Advances in interbasin groundwater circulation
-
摘要:
在区域尺度上,地下水流的路径存在跨越地表分水岭的可能性,从而形成跨流域地下水循环,影响流域之间的水文关系和溶质输送过程。跨流域地下水循环的研究在国际上尚处于起步阶段,方兴未艾,目前已经取得的进展是一个值得关注的问题。对近20年来国内外跨流域地下水循环的研究文献进行了系统的跟踪分析,从形成机理、识别方法和影响评估3个角度总结现有的研究进展。在水动力学形成机理方面,已经从理论上确定了地表分水岭、潜水面最高点和地下水流系统分水点之间的偏离特征,为划分河流之间的多种跨流域地下水循环路径提供了依据。在跨流域地下水循环的识别方面,一系列实际流域的案例提供了可以借鉴的方法,包括水均衡法、流域水文模型和水文地球化学端元混合模型等,证实了跨流域地下水循环的存在性,甚至评估出其循环通量,深化了流域水量平衡关系的认识。研究表明流域地理位置、形态尺寸、气候背景和地质构造等条件都会影响跨流域地下水循环的发生及通量。在影响评价方面,初步发现跨流域地下水循环对水文要素的气候敏感性、Budyko模式状态参数及碳源碳汇形成有重要影响,忽略其作用可能产生错误的认识。目前,科学界对跨流域地下水循环的动力学过程及其物质输送效应的研究还相对薄弱,缺乏准确的定量评估方法,未来的研究重点是揭示三维含水层空间的跨流域地下水循环路径,准确评估跨流域地下水循环的各种影响。
Abstract:Significance Groundwater flow paths may cross the surface divide at the regional scale, resulting in interbasin groundwater circulation that affects hydrological relationships and solute transport process between basins. However, research on interbasin groundwater circulation is still in its infancy internationally, and the progress achieved is a matter of concern.
Progress This study systematically tracks and analyses the literature on interbasin groundwater circulation at home and abroad in the past 20 years and summarizes the existing research progress from three perspectives: formation mechanism, identification methods, and impact assessment. In terms of the hydrodynamic formation mechanism, the study theoretically determines the deviation characteristics between the surface divide, the highest point of the water table and the divide point of groundwater flow systems. Based on the deviation characteristics, multiple interbasin groundwater circulation paths can be separated between rivers.In terms of identifying the interbasin groundwater circulation, a series of real basin cases provide available methods, including the water balance method, basin-scale hydrological model and hydrogeochemical end element mixed model. The methods identify the existence of interbasin groundwater circulation and even evaluate the circulation fluxes, which can improve the recognition of the water balance in the basin. It is also found that the location, size, climate and geological conditions of the basin affect the occurrence and flux of interbasin groundwater circulation.In terms of impact assessment, it is preliminarily found that the interbasin groundwater circulation has an important impact on the assessments of climate sensitivity, state parameters of the Budyko framework and carbon source/sink in the basin. Ignoring its role may lead to obviously incorrect conclusions.
Conclusions and Prospects At present, research on the dynamic process and material transport effect of interbasin groundwater circulation is relatively weak. Accurate and quantitative evaluation methods are also lacking. The focuses of future research are to reveal the circulation paths of interbasin groundwater in three-dimensional aquifer space and accurately assess the various impacts of interbasin groundwater circulation.
-
图 3 闭合流域(a)与非闭合流域(b, c)水文循环过程概念模型(改自文献[8])
Figure 3. Conceptual models of hydrological cycle processes in the closed basin (a) and unclosed basin (b, c)
图 5 不考虑(a)和考虑(b)跨流域地下水循环时Semois河子流域数据点在Budyko空间的分布(改自文献[60])
Figure 5. Distribution of data points in the Budyko space for subbasins of the Semois River obtained using the model without (a) or with (b) the interbasin groundwater circulation
图 6 有无跨流域地下水循环影响的流域碳循环通量评估案例(单位为gC m-2yr-1)(改自文献[63])
Figure 6. Schematic diagram of carbon cycle fluxes in Arboleda basin (a) and Taconazo basin(b) with or without interbasin groundwater circulation
-
[1] 林学钰, 廖资生, 赵勇胜, 等. 现代水文地质学[M]. 北京: 地质出版社, 2005.Lin X Y, Liao Z S, Zhao Y S, et al. Modern hydrogeology[M]. Beijing: Geological Publishing House, 2005(in Chinese). [2] Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. J. Geophys. Res., 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795 [3] 蒋小伟, 万力, 王旭升. 区域地下水流理论进展[M]. 北京: 地质出版社, 2013.Jiang X W, Wan L, Wang X S. Advance in the theory of regional groundwater flow[M]. Beijing: Geological Publishing House, 2013(in Chinese). [4] 梁杏, 张人权, 靳孟贵. 地下水流系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.Liang X, Zhang R Q, Jin M G. Groundwater flow systems: Theory, application and investigation[M]. Beijing: Geological Publishing House, 2015(in Chinese). [5] Eakin T E. A regional interbasin groundwater system in the White River area, southeastern Nevada[J]. Water Resources Research, 1966, 2(2): 251-271. doi: 10.1029/WR002i002p00251 [6] Genereux D, Pringle C. Chemical mixing model of streamflow generation at La Selva Biological Station, Costa Rica[J]. Journal of Hydrology, 1997, 199(3/4): 319-330. [7] Schaller M F, Fan Y. River basins as groundwater exporters and importers: Implications for water cycle and climate modeling[J]. Journal of Geophysical Research, 2009, 114(4): 103-123. [8] Le Mesnil M, Charlier J B, Moussa R, et al. Interbasin groundwater flow: Characterization, role of karst areas, impact on annual water balance and flood processes[J]. Journal of Hydrology, 2020, 585: 124583. doi: 10.1016/j.jhydrol.2020.124583 [9] 韩再生, 李尧, 王皓, 等. 跨界含水层研究: 世界进展和亚洲实践[J]. 科技导报, 2012, 30(5): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201205029.htmHan Z S, Li Y, Wang H, et al. Research on transboundary aquifers: International development progress and their practice in Asia[J]. Science & Technology Review, 2012, 30(5): 57-66(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201205029.htm [10] 唐蕴, 唐克旺, 康伟, 等. 跨界含水层研究现状与展望[J]. 水文地质工程地质, 2010, 37(5): 15-19. doi: 10.16030/j.cnki.issn.1000-3665.2010.05.005Tang Y, Tang K W, Kang W, et al. Development and prospect of studies of transboundary aquifer[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 15-19(in Chinese with English abstract). doi: 10.16030/j.cnki.issn.1000-3665.2010.05.005 [11] Condon L E, Markovich K H, Kelleher C A, et al. Where is the bottom of a watershed?[J]. Water Resources Research, 2020, 56(3): e2019WR026010. [12] McDonnell J J. Beyond the water balance[J]. Nature Geoscience, 2017, 10(6): 396. doi: 10.1038/ngeo2964 [13] Han P F, Wang X S, Wan L, et al. The exact groundwater divide on water table between two rivers: A fundamental model investigation[J]. Water, 2019, 11(4): 685. doi: 10.3390/w11040685 [14] Wang X S, Wan L, Jiang X W, et al. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin[J]. Advances in Water Resources, 2017, 108(S1): 139-156. [15] Li R Y, Wang X S. Analytical investigation of the exact groundwater divide between rivers beyond the Dupuit-Forchheimer approximation[J]. Hydrological Processes, 2021, 35(2): e14036. [16] Genereux D P, Webb M, Solomon D K. Chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rain forest: Evidence from carbon, helium, and chlorine[J]. Water Resources Research, 2009, 45(8): 64-76. [17] Hooper R P. Modelling streamwater chemistry as a mixture of soilwater end-members: An application to the Panola Mountain catchment, Georgia, U.S.A. [J]. Journal of Hydrology, 1990, 116(1): 321-343. [18] Pringle C M, Rowe G L, Triska F J, et al. Landscape linkages between geothermal activity and solute composition and ecological response in surface waters draining the Atlantic slope of Costa Rica[J]. Limnology and Oceanography, 1993, 38(4): 753-774. doi: 10.4319/lo.1993.38.4.0753 [19] Thyne G D, Gillespie J M, Ostdick J R. Evidence of interbasin flow through bedrock in the southeastern Sierra Nevada[J]. Geological Society of America Bulletin, 1999, 111(11): 1600-1616. doi: 10.1130/0016-7606(1999)111<1600:EFIFTB>2.3.CO;2 [20] Fan Y. Are catchments leaky?[J]. WIREs Water, 2019, 6(6): e1386. [21] 徐乾清. 中国水利百科全书[M]. 北京: 中国水利水电出版社, 2006.Xu Q Q. Encyclopedia of water resources in China[M]. Beijing: China Water Power Press, 2009(in Chinese). [22] 芮孝芳. 水文学原理[M]. 北京: 中国水利水电出版社, 2004.Rui X F. Principles of hydrology[M]. Beijing: China Water Power Press, 2004(in Chinese). [23] 徐宗学. 水文模型[M]. 北京: 科学出版社, 2009.Xu Z X. Hydrological model[M]. Beijing: Science Press, 2004(in Chinese). [24] Han P F, Istanbulluoglu E, Wan L, et al. A new hydrologic sensitivity framework for unsteady: State responses to climate change and its application to catchments with croplands in Illinois[J]. Water Resources Research, 2021, 57(8): e2020WR027762. [25] Genereux D P, Jordan M T, Carbonell D. A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica[J]. Water Resources Research, 2005, 41(4): W04011.1-W04011.17. [26] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础: 第7版[M]. 北京: 地质出版社, 2018.Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology: 7th Edition[M]. Beijing: Geological Publishing House, 2018(in Chinese). [27] 陈崇希, 唐仲华, 胡立堂. 地下水流数值模拟理论方法及模型设计[M]. 北京: 地质出版社, 2014.Chen C X, Tang Z H, Hu L T. Theoretical method and model design for numerical simulation of groundwater flow[M]. Beijing: Geological Publishing House, 2014(in Chinese). [28] 沈照理. 水文地球化学基础[M]. 北京: 地质出版社, 1993.Shen Z L. Fundamentals of hydrogeochemistry[M]. Beijing: Geological Publishing House, 1993(in Chinese). [29] 顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011.Gu W Z. Isotope hydrology[M]. Beijing: Science Press, 2011(in Chinese). [30] Bear J. Hydraulics of groundwater[M]. New York: McGraw-Hill, 1979. [31] Zhan H. Analytical and numerical modeling of a double well capture zone[J]. Mathematical Geology, 1999, 31(2): 175-193. [32] Wang X S, Jiang X W, Wan L, et al. A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability[J]. Water Resources Research, 2011, 47(9): W09603. [33] Jiang X W, Wang X S, Wan L, et al. An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity[J]. Water Resources Research, 2011, 47(1): W01512. [34] Batelaan O, Smedt F D, Triest L. Regional groundwater discharge: Phreatophyte mapping, groundwater modelling and impact analysis of land-use change[J]. Journal of Hydrology, 2003, 275(1/2): 86-108. [35] Engelen G B, Kloosterman F H. Hydrological systems analysis: Methods and applications[M]. Dordrecht: Kluwer Academic Publishers, 1996. [36] Goderniaux P, Davy P, Bresciani E, et al. Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments[J]. Water Resources Research, 2013, 49(4): 2274-2286. doi: 10.1002/wrcr.20186 [37] 薛禹群, 吴吉春. 地下水动力学: 第3版[M]. 北京: 地质出版社, 2010.Xue Y Q, Wu J C. Groundwater hydraulics: 3th Edition[M]. Beijing: Geological Publishing House, 2010(in Chinese). [38] Freeze R A, Cherry J A. Groundwater[M]. Englewood Cliffs: Prentice-Hall, Inc., 1979. [39] Borchardt S A. Variation of groundwater divides during wet and dry years in the Wolf River basin, northeastern Wisconsin[J]. International Journal of Geospatial and Environmental Research, 2018, 5(1): 1-16. [40] 焦友军, 潘晓东, 曾洁, 等. 会仙喀斯特湿地地下水分水岭移动特征研究[J]. 湿地科学, 2021, 19(2): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD202102001.htmJiao Y J, Pan X D, Zeng J, et al. The moving characteristics of the groundwater divide in Huixian karst wetland[J]. Wetland Science, 2021, 19(2): 137-146(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD202102001.htm [41] Clark M P, Fan Y, Lawrence D M, et al. Improving the representation of hydrologic processes in Earth System Models[J]. Water Resources Research, 2015, 51(8): 5929-5956. doi: 10.1002/2015WR017096 [42] Gleeson T, Befus K M, Jasechko S, et al. The global volume and distribution of modern groundwater[J]. Nature Geoscience, 2016, 9(2): 161-167. doi: 10.1038/ngeo2590 [43] 王波, 张华, 王宇, 等. 泸西喀斯特断陷盆地地表水与地下水流域边界与水动力性质[J]. 中国岩溶, 2020, 39(3): 319-326. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003004.htmWang B, Zhang H, Wang Y, et al. Watershed boundaries and hydrodynamic properties of surface water and groundwater in the Luxi karst fault-depression basin[J]. Carsologica Sinica, 2020, 39(3): 319-326(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003004.htm [44] Guerschman J P, Dijk A, Mattersdorf G, et al. Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia[J]. Journal of Hydrology, 2009, 369(1/2): 107-119. [45] Odusanya A E, Mehdi B, Schürz C, et al. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria[J]. Hydrology and Earth System Sciences, 2019, 23(2): 1113-1144. doi: 10.5194/hess-23-1113-2019 [46] Mouelhi S, Michel C, Perrin C, et al. Stepwise development of a two-parameter monthly water balance model[J]. Journal of Hydrology, 2006, 318(1/4): 200-214. [47] Han P F, Wang X S, Istanbulluoglu E. A null-parameter formula of storage-evapotranspiration relationship at catchment scale and its application for a new hydrological model[J]. Journal of Geophysical Research Atmospheres, 2018, 123(4): 2082-2097. doi: 10.1002/2017JD027758 [48] Han P F, Wang X S, Wan L, et al. Croplands decreased stability of streamflow with changing climate: An investigation of catchments in Illinois[J]. Journal of Hydrology, 2022, 606: 127461. [49] Genereux D P, Wood S J, Pringle C M. Chemical tracing of interbasin groundwater transfer in the lowland rainforest of Costa Rica[J]. Journal of Hydrology, 2002, 258(1/4): 163-178. [50] 韩鹏飞, 王旭升, 蒋小伟, 等. 氢氧同位素在地下水流系统的重分布: 从高程效应到深度效应[J]. 水文地质工程地质, 2023, 50(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202302001.htmHan P F, Wang X S, Jiang X W, et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow system: From elevation effect to depth effect[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 1-12 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202302001.htm [51] Genereux D P, Hemond H F, Mulholland P J. Use of radon-222 and calcium as tracers in a three-end-member mixing model for streamflow generation on the West Fork of Walker Branch Watershed[J]. Journal of Hydrology, 1993, 142(1/4): 167-211. [52] Hartmann A, Goldscheider N, Wagener T, et al. Karst water resources in a changing world: Review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3): 218-242. [53] Malard A, Jeannin P Y, Vouillamoz J, et al. An integrated approach for catchment delineation and conduit-network modeling in karst aquifers: Application to a site in the Swiss Tabular Jura[J]. Hydrogeology Journal, 2015, 23(7): 1341-1357. [54] Jeannin P Y, Eichenberger U, Sinreich M, et al. KARSYS: A pragmatic approach to karst hydrogeological system conceptualisation: Application to the assessment of reserve and resource estimation of groundwater in Switzerland[J]. Journal of Earth and Environmental Sciences, 2013, 69(3): 999-1013. [55] Budyko M I. Climate and life[M]. New York: Academic, 1974. [56] 傅抱璞. 论陆面蒸发的计算[J]. 大气科学, 1981, 5(1): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198101002.htmFu B P. On the calculation of the evaporation from land surface[J]. Scientia Atmospherica Sinica, 1981, 5(1), 25-33(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198101002.htm [57] 孙福宝, 杨大文, 刘志雨, 等. 基于Budyko假设的黄河流域水热耦合平衡规律研究[J]. 水利学报, 2007, 38(4): 409-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200704004.htmSun F B, Yang D W, Liu Z Y, et al. Study on coupled water-energy balance in Yellow River basin based on Budyko Hypothesis[J]. Journal of Hydraulic Engineering, 2007, 38(4): 409-416(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200704004.htm [58] Wang X S, Zhou Y X. Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration[J]. Hydrology and Earth System Sciences, 2016, 20(9): 3673-3690. [59] Mezentsev V. Back to the computation of total evaporation[J]. Meteorologia i Gidrologia, 1955, 5: 24-26. [60] Bouaziz L, Weerts A, Schellekens J, et al. Redressing the balance: Quantifying net intercatchment groundwater flows[J]. Hydrology and Earth System Sciences, 2018, 22(12): 6415-6434. [61] Likens G E, Bormann F H. Biogeochemistry of a forested ecosystem: 2nd Edition[M]. New York: Springer, 1995. [62] Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J], Ecosystems, 2007, 10(1): 171-184. [63] Genereux D P, Jordan M. Interbasin groundwater flow and groundwater interaction with surface water in a lowland rainforest, Costa Rica: A review[J]. Journal of Hydrology, 2006, 320(3/4): 385-399. [64] Genereux D P, Nagy L A, Osburn C L, et al. A connection to deep groundwater alters ecosystem carbon fluxes and budgets: Example from a Costa Rican rainforest[J]. Geophysical Research Letters, 2013, 40(10): 2066-2070.