1  新民铁矿铁矿体特征

    Table  1.   Geological characteristics of the ore bodies in the Xinmin iron deposit

    矿体编号 钻孔见矿厚度/m 平均品位/% 推测走向长度/m 推测延深/m 埋深/m 赋存标高/m
    TFe MFe
    932.14~1 001.69 26 24 400 400 916~1 001.69 -486~-389
    997.91~1 024.35 20 18 200 400 974~1 024.35 -509~-446
    1 024.17~1 058.94 30 27 680 400 1 014~1 080 -560~-488
    1 055.92~1 103.86 37 34 400 400 1 042~1 120 -596~-524
    1 100.95~1 196.91 40 37 775 700 1 080~1 270 -754~-560
    1 222.22~1 223.82 21 20 200 200 1 022.22~1 246 -724~-697
    978.69~979.79 18 17 200 200 958~988 -465~-433
    1 231.56~1 235.81 191 17 200 200 1 200~1 260 -740~-676
    下载: 导出CSV

    表  2  新民铁矿Fe同位素组成

    Table  2.   Iron isotopic compositions of minerals and wall rocks in the Xinmin iron deposit

    样品编号 样品性质 δ56FeIRMM014/‰ 2σ δ57FeIRMM014/‰ 2σ
    21XM02 岩体 0.23 0.02 0.33 0.03
    21XM04 岩体 0.23 0.04 0.34 0.05
    21XM06 矿体 0.00 0.04 0.00 0.03
    21XM07 矿体 0.01 0.03 0.01 0.03
    21XM08 矿体 -0.56 0.03 -0.82 0.02
    21XM09 矿体 -0.22 0.03 -0.33 0.03
    21XM09 矿体 -0.18 0.02 -0.27 0.04
    21XM10 矿体 -0.07 0.04 -0.11 0.04
    21XM12 矿体 0.07 0.05 0.09 0.05
    21XM14 奥陶纪灰岩 0.19 0.02 0.28 0.01
    21XM17 奥陶纪灰岩 0.00 0.01 0.01 0.03
    21XM21 矿体 -0.04 0.00 -0.06 0.02
    21XM23 矿体 0.07 0.06 0.11 0.06
    21XM26 白云岩 0.19 0.05 0.28 0.05
    AGV-2 安山岩 0.10 0.03 0.14 0.02
    BCR-2 玄武岩 0.09 0.02 0.13 0.01
    下载: 导出CSV
  • [1] 赵一鸣, 林文蔚, 毕成思, 等. 中国矽卡岩矿床[M]. 北京: 地质出版社, 2012.

    Zhao Y M, Lin W W, Bi C S, et al. The skarn deposit in China[M]. Beijing: Geological Publishing House, 2012 (in Chinese).
    [2] 赵一鸣. 中国主要富铁矿矿床类型[J]. 矿床地质, 2013, 32(4): 685-704. doi: 10.3969/j.issn.0258-7106.2013.04.004

    Zhao Y M. Main types of rich iron ore deposits in China[J]. Mineral Deposits, 2013, 32(4): 685-704 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2013.04.004
    [3] 张子傲, 刘恩涛, 许家省, 等. 不同国别进口铁矿石矿物学特征分析: 来自显微组分和元素分析的约束[J]. 地质科技通报, 2023, 42(2): 33-40. doi: 10.19509/j.cnki.dzkq.2021.0094

    Zhang Z A, Liu E T, Xu J S, et al. Analysis of mineralogical characteristics of imported iron ore from different countries: Constrains from maceral compositions and elemental analysis[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 33-40 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0094
    [4] 祝明明, 邹建林, 王闯, 等. 幕阜山地区断峰山铌钽矿的矿物学、年代学和赋存状态[J]. 地质科技通报, 2021, 40(6): 55-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106007.htm

    Zhu M M, Zhou J L, Wang C, et al. Mineralogy, geochronology and occurrence state of the Duanfengshan Nb-Ta deposit in Mufushan area[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 55-69 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106007.htm
    [5] 翟裕生, 石准立, 林新多, 等. 鄂东大冶式铁矿成因的若干问题[J]. 地球科学: 中国地质大学学报, 1982, 7(3): 239-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198203024.htm

    Zhai Y S, Shi Z L, Lin X D, et al. Some problems on genesis of Daye type iron ore in eastern Hubei[J]. Earth Sciences: Journal of China University of Geosciences, 1982, 7(3): 239-251 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198203024.htm
    [6] 常印佛, 刘湘培, 吴昌言. 长江中下游地区铜铁成矿带[M]. 北京: 地质出版社, 1991.

    Chang Y F, Liu X P, Wu C Y. Cu-Fe metallogenic belt in the middle and lower reaches of Yangtze River[M]. Beijing: Geological Publishing House, 1991 (in Chinese).
    [7] 王思琪, 张保建, 李燕燕, 等. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 2021, 40(3): 12-21. doi: 10.19509/j.cnki.dzkq.2021.0319

    Wang S Q, Zhang B J, Li Y Y, et al. Heat accumulation mechanism of deep ancient buried hill in the northeast of Gaoyang geothermal field, Xiong'an New Area[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 12-21 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0319
    [8] 刘泉, 李艳军, 蔡恒安, 等. 鄂东南付家山矽卡岩型(Cu-)W矿床成岩成矿时代及地质意义[J]. 地质科技通报, 2021, 40(5): 210-222. doi: 10.19509/j.cnki.dzkq.2021.0042

    Liu Q, Li Y J, Cai H A, et al. Diagenetic and metallogenic ages, and geological significance of the Fujiashan skarn-type (Cu-) W deposit, southeastern Hubei Province[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 210-222 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0042
    [9] 赵岩岩, 谭俊, 刘晓阳, 等. 湖北大冶铜绿山矽卡岩型铜铁(金)矿床包裹体特征及其地质意义[J]. 地质科技通报, 2020, 39(6): 64-74. doi: 10.19509/j.cnki.dzkq.2020.0606

    Zhao Y Y, Tan J, Liu X Y, et al. Inclusion features and geological significance of the Tonglüshan skarn-type copper-iron (gold) deposit in Daye, Hubei[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 64-74 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0606
    [10] 何迪, 谭俊, 刘晓阳, 等. 湖北大冶铜山口斑岩-矽卡岩型铜钼矿床包裹体特征及流体演化意义[J]. 地质科技通报, 2020, 39(5): 97-108. doi: 10.19509/j.cnki.dzkq.2020.0508

    He D, Tan J, Liu X Y, et al. Significance of inclusions and fluid evolution of the porphyry-skarn copper-molybdenum deposit in Tongshankou, Daye, Hubei[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 97-108 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0508
    [11] 欧阳永棚, 饶建锋, 尧在雨, 等. 朱溪式矽卡岩型矿床成矿作用及找矿方向[J]. 地质科技情报, 2018, 37(3): 148-158. doi: 10.19509/j.cnki.dzkq.2018.0320

    Ouyang Y P, Rao J F, Rao Z Y, et al. Mineralization and prospecting direction of the "Zhuxi type"skarn deposit[J]. Geological Science and Technology Information, 2018, 37(3): 148-158 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2018.0320
    [12] 蔡本俊, 李席珍, 魏寿彭, 等. 邯邢地区中奥陶统蒸发岩特征及其对内生铁(硫)矿床的控制[J]. 中国地质科学院地质力学研究所期刊, 1987(2): 1-84. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198700022002.htm

    Cai B J, Li X Z, Wei S P, et al. Features of the Middle Ordovician evaporites and its control over the endogenic iron (sulfur) deposits in Hanxing district, Hebei[J]. Bulletin of the Institute of Geomechanics Cags, 1987(2): 1-84 (in Chinese with English abstract). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198700022002.htm
    [13] 董建华, 陈斌, 周凌. 太行山南段符山岩体的成因: 岩石学和地球化学证据[J]. 自然科学进展, 2003, 13(7): 767-774. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200307018.htm

    Dong J H, Chen B, Zhou L. Petrogenesis of Fushan pluton in southern Taihang Mountain: Evidence from petrology and geochemistry[J]. Progress in Natural Science, 2003, 13(7): 767-774 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200307018.htm
    [14] 卢安康, 周琦, 覃永军, 等. 广西下雷锰矿床气液喷溢沉积构造的发现及地质意义[J]. 地质科技通报, 2021, 40(6): 124-139. doi: 10.19509/j.cnki.dzkq.2021.0613

    Lu A K, Zhou Q, Tan Y J, et al. Discovery and geological significance of gas-liquid spouting expulsion and effusion depositional structures at Xialei manganese deposit in Guangxi[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 124-139 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0613
    [15] 蒋孝君, 苗爱生, 李华明, 等. 内蒙古多伦山间盆地砂岩型铀矿新发现及找矿前景[J]. 地质科技通报, 2021, 40(6): 88-96. doi: 10.19509/j.cnki.dzkq.2021.0609

    Jiang X J, Miao A S, Li H M, et al. New discovery and prospecting of sandstone type uranium deposits in Duolun Intermountain Basin, Inner Mongolia[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 88-96 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0609
    [16] Xie G, Mao J, Zhao H. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-Lower Yangtze River belt (MLYRB), East China[J]. Lithos, 2011, 125(1/2): 693-710.
    [17] 杨承海, 许文良, 杨德彬, 等. 鲁西济南辉长岩的形成时代锆石LA-ICP-MS U-Pb定年证据[J]. 地球学报, 2005, 26(4): 321-325. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200504004.htm

    Yang C H, Xu W L, Yang D B, et al. Chronology of the Jinan gabbro in western Shandong: Evidence from LA-ICP-MS zircon U-Pb dating[J]. Acta Geoscientica Sinica, 2005, 26(4): 321-325 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200504004.htm
    [18] 许文良, 王冬艳, 王清海, 等. 华北地块中东部中生代侵入杂岩中角闪石和黑云母40Ar/39Ar定年: 对岩石圈减薄时间的制约[J]. 地球化学, 2004, 33(3): 221-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200403000.htm

    Xu W L, Wang D Y, Wang Q H, et al. 40Ar/39Ar dating of hornblende and biotite from Mesozoic intrusive complex from the North China Block: Constraints on the time of lithospheric thinning[J]. Geochimica, 2004, 33(3): 221-231 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200403000.htm
    [19] 杨瑶, 赵俊峰, 刘池洋, 等. 山西南部塔儿山岩体锆石LA-ICP-MS U-Pb年龄地球化学特征及其地质意义[J]. 地质论评, 2017, 63(3): 809-821. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201703019.htm

    Yang Y, Zhao J F, Liu C Y, et al. The zircon LA-ICP-MS U-Pb ages and geochemical characteristics of Ta'ershan intrusions, southern Shanxi Province, and their geological implications[J]. Geological Review, 2017, 63(3): 809-821 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201703019.htm
    [20] 冯钟燕. 太行山南段有矿岩体与无矿岩体的对比[J]. 现代地质, 1998, 12(4): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ804.002.htm

    Feng Z Y. Comparison of iron skarn generating intrusions with barren intrusions in southern Taihang Mountain, China[J]. Geoscience, 1998, 12(4): 12-21 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ804.002.htm
    [21] 陈斌, 田伟, 翟明国, 等. 太行山和华北其他地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义[J]. 岩石学报, 2005, 21(1): 15-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501002.htm

    Chen B, Tian W, Zhai M G, et al. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China Craton, with implications for getrogenesis and geodynamic setting[J]. Acta Petrologica Sinica, 2005, 21(1): 15-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501002.htm
    [22] 张文娟, 开政滨, 石晓雨, 等. 山西临汾西里北铁矿矿床地质特征及找矿前景[J]. 现代矿业, 2018, 34(3): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201803028.htm

    Zhang W J, Kai Z B, Shi X Y, et al. Geological characteristics and prospecting potential of Xilibei iron deposit in Linfen City, Shanxi Province[J]. Modern Mining, 2018, 34(3): 101-106 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201803028.htm
    [23] 陈平, 苗培森. 山西五台山古宙绿岩带条带状铁建造(BIF)型金矿找矿新进展[J]. 中国地质, 1996, 44(7): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI199607012.htm

    Chen P, Miao P S. New developments in prospecting for Banded Iron Formation (BIF) gold deposits in the archean greenstone belt of Wutai Mountain, Shanxi Province[J]. Geology in China, 1996, 44(7): 26-28 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI199607012.htm
    [24] 黄克杰, 黄克强, 李金龙. 晋南塔儿山地区夕卡岩型铁矿岩浆岩特征及对成矿的控制作用[J]. 地质与资源, 2006(3): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200603007.htm

    Huang K J, Huang K Q, Li J L. The magmatise and its control to the skarn iron deposits in Tarshan area in southern Shanxi Province[J]. Geology and Resources, 2006(3): 205-211 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200603007.htm
    [25] 黄克杰. 山西塔儿山地区夕卡岩型铁矿的赋矿围岩特征及控矿作用[J]. 地质找矿论丛, 2015, 30(3): 344-351. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201503006.htm

    Huang K J. Characteristics of the host rock of the skarn type Fe depositsat Ta'ershan area in Shanxi Province and its control on the iron ore[J]. Contributions to Geology and Mineral Resources Research, 2015, 30(3): 344-351 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201503006.htm
    [26] 王艳娟, 胡援越, 申俊峰, 等. 太行山南段北洺河铁矿S、Pb同位素组成及其对成矿物质来源的示踪[J]. 现代地质, 2011, 25(5): 846-852. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201105004.htm

    Wang Y J, Hu Y Y, Shen J F, et al. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in Beiming River iron deposits, southern Taihang Mountains[J]. Geoscience, 2011, 25(5): 846-852 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201105004.htm
    [27] Graham S, Pearson N, Jackson S, et al. Tracing Cu and Fe from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit[J]. Chemical Geology, 2004, 207(3/4): 147-169.
    [28] 王行军, 王根厚, 周洁, 等. 滇东南丘北县大铁铝土矿床微量元素特征与成矿环境[J]. 地质找矿论丛, 2015, 30(3): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201503001.htm

    Wang X J, Wang G H, Zhou J, et al. Research on trace element geochemical characteristics and ore-forming environment of the Datie bauxite deposit in Qiubei County, the southeast Yunnan Province[J]. Contributions to Geology and Mineral Resources Research, 2015, 30(3): 313-320(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201503001.htm
    [29] Li R, Chen H, Wu N, et al. Multiple sulfur isotopes in post-Archean deposits as a potential tracer for fluid mixing processes: An example from an iron oxide-copper-gold (IOCG) deposit in southern Peru[J]. Chemical Geology, 2021, 575: 120230.
    [30] 唐超, 朱祥坤. 山东莱芜张家洼铁矿及其近矿闪长岩的铁同位素初步研究[J]. 地质学报, 2015, 89(增刊1): 110-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1048.htm

    Tang C, Zhu X K. Preliminary study on iron isotope of Zhangjiawa iron deposit and its near ore diorite in Laiwu, Shandong Province[J]. Acta Geologica Sinica, 2015, 89(S1): 110-111 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1048.htm
    [31] 唐立忠. 塔儿山-二峰山地区铁矿"攻深找盲"探析[J]. 华北国土资源, 2007(4): 9-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT200704005.htm

    Tang L Z. Analysis of "deep exploration for blind targets" in the Ta'ershan-Erfengshan iron ore area[J]. North China land and resources, 2007(4): 9-10 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT200704005.htm
    [32] Dauphas N, Cates N L, Mojzsis S J, et al. Identification of chemical sedimentary protoliths using iron isotopes in the >3 750 Ma Nuvvuagittuq supracrustal belt, Canada[J]. Earth and Planetary Science Letters, 2007, 254(3/4): 358-376.
    [33] 董黎阳, 史建儒, 姬书安, 等. 山西阳泉中二叠统上石盒子组中发现锯齿龙类化石[J]. 中国地质, 2020, 47(2): 538-539. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202002020.htm

    Dong L Y, Shi J R, Ji S A, et al. The discovery of pareiasaurs fossils in Middle Permian Shangshihezi Formation of Yangquan, Shanxi Province[J]. Geology in China, 2020, 47(2): 538-539 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202002020.htm
    [34] 司东泽. 太行山南段塔儿山-二峰山地区中生代含矿闪长质岩体岩石学和地球化学研究[D]. 北京: 中国地质大学(北京), 2015.

    Si D Z. Petrology and geochemistry of Mesozoic ore-bearing diorites in Ta'ershan-Erfengshan, southern part of the Taihang Mountain[D]. Beijing: China University of Geosciences(Beijing), 2015 (in Chinese with English abstract).
    [35] He Y S, Ke S, Teng F Z, et al. High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2015, 39(3): 341-356.
    [36] Wang Y, Zhu X K, Tang C, et al. Discriminate between magmatic- and magmatic-hydrothermal ore deposits using Fe isotopes[J]. Ore Geology Reviews, 2021, 130: 103946.
    [37] Young E D, Galy A, Nagahara H. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance[J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 1095-1104.
    [38] 王曰伦, 任富根, 石毅. 邯邢式铁矿的铁质来源及成矿成因的探讨[C]//天津地质矿产研究所. 中国地质科学院天津地质矿产研究所文集(3), 1981.

    Wang Y L, Ren F G, Shi Y. Discussion about the iron source and origin of the iron ore deposit of Hanxing type[C]//Tianjin Institute of Geology and Miineral Resources. Collected works(3) of Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences. Beijing: Geological Publishing Flouse, 1981.
    [39] 沈保丰, 陆松年, 于恩泽. 某区磁铁矿床中钠质交代作用的特征及其找矿意义[J]. 地质科学, 1977, 12(3): 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197703005.htm

    Shen B F, Lu S N, Yu E Z. The characteristics of sodium metasomatism in magnetite deposit of a certain region and its prospection significance[J]. Scientia Geologica Sinica, 1977, 12(3): 263-274(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197703005.htm
    [40] 郑建民, 毛景文, 陈懋弘, 等. 冀南邯郸-邢台地区矽卡岩铁矿的地质特征及成矿模式[J]. 地质通报, 2007, 26(2): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200702004.htm

    Zheng J M, Mao J W, Chen M H, et al. Geological characteristics and metallogenic model of skarn iron deposit in Handan-Xingtai area, southern Hebei, China[J]. Geological Bulletin of China, 2007, 26(2): 150-154 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200702004.htm
    [41] Johnson C M, Ludois J M, Beard B L, et al. Iron formation carbonates: Paleoceanographic proxy or recorder of microbial diagenesis[J]. Geology, 2013, 41(11): 1147-1150.
    [42] Sun J, Zhu X K, Chen Y L, et al. Iron isotopic constraints on the genesis of Bayan Obo ore deposit, Inner Mongolia, China[J]. Precambrian Research, 2013, 235: 88-106.
    [43] Steinhoefel G, Blanckenburg F, Horn I, et al. Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation[J]. Geochimica et Cosmochimica Acta, 2010, 74(9): 2677-2696.
    [44] Craddock P R, Dauphas N. Iron and carbon isotope evidence for microbial ironrespiration throughout the Archean[J]. Earth and Planetary Science Letters, 2011, 303(1/2): 121-132.
    [45] Poitrasson F, Freydier R. Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS[J]. Chemical Geology, 2005, 222(1/2): 132-147.
    [46] Teng F Z, Dauphas N, Helz R T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake[J]. Science, 2008, 320: 1620-1622.
    [47] Telus M, Dauphas N, Moynier F, et al. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites[J]. Geochimica et Cosmochimica Acta, 2012, 97: 247-265.
    [48] Foden J, Sossi P A, Wawryk C M. Fe isotopes and the contrasting petrogenesis of A-, I- and S- type granite[J]. Lithos, 2015, 212: 32-44.
    [49] Chapman J B, Weiss D J, Shan Y, et al. Iron isotope fractionation during leaching of granite and basalt by hydrochloric and oxalic acids[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1312-1324.
    [50] Cheng Y B, Mao J W, Zhu X K, et al. Iron isotope fractionation during supergene weathering process and its application to constrain ore genesis in Gaosong deposit, Gejiu district, SW China[J]. Gondwana Research, 2015, 27(3): 1283-1291.
    [51] Chou I M, Eugster H P. Solubility of magnetite in supercritical chloride solutions[J]. American Journal of Science, 1977, 277(10): 1296-1314.
    [52] Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370: 519-527.
    [53] Baker T, Achterberg E, Ryan C G, et al. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J]. Geology, 2004, 32(2): 117-120.
    [54] Heimann A, Beard B L, Johnson C M. The role of volatile exsolution and subsolidus fluid rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks[J]. Geochimica et Cosmochimca Acta, 2008, 72(17): 4379-4396.
    [55] 陈晓峰, 朱祥坤. 铜绿山夕卡岩型铜铁矿床Fe、Cu同位素研究[J]. 矿物学报, 2011, 32(增刊1): 1001-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1528.htm

    Chen X F, Zhu X K. Fe and Cu isotopes of skarn Cu-iron deposit in the Tonglushan Mountains[J]. Acta Mineralogica Sinica, 2011, 32(S1): 1001-1003 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1528.htm
    [56] 陈永健, 苏尚国, 何永胜, 等. 河北武安西石门铁矿床Fe同位素特征及其成矿指示意义[J]. 岩石学报, 2014, 30(11): 3443-3454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411026.htm

    Chen Y J, Su S G, He Y S, et al. Fe isotope characteristics and implications on mineralization of Xishimen iron deposit in Wuan, Hebei[J]. Acta Petrologica Sinica, 2014, 30(11): 3443-3454 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411026.htm
    [57] 陈福川, 程晓林, 韩润生, 等. 西南三江金厂河矽卡岩型多金属矿床铁同位素分馏机制及其对成矿物质来源的制约[J]. 岩石学报, 2022, 38(1): 157-171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202201011.htm

    Chen F C, Cheng X L, Han R S, et al. The fractionation of iron isotope and its constraints on the sources of ore-forming materials in the Jinchanghe skarn polymetallic deposit in Sanjiang region, Southwest China[J]. Acta Petrologica Sinica, 2022, 38(1): 157-171 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202201011.htm
    [58] Wang Y, Zhu X K, Mao J W, et al. Iron isotope fractionation during skarn-type metallogeny: A case study of Xinqiao Cu-S-Fe-Au deposit in the Middle Lower Yangtze Valley[J]. Ore Geology Reviews, 2011, 43(1): 194-202.
    [59] 章百明, 赵国良, 马国玺, 等. 河北省主要成矿区带矿床成矿系列及成矿模式[M]. 北京: 石油工业出版社, 1996.

    Zhang B M, Zhao G L, Ma G X, et al. Metallogenic series and metallogenic models of ore deposite in main metallogenic zones of Hebei Province[M]. Beijing: Petroleum Industry Press, 1996 (in Chinese).
    [60] 王跃, 朱祥坤. 铁同位素体系及其在矿床学中的应用[J]. 岩石学报, 2012, 28(11): 3638-3654. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211017.htm

    Wang Y, Zhu X K. Fe isotope systematics and its implications in ore deposit geology[J]. Acta Petrologica Sinica, 2012, 28(11): 3638-3654 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211017.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  355
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 录用日期:  2022-08-19
  • 修回日期:  2022-08-16

目录

    /

    返回文章
    返回